Nanofiltration Performance of Poly(p-xylylene) Nanofilms with Imidazole Side Chains
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Elimelech, M.; Phillip, W.A. The Future of Seawater Desalination: Energy, Technology, and the Environment. Science 2011, 333, 712–717. [Google Scholar] [CrossRef] [PubMed]
- Marchetti, P.; Jimenez Solomon, M.F.; Szekely, G.; Livingston, A.G. Molecular separation with organic solvent nanofiltration: A critical review. Chem. Rev. 2014, 114, 10735–10806. [Google Scholar] [CrossRef] [PubMed]
- Yadav, D.; Karki, S.; Ingole, P.G. Current advances and opportunities in the development of nanofiltration (NF) membranes in the area of wastewater treatment, water desalination, biotechnological and pharmaceutical applications. J. Environ. Chem. Eng. 2022, 10, 108109. [Google Scholar] [CrossRef]
- Liu, G.; Li, N.; Miller, S.J.; Kim, D.; Yi, S.; Labreche, Y.; Koros, W.J. Molecularly Designed Stabilized Asymmetric Hollow Fiber Membranes for Aggressive Natural Gas Separation. Angew. Chem. Int. Ed. Eng. 2016, 55, 13754–13758. [Google Scholar] [CrossRef]
- Jimenez-Solomon, M.F.; Song, Q.; Jelfs, K.E.; Munoz-Ibanez, M.; Livingston, A.G. Polymer nanofilms with enhanced microporosity by interfacial polymerisation. Nat. Mater. 2016, 15, 760–767. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karan, S.; Wang, Q.; Samitsu, S.; Fujii, Y.; Ichinose, I. Ultrathin free-standing membranes from metal hydroxide nanostrands. J. Membr. Sci. 2013, 448, 270–291. [Google Scholar] [CrossRef]
- Henmi, M.; Nakatsuji, K.; Ichikawa, T.; Tomioka, H.; Sakamoto, T.; Yoshio, M.; Kato, T. Self-organized liquid-crystalline nanostructured membranes for water treatment: Selective permeation of ions. Adv. Mater. 2012, 24, 2238–2241. [Google Scholar] [CrossRef]
- Qian, Q.; Asinger, P.A.; Lee, M.J.; Han, G.; Mizrahi Rodriguez, K.; Lin, S.; Benedetti, F.M.; Wu, A.X.; Chi, W.S.; Smith, Z.P. MOF-Based Membranes for Gas Separations. Chem. Rev. 2020, 120, 8161–8266. [Google Scholar] [CrossRef]
- Fan, H.; Peng, M.; Strauss, I.; Mundstock, A.; Meng, H.; Caro, J. MOF-in-COF molecular sieving membrane for selective hydrogen separation. Nat. Commun. 2021, 12, 38. [Google Scholar] [CrossRef]
- Karan, S.; Samitsu, S.; Peng, X.; Kurashima, K.; Ichinose, I. Ultrafast Viscous Permeation of Organic Solvents Through Diamond-Like Carbon Nanosheets. Science 2012, 335, 444–447. [Google Scholar] [CrossRef]
- Joshi, R.K.; Carbone, P.; Wang, F.C.; Kravets, V.G.; Su, Y.; Grigorieva, I.V.; Wu, H.A.; Geim, A.K.; Nair, R.R. Precise and Ultrafast Molecular Sieving Through Graphene Oxide Membranes. Science 2014, 343, 752–754. [Google Scholar] [CrossRef] [Green Version]
- Morelos-Gomez, A.; Cruz-Silva, R.; Muramatsu, H.; Ortiz-Medina, J.; Araki, T.; Fukuyo, T.; Tejima, S.; Takeuchi, K.; Hayashi, T.; Terrones, M.; et al. Effective NaCl and dye rejection of hybrid graphene oxide/graphene layered membranes. Nat. Nanotechnol. 2017, 12, 1083–1089. [Google Scholar] [CrossRef] [PubMed]
- Baran, M.J.; Carrington, M.E.; Sahu, S.; Baskin, A.; Song, J.; Baird, M.A.; Han, K.S.; Mueller, K.T.; Teat, S.J.; Meckler, S.M.; et al. Diversity-oriented synthesis of polymer membranes with ion solvation cages. Nature 2021, 592, 225–231. [Google Scholar] [CrossRef] [PubMed]
- Tomczak, W. Fouling of the Nanofiltration Membrane NF270 Used for Separation of Fermentation Broths: Impact of Feed Pretreatment Process. Processes 2023, 11, 817. [Google Scholar] [CrossRef]
