Effects of Annealing Temperature and Time on Properties of Thermoplastic Polyurethane Based on Different Soft Segments/Multi-Walled Carbon Nanotube Nanocomposites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fabrication of Nanocomposite
2.3. Annealing Process
2.4. Characterization
3. Results and Discussion
3.1. Thermal Behavior
3.2. Mechanical Property
3.3. Morphology
3.4. Conductivity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Harris, P.J.F. Carbon Nanotube Science: Synthesis, Properties and Applications; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Coleman, J.N.; Umar, K.; Werner, J.; Yurii, K.; Gun’ko, Y.K. Small but strong: A review of the mechanical properties of carbon nanotube-polymer composites. Carbon 2006, 44, 1624–1652. [Google Scholar] [CrossRef]
- Iijima, S. Carbon nanotubes: Past, present, and future. Phys. B Condens. Matter 2002, 323, 1–5. [Google Scholar] [CrossRef]
- Baughman, R.H.; Anvar, A.; Zakhidov, W.; De Heer, A. Carbon nanotubes—The route toward applications. Science 2002, 297, 787–792. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spitalsky, Z.; Tasis, D.; Papagelis, K.; Galiotis, C. Carbon nanotube-polymer composites: Chemistry, processing, mechanical and electrical properties. Prog. Polym. Sci. 2010, 35, 357–401. [Google Scholar] [CrossRef]
- Oertel, G. Polyurethane Handbook; Carl Hanser Verlag: Munich, Germany, 1985; p. 626. [Google Scholar]
- Hepburn, C. Polyurethane Elastomers; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Folkes, M.J. Processing, Structure and Properties of Block Copolymers; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Dieterich, D.; Uhlig, K. Ullmann’s Encyclopedia of Industrial Chemistry. Vol.A20. Photography to Plastics, Processing; Verlag Chemie: Hoboken, NJ, USA, 1992; p. 665. [Google Scholar]
- Puszka, A.; Kultys, A. The influence of soft segments on some properties of new transparent segmented polyurethanes. Polym. Adv. Technol. 2017, 28, 1937–1944. [Google Scholar] [CrossRef]
- Saiani, A.; Rochas, C.; Eeckhaut, G.; Daunch, W.A.; Leenslag, J.-W.; Higgins, J.S. Origin of multiple melting endotherms in a high hard block content polyurethane 2. Structural investigation. Macromolecules 2004, 37, 1411–1421. [Google Scholar] [CrossRef]
- Saiani, A.; Daunch, W.A.; Verbeke, H.; Leenslag, J.-W.; Higgins, J.S. Origin of multiple melting endotherms in a high hard block content polyurethane 1. Thermodynamic investigatiom. Macromolecules 2001, 34, 9059–9068. [Google Scholar] [CrossRef]
- Saiani, A.; Novak, A.; Rodier, L.G.; Eeckhaut, J.; Leenslag, J.-W.; Higgins, J.S. Origin of multiple melting endotherms in a high hard block content polyurethane: Effect of annealing temperature. Macromolecules 2007, 40, 7252–7262. [Google Scholar] [CrossRef]
- Cipriano, B.H.; Arun, K.K.; Alan, L.; Gershon, C.; Laskowski, J.; Hugh, T.K.; Bruck, A.; Raghavan, S.R. Conductivity enhancement of carbon nanotube and nanofiber-based polymer nanocomposites by melt annealing. Polymer 2008, 49, 4846–4851. [Google Scholar] [CrossRef]
- Sung, Y.T.; Kum, C.; Lee, H.; Byon, N.; Yoon, H.; Kim, W.N. Dynamic mechanical and morphological properties of polycarbonate/multi-walled carbon nanotube composites. Polymer 2005, 46, 5656–5661. [Google Scholar] [CrossRef]
- Kazemi, Y.; Kakroodi, A.R.; Wang, S.; Ameli, A.; Filleter, T.; Pötschke, P.; Park, C.B. Conductive network formation and destruction in polypropylene/carbon nanotube composites via crystal control using supercritical carbon dioxide. Polymer 2017, 129, 179–188. [Google Scholar] [CrossRef]
