Fabrication and Thermal Performance of a Polymer-Based Flexible Oscillating Heat Pipe via 3D Printing Technology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fabrication Process of the Flexible Oscillating Heat Pipe
2.3. Experimental Setup
2.4. Characterizations
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, J.L.; Hassan, M.; Liu, J.W.; Yu, S.H. Nanowire Assemblies for Flexible Electronic Devices: Recent Advances and Perspectives. Adv. Mater. 2018, 30, 1803430. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.Q.; He, K.; Chen, G.; Leow, W.R.; Chen, X.D. Nature-Inspired Structural Materials for Flexible Electronic Devices. Chem. Rev. 2017, 117, 12893–12941. [Google Scholar] [CrossRef] [PubMed]
- Gibbons, M.J.; Marengo, M.; Persoons, T. A review of heat pipe technology for foldable electronic devices. Appl. Therm. Eng. 2021, 194, 117087. [Google Scholar] [CrossRef]
- Hu, R.; Liu, Y.D.; Shin, S.M.; Huang, S.Y.; Ren, X.C.; Shu, W.C.; Cheng, J.J.; Tao, G.M.; Xu, W.L.; Chen, R.K.; et al. Emerging Materials and Strategies for Personal Thermal Management. Adv. Energy Mater. 2020, 10, 1903921. [Google Scholar] [CrossRef]
- Arora, S. Selection of thermal management system for modular battery packs of electric vehicles: A review of existing and emerging technologies. J. Power Sources 2018, 400, 621–640. [Google Scholar] [CrossRef]
- Wu, W.X.; Wang, S.F.; Wu, W.; Chen, K.; Hong, S.H.; Lai, Y.X. A critical review of battery thermal performance and liquid based battery thermal management. Energy Convers. Manag. 2019, 182, 262–281. [Google Scholar] [CrossRef]
- Bastakoti, D.; Zhang, H.N.; Li, D.; Cai, W.H.; Li, F.C. An overview on the developing trend of pulsating heat pipe and its performance. Appl. Therm. Eng. 2018, 141, 305–332. [Google Scholar] [CrossRef]
- Han, X.H.; Wang, X.H.; Zheng, H.C.; Xu, X.G.; Chen, G.M. Review of the development of pulsating heat pipe for heat dissipation. Renew. Sustain. Energy Rev. 2016, 59, 692–709. [Google Scholar] [CrossRef]
- Tang, H.; Tang, Y.; Wan, Z.P.; Li, J.; Yuan, W.; Lu, L.S.; Li, Y.; Tang, K.R. Review of applications and developments of ultra-thin micro heat pipes for electronic cooling. Appl. Energy 2018, 223, 383–400. [Google Scholar] [CrossRef]
- Qu, Y.; Wang, S.; Tian, Y. A review of thermal performance in multiple evaporators loop heat pipe. Appl. Therm. Eng. 2018, 143, 209–224. [Google Scholar] [CrossRef]
- Chang, C.; Yang, C.; Liu, Y.M.; Tao, P.; Song, C.Y.; Shang, W.; Wu, J.B.; Deng, T. Efficient Solar-Thermal Energy Harvest Driven by Interfacial Plasmonic Heating-Assisted Evaporation. Acs Appl. Mater. Interfaces 2016, 8, 23412–23418. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.; Han, Z.Y.; He, X.Y.; Wang, Z.Y.; Ji, Y.L. 3D printed aluminum flat heat pipes with micro grooves for efficient thermal management of high power LEDs. Sci. Rep. 2021, 11, 8255. [Google Scholar] [CrossRef] [PubMed]
- Srimuang, W.; Amatachaya, P. A review of the applications of heat pipe heat exchangers for heat recovery. Renew. Sustain. Energy Rev. 2012, 16, 4303–4315. [Google Scholar] [CrossRef]
