Experimental Analysis and Application of a Multivariable Regression Technique to Define the Optimal Drilling Conditions for Carbon Fiber Reinforced Polymer (CFRP) Composites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Details
2.2. Image Analysis Procedure for the Delamination Evaluation
2.3. Statistical Response Surface Generation and Standardization of the Variables Involved
3. Results and Discussions
3.1. Cutting Forces
3.2. Delamination and Dimensional Accuracy
3.3. Surface Finishing Analysis
3.4. Optimization
4. Conclusions
- The fabric configuration of the CFRP analyzed herein significantly influences its behavior. Fiber-lacking areas promote the resin peel-out that affects the hole surface quality.
- The delamination phenomenon is larger at the exit face of the hole due to the low rigidity of the existing material at the end of the operation. The shape of the exit delamination is more chaotic and makes it difficult to analyze the exit dimensions of the hole diameter.
- It has been determined that low feed rate values should be avoided as they generate a heating effect on the resin matrix that promotes its softening and favors the involved defects. A combination of medium-to-high feed rates and low-to-medium spindle speeds make up the working area.
- The optimal value that leads to the best combination of the output parameters (entry and exit delamination, entry diameter accuracy, and roughness) for each tool that we investigated has been established. The values obtained, 4000 rpm and 0.05 mm/rev for the twist tool and 1700 rpm and 0.04 for the dagger tool, demonstrate that the twist tool exhibits a more productive behavior.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xu, J.; Yin, Y.; Paulo Davim, J.; Li, L.; Ji, M.; Geier, N.; Chen, M. A critical review addressing drilling-induced damage of CFRP composites. Compos. Struct. 2022, 294, 115594. [Google Scholar] [CrossRef]
- Zadafiya, K.; Bandhu, D.; Kumari, S.; Chatterjee, S.; Abhishek, K. Recent trends in drilling of carbon fiber reinforced polymers (CFRPs): A state-of-the-art review. J. Manuf. Process. 2021, 69, 47–68. [Google Scholar] [CrossRef]
- Ozkan, D.; Gok, M.S.; Karaoglanli, A.C. Carbon Fiber Reinforced Polymer (CFRP) Composite Materials, Their Characteristic Properties, Industrial Application Areas and Their Machinability. In Composite Structures; Springer: Berlin/Heidelberg, Germany, 2020; Volume 294, pp. 235–253. [Google Scholar]
- Marques, A.T.; Durão, L.M.; Magalhães, A.G.; Silva, J.F.; Tavares, J.M.R.S. Delamination analysis of carbon fibre reinforced laminates: Evaluation of a special step drill. Compos. Sci. Technol. 2009, 69, 2376–2382. [Google Scholar] [CrossRef]
- Pramanik, A.; Basak, A.K.; Dong, Y.; Sarker, P.K.; Uddin, M.S.; Littlefair, G.; Dixit, A.R.; Chattopadhyaya, S. Joining of carbon fibre reinforced polymer (CFRP) composites and aluminium alloys—A review. Compos. Part A Appl. Sci. Manuf. 2017, 101, 1–29. [Google Scholar] [CrossRef]
- Geier, N.; Davim, J.P.; Szalay, T. Advanced cutting tools and technologies for drilling carbon fibre reinforced polymer (CFRP) composites: A review. Compos. Part A Appl. Sci. Manuf. 2019, 125, 105552. [Google Scholar] [CrossRef]
- Poór, D.I.; Geier, N.; Pereszlai, C.; Xu, J. A critical review of the drilling of CFRP composites: Burr formation, characterisation and challenges. Compos. Part B Eng. 2021, 223, 109155. [Google Scholar] [CrossRef]
- Jin, Z.J.; Bao, Y.J.; Gao, H. Disfigurement formation and control in drilling carbon fibre reinforced composites. Int. J. Mater. Prod. Technol. 2008, 31, 46. [Google Scholar] [CrossRef]
- Faraz, A.; Biermann, D.; Weinert, K. Cutting edge rounding: An innovative tool wear criterion in drilling CFRP composite laminates. Int. J. Mach. Tools Manuf. 2009, 49, 1185–1196. [Google Scholar] [CrossRef]
- Olhan, S.; Behera, S.K.; Khatkar, V.; Behera, B.K. Investigating the impact of different machinability processes and fibre architecture on the bearing performance of pin-loaded textile structural composites for automotive applications: Experimental and finite element analysis. J. Manuf. Process. 2023, 86, 30–55. [Google Scholar] [CrossRef]
- Li, Y.; Wang, B.; Zhou, L. Study on the effect of delamination defects on the mechanical properties of CFRP composites. Eng. Fail. Anal. 2023, 153, 107576. [Google Scholar] [CrossRef]