- Fengdan, J.; Zhang, L.; Jiang, Y.; Lu, Y.; Wang, W. Effect of annealing treatment on the structure and properties of polyurethane/multiwalled carbon nanotube nanocomposites. J. Appl. Polym. Sci. 2012, 126, 845–852. [Google Scholar]
- Dongxu, L.; Fei, G.; Xia, H.; Spencer, P.E.; Coates, P.D. Micro-contact reconstruction of adjacent carbon nanotubes in polymer matrix through annealing-Induced relaxation of interfacial residual stress and strain. J. Appl. Polym. Sci. 2015, 132, 33. [Google Scholar]
- Arman, F.; Rostami, A.; Nazockdast, H. Thermoplastic polyurethane/multiwalled carbon nanotubes nanocomposites: Effect of nanoparticle content, shear, and thermal processing. Polym. Compos. 2021, 42, 4804–4813. [Google Scholar]
- Kai, K.; Wang, Y.; Luo, Y.; Yang, W.; Xie, B.-H.; Yang, M.-B. Evolution of agglomerate structure of carbon nanotubes in multi-walled carbon nanotubes/polymer composite melt: A rheo-electrical study. Compos. Part B Eng. 2012, 43, 3281–3287. [Google Scholar]
- Hye Jin, Y.; Hou Kim, K.; Kumar Yadav, S.; Whan Cho, J. Effects of carbon nanotube functionalization and annealing on crystallization and mechanical properties of melt-spun carbon nanotubes/poly (ethylene terephthalate) fibers. Compos. Sci. Technol. 2012, 72, 1834–1840. [Google Scholar]
- Garzón, C.; Palza, H. Electrical behavior of polypropylene composites melt mixed with carbon-based particles: Effect of the kind of particle and annealing process. Compos. Sci. Technol. 2014, 99, 117–123. [Google Scholar] [CrossRef]
- Lei, W.; Chen, L.; Song, P.; Liang, C.; Lu, Y.; Qiu, H.; Zhang, Y.; Kong, J.; Gu, J. Fabrication on the annealed Ti3C2Tx MXene/Epoxy nanocomposites for electromagnetic interference shielding application. Compos. Part B Eng. 2019, 171, 111–118. [Google Scholar]
- Rumiana, K.; Petrova-Doycheva, I.; Menseidov, D.; Ivanov, E.; Paddubskaya, A.; Kuzhir, P. Exploring thermal annealing and graphene-carbon nanotube additives to enhance crystallinity, thermal, electrical and tensile properties of aged poly (lactic) acid-based filament for 3D printing. Compos. Sci. Technol. 2019, 181, 107712. [Google Scholar]
- Dong, X.; Wang, L.; Tang, Y.; Zhao, C.; Harkin-Jones, E.; Li, Y. Effect of phase transitions on the electrical properties of polymer/carbon nanotube and polymer/graphene nanoplatelet composites with different conductive network structures. Polym. Int. 2018, 67, 227–235. [Google Scholar]
- Seymour, R.W.; Cooper, S.L. Thermal analysis of polyurethane block polymers. Macromolecules 1973, 6, 48–53. [Google Scholar] [CrossRef]
- Leung, L.M.; Koberstein, J.T. DSC annealing study of microphase separation and multiple endothermic behavior in polyether-based polyurethane block copolymers. Macromolecules 1986, 19, 706–713. [Google Scholar] [CrossRef]
- Darren, M.; Gordon, J.; Meijs, F.; Gunatillake, P.A.; McCarthy, S.J.; Renwick, G.M. The effect of average soft segment length on morphology and properties of a series of polyurethane elastomers II. SAXS-DSC annealing study. J. Appl. Polym. Sci. 1997, 64, 803–817. [Google Scholar]
- Yingjie, L.; Gao, T.; Liu, J.; Linliu, K.; Desper, C.R.; Chu, B. Multiphase structure of a segmented polyurethane: Effects of temperature and annealing. Macromolecules 1992, 25, 7365–7372. [Google Scholar]
- Available online: www.sidmaaldrich.com (accessed on 1 September 2015).
