Oxy-Butane Ablation Testing of Thermal Protection Systems Based on Nanomodified Phenolic Resin Matrix Materials
Abstract
:1. Introduction
2. Materials and Methods
- The thermal protection systems consisted of a layered assembly composed of 3 components:
- Laminated composite materials (CFRP layer) based on phenolic resin and carbon fibre fabric (named PR-CF);
- Ceramic adhesive Izochit 150;
3. Testing and Characterisation
3.1. Thermal Conductivity Measurement
3.2. Oxy-Butane Flame Testing Assembly Development
3.3. Optical Microscopy
3.4. Scanning Electron Microscopy
4. Results and Discussion
4.1. Thermal Conductivity
4.2. Thermal Testing of Thermal Protection Systems
Gravimetric Loss Analysis after Testing
4.3. Analysis of the Eroded Surface through Optical Microscopy
4.4. Analysis of the Eroded Surface through Scanning Electron Microscopy (SEM)
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rallini, M.; Natali, M.; Torre, T. Chapter 14—An Introduction to Ablative Materials and High-Temperature Testing Protocols. In Micro and Nano Technologies, Nanomaterials in Rocket Propulsion Systems; Yan, Q.-L., He, G.-Q., Liu, P.-J., Gozin, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 529–549. [Google Scholar]
- Kumar, V. Ionic-liquid-assisted three-dimensional caged silica ablative nanocomposites. J. Appl. Polym. Sci. 2017, 134, 45328. [Google Scholar] [CrossRef]
- Marra, F.; Pulci, G.; Tirilló, J.; Bartuli, C.; Valente, T. Numerical Simulation of Oxy-Acetylene Testing Procedure of Ablative Materials for Re-Entry Space Vehicles, Proceedings of the Institution of Mechanical Engineers. Part L J. Mater. Des. Appl. 2011, 225, 32–40. [Google Scholar] [CrossRef]
- Arnaud, E.; Halm, D.; Bertheau, D.; Beaudet, J. Ablation performances of carbon composite based on different resins under severe aero-thermal flux, ECCM18. In Proceedings of the 18th European Conference on Composite Materials, Athens, Greece, 24–28 June 2018. [Google Scholar]
- Beaudet, J.; Cormier, J.; Dragon, A.; Rollin, M.; Benoi, G. Ablation Properties of C Fibers and SiC Fibers Reinforced Glass Ceramic Matrix Composites upon Oxyacetylene Torch Exposure. Mater. Sci. Appl. 2011, 2, 1399–1406. [Google Scholar] [CrossRef]
- Pelin, G. Materiale Compozite Avansate. Ph.D. Thesis, Universitatea Politehnica din Bucureşti, Bucuresti, Romania, 2017. [Google Scholar]
- Jenkins, D.R. Space Shuttle: The History of the National Space Transportation System the First 100 Missions, 3rd ed.; Specialty Press: Cape Canaveral, FL, USA, 2001. [Google Scholar]
- Pirolini, A. Materials Used in Space Shuttle Thermal Protection Systems, AZO Materials. Available online: https://www.azom.com/article.aspx?ArticleID=11443 (accessed on 13 June 2019).
- Stackpoole, M.; Thornton, J.; Fan, W. Ongoing TPS Development at NASA Ames Research Center. In Proceedings of the CRASTE Conference Commercial and Government Responsive Access to Space Technology Exchange, Moffett Field, CA, USA, 25–28 October 2010. [Google Scholar]
- Pelin, G.; Pelin, C.-E.; Stefan, A.; Dinca, I.; Andronescu, E.; Oprea, O.; Ficai, D.; Trusca, R. Development and properties of advanced composites based on cork and nanometric silicon carbide-filled phenolic resin. Bull. Mater. Sci. 2018, 41, 28. [Google Scholar] [CrossRef]
- Paixão, S.; Peixoto, C.; Reinas, M.; Carvalho, J. RETALT_TPS design and manufacturing. CEAS Space J. 2022, 14, 595–604. [Google Scholar] [CrossRef]
- Dunn, B.D. Materials and Processes for Spacecraft and High Reliability Applications. Aeronaut. J. 2017, 121, 1585–1586. [Google Scholar] [CrossRef]
- Triantou, K.I.; Mergia, K.; Perez, B.; Florez, S.; Stefan, A.; Ban, C.; Pelin, G.; Ionescu, G.; Zuber, C.; Fischer, W.P.P.; et al. Thermal shock performance of carbon-bonded carbon fiber composite and ceramic matrix composite joints for thermal protection re-entry applications. Compos. Part B 2017, 111, 270–278. [Google Scholar] [CrossRef]