- Shii, T.; Hatori, M.; Yokota, K.; Hattori, Y.; Kimura, M. Selective Blocking Property of Microporous Polymer Membranes Fabricated by Chemical Vapor Deposition. Sci. Rep. 2017, 7, 15596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gorham, W.F. A New, General Synthetic Method for the Preparation of Linear Poly-p-xylylenes. Polym. Chem. 1966, 4, 3027–3039. [Google Scholar] [CrossRef]
- Yeh, Y.L.; Gorham, W.F. Preparation and Reactions of Some [2.2]Paracyclophane Derivatives. J. Org. Chem. 1969, 34, 2366–2370. [Google Scholar] [CrossRef]
- Hopf, H. [2.2]Paracyclophanes in polymer chemistry and materials science. Angew. Chem. Int. Ed. Engl. 2008, 47, 9808–9812. [Google Scholar] [CrossRef]
- Nguyen, B.K.; Matsumoto, K.; Shimoyama, I. Tensile film stress of parylene deposited on liquid. Langmuir 2010, 26, 18771–18775. [Google Scholar] [CrossRef]
- Charmet, J.; Banakh, O.; Laux, E.; Graf, B.; Dias, F.; Dunand, A.; Keppner, H.; Gorodyska, G.; Textor, M.; Noell, W.; et al. Solid on liquid deposition. Thin Solid Films 2010, 518, 5061–5065. [Google Scholar] [CrossRef]
- Guan, Z.Y.; Wu, C.Y.; Li, Y.J.; Chen, H.Y. Switching the Biointerface of Displaceable Poly-p-xylylene Coatings. ACS Appl. Mater. Interfaces 2015, 7, 14431–14438. [Google Scholar] [CrossRef]
- Kaltenbrunner, M.; White, M.S.; Glowacki, E.D.; Sekitani, T.; Someya, T.; Sariciftci, N.S.; Bauer, S. Ultrathin and lightweight organic solar cells with high flexibility. Nat. Commun. 2012, 3, 770. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuribara, K.; Wang, H.; Uchiyama, N.; Fukuda, K.; Yokota, T.; Zschieschang, U.; Jaye, C.; Fischer, D.; Klauk, H.; Yamamoto, T.; et al. Organic transistors with high thermal stability for medical applications. Nat. Commun. 2012, 3, 723. [Google Scholar] [CrossRef] [Green Version]
- Kaltenbrunner, M.; Sekitani, T.; Reeder, J.; Yokota, T.; Kuribara, K.; Tokuhara, T.; Drack, M.; Schwodiauer, R.; Graz, I.; Bauer-Gogonea, S.; et al. An ultra-lightweight design for imperceptible plastic electronics. Nature 2013, 499, 458–463. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Huang, W.; Lee, S.; Huang, L.; Wang, Z.; Chen, Y.; Chen, Z.; Feng, L.-W.; Wang, G.; Yokota, T.; et al. Foundry-compatible high-resolution patterning of vertically phase-separated semiconducting films for ultraflexible organic electronics. Nat. Commun. 2021, 12, 4937. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.-Y.; Lai, J.H.; Jiang, X.; Lahann, J. Substrate-Selective Chemical Vapor Deposition of Reactive Polymer Coatings. Adv. Mater. 2008, 20, 3474–3480. [Google Scholar] [CrossRef] [Green Version]
- Nandivada, H.; Chen, H.Y.; Bondarenko, L.; Lahann, J. Reactive polymer coatings that “Click”. Angew. Chem. Int. Ed. Engl. 2006, 45, 3360–3363. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.Y.; Lahann, J. Designable biointerfaces using vapor-based reactive polymers. Langmuir 2011, 27, 34–48. [Google Scholar] [CrossRef]
- Greiner, A.; Schaifer, O.; Simon, P. Poly(P-xyly1ene)s: Synthesis, polymer analogous reactions, and perspectives on structure-property relationships. Acta Polym. 1997, 48, 1–15. [Google Scholar] [CrossRef]
- Hassan, Z.; Spuling, E.; Knoll, D.M.; Brase, S. Regioselective Functionalization of [2.2]Paracyclophanes: Recent Synthetic Progress and Perspectives. Angew. Chem. Int. Ed. Engl. 2020, 59, 2156–2170. [Google Scholar] [CrossRef] [Green Version]