- Velayudham, A.; Krishnamurthy, R. Effect of point geometry and their influence on thrust and delamination in drilling of polymeric composites. J. Mater. Process. Technol. 2007, 185, 204–209. [Google Scholar] [CrossRef]
- Lai, W.L.; Saeedipour, H.; Goh, K.L. Experimental assessment of drilling-induced damage in impacted composite laminates for resin-injection repair: Influence of open/blind hole-hole interaction and orientation. Compos. Struct. 2021, 271, 114153. [Google Scholar] [CrossRef]
- Haeger, A.; Schoen, G.; Lissek, F.; Meinhard, D.; Kaufeld, M.; Schneider, G.; Schuhmacher, S.; Knoblauch, V. Non-destructive Detection of Drilling-induced Delamination in CFRP and its Effect on Mechanical Properties. Procedia Eng. 2016, 149, 130–142. [Google Scholar] [CrossRef]
- Arhamnamazi, S.; Aymerich, F.; Buonadonna, P.; Mehtedi, M. El Assessment of drilling-induced delamination and tool wear in carbon fibre reinforced laminates. Polym. Polym. Compos. 2021, 29, S729–S740. [Google Scholar] [CrossRef]
- Caggiano, A.; Angelone, R.; Teti, R. Image Analysis for CFRP Drilled Hole Quality Assessment. Procedia CIRP 2017, 62, 440–445. [Google Scholar] [CrossRef]
- Nagarajan, V.A.; Selwin Rajadurai, J.; Annil Kumar, T. A digital image analysis to evaluate delamination factor for wind turbine composite laminate blade. Compos. Part B Eng. 2012, 43, 3153–3159. [Google Scholar] [CrossRef]
- Davim, J.P.; Rubio, J.C.; Abrao, A.M. A novel approach based on digital image analysis to evaluate the delamination factor after drilling composite laminates. Compos. Sci. Technol. 2007, 67, 1939–1945. [Google Scholar] [CrossRef]
- Zhang, X.; Huang, W.; Wu, C.; Cao, S. Defect measurement in CFRP drilling based on digital image processing. Int. J. Adv. Manuf. Technol. 2023, 127, 5405–5419. [Google Scholar] [CrossRef]
- Lukács, T.; Pereszlai, C.; Magyar, G.; Geier, N. Drilling-induced delamination measurement using a novel digital image processing algorithm. Procedia CIRP 2023, 118, 828–832. [Google Scholar] [CrossRef]
- Çelik, A.; Lazoglu, I.; Kara, A.; Kara, F. Investigation on the performance of SiAlON ceramic drills on aerospace grade CFRP composites. J. Mater. Process. Technol. 2015, 223, 39–47. [Google Scholar] [CrossRef]
- Merino-Pérez, J.L.; Royer, R.; Ayvar-Soberanis, S.; Merson, E.; Hodzic, A. On the temperatures developed in CFRP drilling using uncoated WC-Co tools Part I: Workpiece constituents, cutting speed and heat dissipation. Compos. Struct. 2015, 123, 161–168. [Google Scholar] [CrossRef]
- Bhatnagar, N.; Naik, N.K.; Ramakrishnan, N. Experimental investigations of drilling on cfrp composites. Mater. Manuf. Process. 1993, 8, 683–701. [Google Scholar] [CrossRef]
- Srinivasa Rao, B.; Rudramoorthy, R.; Srinivas, S.; Nageswara Rao, B. Effect of drilling induced damage on notched tensile and pin bearing strengths of woven GFR-epoxy composites. Mater. Sci. Eng. A 2008, 472, 347–352. [Google Scholar] [CrossRef]
- Heidary, H.; Ahmadi, M.; Rahimi, A.; Minak, G. Wavelet-based acoustic emission characterization of residual strength of drilled composite materials. J. Compos. Mater. 2013, 47, 2897–2908. [Google Scholar] [CrossRef]
- Dogrusadik, A.; Kentli, A. Comparative assessment of support plates’ influences on delamination damage in micro-drilling of CFRP laminates. Compos. Struct. 2017, 173, 156–167. [Google Scholar] [CrossRef]
- Hwang, J.Y.; Ahn, D.G. Effects of carbide substrate properties and diamond coating morphology on drilling performance of CFRP composite. J. Manuf. Process. 2020, 58, 1274–1284. [Google Scholar] [CrossRef]
- Isbilir, O.; Ghassemieh, E. Delamination and wear in drilling of carbon-fiber reinforced plastic composites using multilayer TiAlN/TiN PVD-coated tungsten carbide tools. J. Reinf. Plast. Compos. 2012, 31, 717–727. [Google Scholar] [CrossRef]
- Montoya, M.; Calamaz, M.; Gehin, D.; Girot, F. Evaluation of the performance of coated and uncoated carbide tools in drilling thick CFRP/aluminium alloy stacks. Int. J. Adv. Manuf. Technol. 2013, 68, 2111–2120. [Google Scholar] [CrossRef]
- Ashrafi, S.A.; Sharif, S.; Farid, A.A.; Yahya, M. Performance evaluation of carbide tools in drilling CFRP-Al stacks. J. Compos. Mater. 2014, 48, 2071–2084. [Google Scholar] [CrossRef]