- Zhang, D.W.; He, Z.T.; Jiang, E.H.; Shen, C.; Zhou, J.J. A review on start-up characteristics of the pulsating heat pipe. Heat Mass Transf. 2021, 57, 723–735. [Google Scholar] [CrossRef]
- Ji, Y.L.; Wu, M.K.; Feng, Y.M.; Yu, C.R.; Chu, L.L.; Chang, C.; Li, Y.T.; Xiao, X.; Ma, H.B. An experimental investigation on the heat transfer performance of a liquid metal high-temperature oscillating heat pipe. Int. J. Heat Mass Transf. 2020, 149, 119198. [Google Scholar] [CrossRef]
- Lin, Z.R.; Wang, S.F.; Huo, J.P.; Hu, Y.X.; Chen, J.J.; Zhang, W.; Lee, E. Heat transfer characteristics and LED heat sink application of aluminum plate oscillating heat pipes. Appl. Therm. Eng. 2011, 31, 2221–2229. [Google Scholar] [CrossRef]
- Wang, H.; Qu, J.; Peng, Y.Q.; Sun, Q. Heat transfer performance of a novel tubular oscillating heat pipe with sintered copper particles inside flat-plate evaporator and high-power LED heat sink application. Energy Convers. Manag. 2019, 189, 215–222. [Google Scholar] [CrossRef]
- Ando, M.; Okamoto, A.; Tanaka, K.; Maeda, M.; Sugita, H.; Daimaru, T.; Nagai, H. On-orbit demonstration of oscillating heat pipe with check valves for space application. Appl. Therm. Eng. 2018, 130, 552–560. [Google Scholar] [CrossRef]
- Liu, X.D.; Han, X.T.; Wang, Z.Y.; Hao, G.Q.; Zhang, Z.W.; Chen, Y.P. Application of an anti-gravity oscillating heat pipe on enhancement of waste heat recovery. Energy Convers. Manag. 2020, 205, 112404. [Google Scholar] [CrossRef]
- Qu, J.; Zuo, A.H.; Liu, H.; Zhao, J.T.; Rao, Z.H. Three-dimensional oscillating heat pipes with novel structure for latent heat thermal energy storage application. Appl. Therm. Eng. 2021, 187, 116574. [Google Scholar] [CrossRef]
- Shen, Q.C.; Chang, C.; Tao, P.; Ning, Z.Y.; Rong, S.J.; Liu, Y.M.; Song, C.Y.; Wu, J.B.; Shang, W.; Deng, T. Waste heat recovery in an oscillating heat pipe using interfacial electrical double layers. Appl. Phys. Lett. 2018, 112, 243903. [Google Scholar] [CrossRef]
- Chang, C.; He, X.Y.; Han, Z.Y.; Pei, L.L.; Wang, Z.Y.; Ji, Y.L. Harvesting thermal energy via tube-based triboelectric nanogenerators within an oscillating heat pipe. Sustain. Energy Fuels 2022, 6, 693–699. [Google Scholar] [CrossRef]
- Qu, J.; Ke, Z.Q.; Zuo, A.H.; Rao, Z.H. Experimental investigation on thermal performance of phase change material coupled with three-dimensional oscillating heat pipe (PCM/3D-OHP) for thermal management application. Int. J. Heat Mass Transf. 2019, 129, 773–782. [Google Scholar] [CrossRef]
- Huang, J.L.; Zhou, W.; Xiang, J.H.; Liu, C.Z.; Gao, Y.; Li, S.L.; Ling, W.S. Development of novel flexible heat pipe with multistage design inspired by structure of human spine. Appl. Therm. Eng. 2020, 175, 115392. [Google Scholar] [CrossRef]
- Tanaka, K.; Abe, Y.; Nakagawa, M.; Piccolo, C.; Savino, R. Low-Gravity Experiments of Lightweight Flexible Heat Pipe Panels with Self-Rewetting Fluids. Interdiscip. Transp. Phenom. Fluid Therm. Biol. Mater. Space Sci. 2009, 1161, 554–561. [Google Scholar] [CrossRef]
- Lee, D.; Byon, C. Fabrication and characterization of pure-metal-based submillimeter-thick flexible flat heat pipe with innovative wick structures. Int. J. Heat Mass Transf. 2018, 122, 306–314. [Google Scholar] [CrossRef]