- Tong, Y.; Bai, S.; Liang, X.; Qin, Q.H.; Zhai, J. Reactive melt infiltration fabrication of C/C-SiC composite: Wetting and infiltration. Ceram. Int. 2016, 42, 17174–17178. [Google Scholar] [CrossRef]
- Reichert, F.; Pérez-Mas, A.M.; Barreda, D.; Blanco, C.; Santamaria, R.; Kuttner, C.; Fery, A.; Langhof, N.; Krenkel, W. Influence of the carbonization temperature on the mechanical properties of thermoplastic polymer derived C/C-SiC composites. J. Eur. Ceram. Soc. 2017, 37, 523–529. [Google Scholar] [CrossRef]
- Kumar, S.; Bablu, M.; Ranjan, A.; Manocha, L.M.; Prasad, N.E. Fabrication of 2D C/C-SiC composites using PIP based hybrid process and investigation of mechanical properties degradation under cyclic heating. Ceram. Int. 2017, 43, 3414–3423. [Google Scholar] [CrossRef]
- Glass, D.E. Ceramic Matrix Composite (CMC) Thermal Protection Systems (TPS) and Hot Structures for Hypersonic Vehicles. In Proceedings of the 15th AIAA Space Planes and Hypersonic Systems and Technologies Conference, Dayton, OH, USA, 28 April–1 May 2008; pp. 1–36. [Google Scholar]
- Pelin, C.-E.; Pelin, G.; Ilina, S.; Dragomirescu, A.; Cristea, G.; Stefan, A. Properties of Ablative Composites Based on Bismaleimide Resin Reinforced with Graphite Felt. U.P.B. Sci. Bull. Ser. B 2021, 83, 1454–2331. [Google Scholar]
- Cheng, L.F.; Xu, Y.D.; Zhang, L.T.; Yin, X.W. Oxidation behavior of carbon–carbon composites with a three-layer coating from room temperature to 1700 °C. Carbon 1999, 37, 977–981. [Google Scholar] [CrossRef]
- Cheng, L.F.; Xu, Y.D.; Zhang, L.T.; Yin, X.W. Oxidation behavior of three dimensional C/SiC composites in air and combustion gas environments. Carbon 2000, 38, 2103–2108. [Google Scholar] [CrossRef]
- Cheng, L.F.; Xu, Y.D.; Zhang, L.T.; Yin, X.W. Effect of carbon interlayer on oxidation behavior of C/SiC composites with a coating from room temperature to 1500 °C. Mater. Sci. Eng. A 2001, 300, 219–225. [Google Scholar] [CrossRef]
- Lee, Y.J.; Joo, H.J. Ablation characteristics of carbon fiber reinforced carbon (CFRC) composites in the presence of silicon carbide (SiC) coating. Surf. Coat. Technol. 2004, 180, 286–289. [Google Scholar] [CrossRef]
- Tang, S.F.; Deng, J.Y.; Liu, W.C.; Yang, K. Mechanical and ablation properties of 2D-carbon/carbon composites pre-infiltrated with a SiC filler. Carbon 2006, 44, 2822–2877. [Google Scholar] [CrossRef]
- Chen, B.; Zhang, L.T.; Cheng, L.F.; Luan, X.G. Ablation of Pierced C/C Composite Nozzles in an Oxygen/Ethanol Combustion Gas Generator. Carbon 2009, 47, 291–293. [Google Scholar] [CrossRef]
- Chen, Z.; Fang, D.; Yan, B. Comparison of Morphology and Microstructure of Ablation Centre of C/SiC Composites by Oxy-Acetylene Torch at 2900 °C and 3550 °C. Corros. Sci. 2008, 50, 3378–3381. [Google Scholar] [CrossRef]
- Yan, B.; Chen, Z.F.; Li, C.; Fand, D.; Zhang, Y.; Wang, L. Ablation morphology and microstructure of 3D Orthogonal Cf/SiC composites prepared by PIP. Sci. Eng. Compos. Mater. 2008, 15, 71–77. [Google Scholar] [CrossRef]
- Pelin, G.; Pelin, C.-E.; Ștefan, A.; Dincă, I.; Andronescu, E.; Ficai, A.; Truşcă, R. Mechanical and tribological properties of nanofilled phenolic matrix laminated composites. Mater. Technol. 2017, 51, 569–575. [Google Scholar] [CrossRef]
- Pelin, G.; Andronescu, E.; Pelin, C.-E.; Oprea, O.; Ficai, A. Ablative type Composites Based on Phenolic Resin/Nanosilicon Carbide Matrix Reinforced by Carbon Fiber Felt. Rom. J. Mater. 2016, 46, 444–452. [Google Scholar]
- DIN 821-2:1997; Advanced Technical Ceramics—Monolithic Ceramics—Thermo-Physical Properties—Part 2: Determination of Thermal Diffusivity by the Laser Flash (or Heat Pulse) Method. Deutsche Industrie Norm: Berlin, Germany, 1997.