- Seacome, R.J.; Coles, M.P.; Glover, J.E.; Hitchcock, P.B.; Rowlands, G.J. Planar-chiral imidazole-based phosphine ligands derived from [2,2]paracyclophane. Dalton Trans. 2010, 39, 3687–3694. [Google Scholar] [CrossRef] [PubMed]
- Hallett, J.P.; Welton, T. Room-temperature ionic liquids: Solvents for synthesis and catalysis. 2. Chem. Rev. 2011, 111, 3508–3576. [Google Scholar] [CrossRef] [PubMed]
- Shabalin, D.A.; Camp, J.E. Recent advances in the synthesis of imidazoles. Org. Biomol. Chem. 2020, 18, 3950–3964. [Google Scholar] [CrossRef]
- Cipiciani, A.; Fringuelli, F.; Mancini, V.; Piermatti, O.; Pizzo, F.; Ruzziconi, R. Synthesis of Chiral (R)-4-Hydroxy- and (R)-4-Halogeno[2.2]paracyclophanes and Group Polarizability. Optical Rotation Relationship. J. Org. Chem. 1997, 62, 3744–3747. [Google Scholar] [CrossRef]
- Titantah, J.T.; Lamoen, D. Carbon and nitrogen 1s energy levels in amorphous carbon nitride systems: XPS interpretation using first-principles. Diam. Relat. Mater. 2007, 16, 581–588. [Google Scholar] [CrossRef]
- Finsgar, M. Surface analysis of 2-mercapto-1-methylimidazole adsorbed on copper by X-ray photoelectron spectroscopy. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018, 190, 290–297. [Google Scholar] [CrossRef]
- Jackson, N.; Stam, F.; O’Brien, J.; Kailas, L.; Mathewson, A.; O’Murchu, C. Crystallinity and mechanical effects from annealing Parylene thin films. Thin Solid Films 2016, 603, 371–376. [Google Scholar] [CrossRef]
- Murthy, N.S.; Kim, H.-G. Molecular packing in alkylated and chlorinated poly-p-xylylenes. Polymer 1984, 25, 1093–1096. [Google Scholar] [CrossRef]
- Miller, K.J.; Hollinger, H.B. On the Conformations of Poly(p-xylylene) and Its Mesophase Transitions. Macromolecules 1990, 23, 3855–3859. [Google Scholar] [CrossRef]
- Boduroglu, S.; Cetinkaya, M.; Dressick, W.J.; Singh, A.; Demire, M.C. Controlling the Wettability and Adhesion of Nanostructured Poly-(p-xylylene) Films. Langmuir 2007, 23, 11391–11395. [Google Scholar] [CrossRef]
- Cheng, L.; Zhang, M.; Fang, C.; Feng, W.; Zhu, L.; Xu, Y. Positively charged poly(N-vinyl imidazole)gel-filled loose nanofiltration membranes: Perfromances and molelling analysis. J. Membr. Sci. 2020, 625, 118975. [Google Scholar] [CrossRef]
- Hu, J.; Hardian, R.; Gede, M.; Holtzl, T.; Szekely, G. Reversible crosslinking of polybenzimidazole-based organic solvent nanofiltration membranes using difunctional organic acids: Toward sustainable crosslinking approaches. J. Membr. Sci. 2022, 648, 120383. [Google Scholar] [CrossRef]
- Bai, Y.; Gao, P.; Fang, R.; Gai, J.; Zhang, L.-D.; Zhou, Z.-H.; Sun, S.-P.; Gao, X.-L. Constructing positively charged acid-resistant nanofiltration membranes via surface postgrafting for efficient removal of metak ions from electroplating rinse wastewater. Sep. Purif. Technol. 2022, 297, 121500. [Google Scholar] [CrossRef]
- Setiawan, O.; Huang, Y.-H.; Abdi, Z.G.; Hung, W.-S.; Chung, T.-S. pH-tunable and pH-responsive polybenzimidazole (PBI) nanofiltration membranes for Li+/Mg2+ separation. J. Membr. Sci. 2023, 668, 121269. [Google Scholar] [CrossRef]
- Liu, C.; Mao, H.; Zheng, J.; Zhang, S. In situ surface crosslinked tight ultrafiltration membrane prepared by one-step chemical reaction-involved phase inversion process between activated PAEK-COOH and PEI. J. Membr. Sci. 2017, 538, 58–67. [Google Scholar] [CrossRef]
- Park, K.S.; Ni, Z.; Cote, A.P.; Choi, J.Y.; Huang, R.; Uribe-Romo, F.J.; Chae, H.K.; O’Keeffe, M.; Yaghi, O.M. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci. USA 2006, 103, 10186–10191. [Google Scholar] [CrossRef]