- Zitoune, R.; Krishnaraj, V.; Sofiane Almabouacif, B.; Collombet, F.; Sima, M.; Jolin, A. Influence of machining parameters and new nano-coated tool on drilling performance of CFRP/Aluminium sandwich. Compos. Part B Eng. 2012, 43, 1480–1488. [Google Scholar] [CrossRef]
- Qiu, X.; Li, P.; Niu, Q.; Chen, A.; Ouyang, P.; Li, C.; Ko, T.J. Influence of machining parameters and tool structure on cutting force and hole wall damage in drilling CFRP with stepped drills. Int. J. Adv. Manuf. Technol. 2018, 97, 857–865. [Google Scholar] [CrossRef]
- Pardo, A.; Le Gall, J.; Heinemann, R.; Bagshaw, L. The impact of tool point angle and interlayer gap width on interface borehole quality in drilling CFRP/titanium stacks. Int. J. Adv. Manuf. Technol. 2021, 114, 159–171. [Google Scholar] [CrossRef]
- Xu, J.; Geier, N.; Shen, J.; Krishnaraj, V.; Samsudeensadham, S. A review on CFRP drilling: Fundamental mechanisms, damage issues, and approaches toward high-quality drilling. J. Mater. Res. Technol. 2023, 24, 9677–9707. [Google Scholar] [CrossRef]
- Xu, J.; Li, C.; Chen, M.; El Mansori, M.; Ren, F. An investigation of drilling high-strength CFRP composites using specialized drills. Int. J. Adv. Manuf. Technol. 2019, 103, 3425–3442. [Google Scholar] [CrossRef]
- Basmaci, G.; Yoruk, A.S.; Koklu, U.; Morkavuk, S. Impact of cryogenic condition and drill diameter on drilling performance of CFRP. Appl. Sci. 2017, 7, 667. [Google Scholar] [CrossRef]
- Khanna, N.; Desai, K.; Sheth, A.; Øllgaard Larsen, J. CFRP Machining on Indigenously Developing Cryogenic Machining Facility: An Initial Study. Mater. Today Proc. 2019, 18, 4598–4604. [Google Scholar] [CrossRef]
- Xia, T.; Kaynak, Y.; Arvin, C.; Jawahir, I.S. Cryogenic cooling-induced process performance and surface integrity in drilling CFRP composite material. Int. J. Adv. Manuf. Technol. 2016, 82, 605–616. [Google Scholar] [CrossRef]
- Xu, J.; Ji, M.; Chen, M.; Ren, F. Investigation of minimum quantity lubrication effects in drilling CFRP/Ti6Al4V stacks. Mater. Manuf. Process. 2019, 34, 1401–1410. [Google Scholar] [CrossRef]
- CircFit. Available online: https://github.com/horchler/circfit/blob/master/README.md (accessed on 28 July 2023).
Carbon Fiber | Epoxy Resin | ||
---|---|---|---|
Density (g/cm3) | 1.77 | Density (g/cm3) | 1.10 |
Tensile strength (MPa) | 4100 | Flexural strength (MPa) | 116 |
Tensile modulus (GPa) | 240 | Flexural modulus (GPa) | 3.35 |
Elongation (%) | 1.7 | Elongation (%) | 7.7 |
Output Variable | Twist Tool | Dagger Tool | ||||
---|---|---|---|---|---|---|
Experimental | Predicted | Error (%) | Experimental | Predicted | Error (%) | |
Entry diameter (mm) | 4.85 | 4.83 | 0.41 | 4.82 | 4.84 | 0.41 |
Entry FD (%) | 3.45 | 3.38 | 2.07 | 2.19 | 2.51 | 12.75 |
Exit FD (%) | 8.67 | 7.87 | 10.17 | 3.13 | 2.31 | 35.49 |
Ra (µm) | 4.53 | 3.4 | 33.26 | 3.5 | 3.7 | 5.40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Molina-Moya, M.Á.; García-Martínez, E.; Miguel, V.; Coello, J.; Martínez-Martínez, A. Experimental Analysis and Application of a Multivariable Regression Technique to Define the Optimal Drilling Conditions for Carbon Fiber Reinforced Polymer (CFRP) Composites. Polymers 2023, 15, 3710. https://doi.org/10.3390/polym15183710
Molina-Moya MÁ, García-Martínez E, Miguel V, Coello J, Martínez-Martínez A. Experimental Analysis and Application of a Multivariable Regression Technique to Define the Optimal Drilling Conditions for Carbon Fiber Reinforced Polymer (CFRP) Composites. Polymers. 2023; 15(18):3710. https://doi.org/10.3390/polym15183710
Chicago/Turabian StyleMolina-Moya, Miguel Ángel, Enrique García-Martínez, Valentín Miguel, Juana Coello, and Alberto Martínez-Martínez. 2023. "Experimental Analysis and Application of a Multivariable Regression Technique to Define the Optimal Drilling Conditions for Carbon Fiber Reinforced Polymer (CFRP) Composites" Polymers 15, no. 18: 3710. https://doi.org/10.3390/polym15183710
APA StyleMolina-Moya, M. Á., García-Martínez, E., Miguel, V., Coello, J., & Martínez-Martínez, A. (2023). Experimental Analysis and Application of a Multivariable Regression Technique to Define the Optimal Drilling Conditions for Carbon Fiber Reinforced Polymer (CFRP) Composites. Polymers, 15(18), 3710. https://doi.org/10.3390/polym15183710