Sample | Tg(SP) | Tg(MP) | Tg(HP) | TMM(L) (°C) | TMM(H) | ∆HMM | ||
---|---|---|---|---|---|---|---|---|
(°C) | (°C) | (°C) | A | B | C | (°C) | (J·g−1) | |
Es-unannealed | −30 | 69 | - | - | 165 | - | 191 | 14.9 |
Es-80-6 | −28 | 62 | 99 | - | 166 | - | 191 | 10.7 |
Es-80-12 | −30 | 60 | 102 | - | 164 | - | 190 | 10.3 |
Es-80-24 | −28 | 61 | 102 | - | 167 | - | 192 | 9.9 |
Es-100-6 | −31 | 63 | - | 125 | 161 | - | 192 | 19.6 |
Es-100-12 | −31 | 62 | - | 127 | 165 | - | 189 | 20.3 |
Es-100-24 | −30 | 62 | - | 128 | 166 | - | 190 | 21.5 |
Es-120-6 | −33 | 65 | - | 145 | 166 | - | 189 | 17.4 |
Es-120-12 | −33 | 63 | - | 145 | 167 | - | 191 | 16.7 |
Es-120-24 | −32 | 64 | - | 149 | 167 | - | 192 | 17.1 |
Et-unannealed | - | 74 | - | - | - | - | 196 | 14.9 |
Et-80-6 | - | 67 | 100 | - | 167 | 177 | 199 | 15.3 |
Et-80-12 | - | 65 | 98 | - | 161 | 175 | 196 | 15.9 |
Et-80-24 | - | 65 | 100 | - | 166 | 178 | 199 | 11.8 |
Et-100-6 | - | 68 | 119 | - | 166 | 177 | 198 | 12.0 |
Et-100-12 | - | 68 | 119 | - | 163 | - | 197 | 11.1 |
Et-100-24 | - | 66 | 122 | - | 165 | 177 | 198 | 10.9 |
Et-120-6 | - | 68 | - | 145 | 161 | - | 196 | 19.9 |
Et-120-12 | - | 68 | - | 148 | 168 | - | 199 | 18.8 |
Et-120-24 | - | 62 | - | 152 | 169 | 180 | 201 | 19.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jirakittidul, K.; Limthin, D.; Mahithithummathorn, S.; Phaewchimphlee, S. Effects of Annealing Temperature and Time on Properties of Thermoplastic Polyurethane Based on Different Soft Segments/Multi-Walled Carbon Nanotube Nanocomposites. Polymers 2023, 15, 364. https://doi.org/10.3390/polym15020364
Jirakittidul K, Limthin D, Mahithithummathorn S, Phaewchimphlee S. Effects of Annealing Temperature and Time on Properties of Thermoplastic Polyurethane Based on Different Soft Segments/Multi-Walled Carbon Nanotube Nanocomposites. Polymers. 2023; 15(2):364. https://doi.org/10.3390/polym15020364
Chicago/Turabian StyleJirakittidul, Kittimon, Darawan Limthin, Sarita Mahithithummathorn, and Seenam Phaewchimphlee. 2023. "Effects of Annealing Temperature and Time on Properties of Thermoplastic Polyurethane Based on Different Soft Segments/Multi-Walled Carbon Nanotube Nanocomposites" Polymers 15, no. 2: 364. https://doi.org/10.3390/polym15020364
APA StyleJirakittidul, K., Limthin, D., Mahithithummathorn, S., & Phaewchimphlee, S. (2023). Effects of Annealing Temperature and Time on Properties of Thermoplastic Polyurethane Based on Different Soft Segments/Multi-Walled Carbon Nanotube Nanocomposites. Polymers, 15(2), 364. https://doi.org/10.3390/polym15020364