- Phan, A.; Doonan, C.J.; Uribe-Romo, F.J.; KnoblerR, C.B.; O’Keeffe, M.; Yaghi, O.M. Synthesis, Structure, and Carbon Dioxide Capture Properties of Zeolitic Imidazolate Frameworks. Acc. Chem. Res. 2010, 43, 58–67. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.P.; Zhang, Y.B.; Lin, J.B.; Chen, X.M. Metal azolate frameworks: From crystal engineering to functional materials. Chem. Rev. 2012, 112, 1001–1033. [Google Scholar] [CrossRef]
- Ordoñez, M.J.C.; Balkus, K.J.; Ferraris, J.P.; Musselman, I.H. Molecular sieving realized with ZIF-8/Matrimid® mixed-matrix membranes. J. Membr. Sci. 2010, 361, 28–37. [Google Scholar] [CrossRef]
- Li, J.R.; Sculley, J.; Zhou, H.C. Metal-organic frameworks for separations. Chem. Rev. 2012, 112, 869–932. [Google Scholar] [CrossRef] [PubMed]
- Cseri, L.; Hardian, R.; Anan, S.; Vovusha, H.; Schwingenschlögl, U.; Budd, P.M.; Sada, K.; Kondo, K.; Szekely, G. Bridging the interfacial gap in mixed-matrix membranes by nature-inspired design: Precise molecular sieving with polymer-grafted metal-organic frameworks. J. Mater. Chem. A 2021, 9, 23793–23801. [Google Scholar] [CrossRef]
- Thanh, M.T.; Thien, T.V.; Du, P.D.; Hung, N.P.; Khieu, D.Q. Iron doped zeolitic imidazolate framework (Fe-ZIF-8): Synthesis and photocatalytic degradation of RDB dye in Fe-ZIF-8. J. Porous Mater. 2017, 25, 857–869. [Google Scholar] [CrossRef]
- Wang, L.; Fang, M.; Liu, J.; He, J.; Li, J.; Lei, J. Layer-by-Layer Fabrication of High-Performance Polyamide/ZIF-8 Nanocomposite Membrane for Nanofiltration Applications. ACS Appl. Mater. Interfaces 2015, 7, 24082–24093. [Google Scholar] [CrossRef] [PubMed]
- Deacon, A.; Briquet, L.; Malankowska, M.; Massingberd-Mundy, F.; Rudić, S.; Hyde, T.L.; Cavaye, H.; Coronas, J.; Poulston, S.; Johnson, T. Understanding the ZIF-L to ZIF-8 transformation from fundamentals to fully costed kilogram-scale production. Commun. Chem. 2022, 5, 18. [Google Scholar] [CrossRef]
- Zhang, M.-Y.; Wang, X.-P.; Lin, R.; Liu, Y.; Chen, F.-S.; Cui, L.-S.; Meng, X.-M.; Hou, J. Improving the hydrostability of ZIF-8 membrane by biomolecule towards enhanced nanofiltration performance for dye removal. J. Membr. Sci. 2021, 618, 118630. [Google Scholar] [CrossRef]
Water Flux | Dye Rejection a (%) | ||||
---|---|---|---|---|---|
(L m−2 h−1 MPa−1) | RB b | MO c | RH d | MB e | |
2 | 19.8 ± 0.7 | 95 ± 2 | 75 ± 3 | 60 ± 5 | 26 ± 3 |
2/ZIF-L | 19.2 ± 1.0 | 98 ± 2 | 90 ± 6 | 75 ± 3 | 52 ± 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoshida, S.; Shii, T.; Kitazawa, Y.; Kim, M.L.; Otal, E.H.; Hattori, Y.; Kimura, M. Nanofiltration Performance of Poly(p-xylylene) Nanofilms with Imidazole Side Chains. Polymers 2023, 15, 3309. https://doi.org/10.3390/polym15153309
Yoshida S, Shii T, Kitazawa Y, Kim ML, Otal EH, Hattori Y, Kimura M. Nanofiltration Performance of Poly(p-xylylene) Nanofilms with Imidazole Side Chains. Polymers. 2023; 15(15):3309. https://doi.org/10.3390/polym15153309
Chicago/Turabian StyleYoshida, Satsuki, Takeshi Shii, Yu Kitazawa, Manuela L. Kim, Eugenio H. Otal, Yoshiyuki Hattori, and Mutsumi Kimura. 2023. "Nanofiltration Performance of Poly(p-xylylene) Nanofilms with Imidazole Side Chains" Polymers 15, no. 15: 3309. https://doi.org/10.3390/polym15153309
APA StyleYoshida, S., Shii, T., Kitazawa, Y., Kim, M. L., Otal, E. H., Hattori, Y., & Kimura, M. (2023). Nanofiltration Performance of Poly(p-xylylene) Nanofilms with Imidazole Side Chains. Polymers, 15(15), 3309. https://doi.org/10.3390/polym15153309