- Price, R.J. Thermal Conductivity of Neutron-Irradiated Pyrolytic β-Silicon Carbide. J. Nucl. Mater. 1973, 46, 268–272. [Google Scholar] [CrossRef]
- Shawyer, M.; Medina Pizzali, A.F. The use of ice on small fishing vessels. FAO Fish. Tech. Pap. 2003, 108, 436. [Google Scholar]
- Federal Aviation Administration, Designees and Delegations Guide: Section 4.1.7. Returning from Space: Re-Entry, Federal Aviation Administration. Available online: https://www.faa.gov/about/office_org/headquarters_offices/avs/offices/aam/cami/library/online_libraries/aerospace_medicine/tutorial/section3/spacecraft_design (accessed on 5 September 2023).
- Di Benedetto, A.T.; Nicolais, L.; Watanabe, R. Composite materials. In Proceedings of the Symposium A4 on Composite Materials of the International Conference on Advanced Materials-ICAM 91, Strasbourg, France, 27–29 May 1991. [Google Scholar]
- Roy, J.; Chandra, S.; Das, S.; Maitra, S. Oxidation behaviour of silicon carbide—A review. Rev. Adv. Mater. Sci. 2014, 38, 29–39. [Google Scholar]
- Wang, Y.; Chena, Z.; Yu, S. Ablation behavior and mechanism analysis of C/SiC composites. J. Mater. Res. Technol. 2016, 5, 170–182. [Google Scholar] [CrossRef]
- Yan, B.; Chen, Z.F.; Zhu, J.; Zhang, J.; Jiang, Y. Effects of ablation at different regions in three-dimensional orthogonal C/SiC composites ablated by oxyacetylene torch at 1800 °C. J. Mater. Process. Technol. 2009, 209, 3438–3443. [Google Scholar] [CrossRef]
Sample Nomenclature | Ablative Layer Preforms | Ablative Layer Matrix | Abbreviation |
---|---|---|---|
PR-CF/Adhesive/PR-felt | Carbon fibre felt | Neat phenolic resin (PR) | TPS-F(M) |
PR-CF/Adhesive/PR + 1%nSiC-felt | Carbon fibre felt | Phenolic resin and 1% by weight nSiC | TPS-F(1) |
PR-CF/Adhesive/PR + 2%nSiC-felt | Carbon fibre felt | Phenolic resin and 2% by weight nSiC | TPS-F(2) |
PR-CF/Adhesive/PR-cork | Cork particle | Neat phenolic resin (PR) | TPS-C(M) |
PR-CF/Adhesive/PR + 1%nSiC-cork | Cork particle | Phenolic resin and 1% by weight nSiC | TPS-C(1) |
PR-CF/Adhesive/PR + 2%nSiC-cork | Cork particle | Phenolic resin and 2% by weight nSiC | TPS-C(2) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pelin, G.; Pelin, C.E.; Stefan, A.; Tsakiris, V.; Panait, A.A.M.; Costea, E. Oxy-Butane Ablation Testing of Thermal Protection Systems Based on Nanomodified Phenolic Resin Matrix Materials. Polymers 2023, 15, 4016. https://doi.org/10.3390/polym15194016
Pelin G, Pelin CE, Stefan A, Tsakiris V, Panait AAM, Costea E. Oxy-Butane Ablation Testing of Thermal Protection Systems Based on Nanomodified Phenolic Resin Matrix Materials. Polymers. 2023; 15(19):4016. https://doi.org/10.3390/polym15194016
Chicago/Turabian StylePelin, George, Cristina Elisabeta Pelin, Adriana Stefan, Violeta Tsakiris, Alexandra Ana Maria Panait, and Emil Costea. 2023. "Oxy-Butane Ablation Testing of Thermal Protection Systems Based on Nanomodified Phenolic Resin Matrix Materials" Polymers 15, no. 19: 4016. https://doi.org/10.3390/polym15194016
APA StylePelin, G., Pelin, C. E., Stefan, A., Tsakiris, V., Panait, A. A. M., & Costea, E. (2023). Oxy-Butane Ablation Testing of Thermal Protection Systems Based on Nanomodified Phenolic Resin Matrix Materials. Polymers, 15(19), 4016. https://doi.org/10.3390/polym15194016