- Babin, B.R.; Peterson, G.P. Experimental investigation of a flexible bellows heat pipe for cooling discrete heat sources. J. Heat Transfer. 1990, 112, 602–607. [Google Scholar] [CrossRef]
- Jaipurkar, T.; Kant, P.; Khandekar, S.; Bhattacharya, B.; Paralikar, S. Thermo-mechanical design and characterization of flexible heat pipes. Appl. Therm. Eng. 2017, 126, 1199–1208. [Google Scholar] [CrossRef]
- Yang, C.; Song, C.Y.; Shang, W.; Tao, P.; Deng, T. Flexible heat pipes with integrated bioinspired design. Prog. Nat. Sci. -Mater. Int. 2015, 25, 51–57. [Google Scholar] [CrossRef] [Green Version]
- Qu, J.; Li, X.J.; Cui, Y.Y.; Wang, Q. Design and experimental study on a hybrid flexible oscillating heat pipe. Int. J. Heat Mass Transf. 2017, 107, 640–645. [Google Scholar] [CrossRef]
- Yang, C.; Chang, C.; Song, C.Y.; Shang, W.; Wu, J.B.; Tao, P.; Deng, T. Fabrication and performance evaluation of flexible heat pipes for potential thermal control of foldable electronics. Appl. Therm. Eng. 2016, 95, 445–453. [Google Scholar] [CrossRef]
- Oshman, C.; Li, Q.; Liew, L.A.; Yang, R.G.; Bright, V.M.; Lee, Y.C. Flat flexible polymer heat pipes. J. Micromechanics Microengineering 2013, 23, 015001. [Google Scholar] [CrossRef]
- Hsieh, S.S.; Yang, Y.R. Design, fabrication and performance tests for a polymer-based flexible flat heat pipe. Energy Convers. Manag. 2013, 70, 10–19. [Google Scholar] [CrossRef]
- Lim, J.; Kim, S.J. Fabrication and experimental evaluation of a polymer-based flexible pulsating heat pipe. Energy Convers. Manag. 2018, 156, 358–364. [Google Scholar] [CrossRef]
- Jung, C.; Lim, J.; Kim, S.J. Fabrication and evaluation of a high-performance flexible pulsating heat pipe hermetically sealed with metal. Int. J. Heat Mass Transf. 2020, 149, 119180. [Google Scholar] [CrossRef]
- Antreas, K.; Piromalis, D. Employing a low-cost desktop 3D printer: Challenges, and how to overcome them by tuning key process parameters. Int. J. Mech. Appl. 2021, 10, 11–19. [Google Scholar] [CrossRef]
- Berman, B. 3-D printing: The new industrial revolution. Bus Horiz. 2012, 55, 155–162. [Google Scholar] [CrossRef]
- Elverum, C.W.; Webo, T. On the use of directional and incremental prototyping in the development of high novelty products: Two case studies in the automotive industry. J. Eng. Technol. Manag. 2015, 38, 71–88. [Google Scholar] [CrossRef] [Green Version]
- Gibson, I. The changing face of additive manufacturing. J. Manuf. Technol. Manag. 2017, 28, 10–17. [Google Scholar] [CrossRef]
- Kantaros, A.; Diegel, O.; Piromalis, D.; Tsaramirsis, G.; Khadidos, A.O.; Khadidos, A.O.; Khan, F.Q.; Jan, S. 3D printing: Making an innovative technology widely accessible through makerspaces and outsourced services. Mater. Today Proc. 2022, 49, 2712–2723. [Google Scholar] [CrossRef]
- Mohamed, O.A.; Masood, S.H.; Bhowmik, J.L. Optimization of fused deposition modeling process parameters: A review of current research and future prospects. Adv. Manuf. 2015, 3, 42–53. [Google Scholar] [CrossRef]
- Kantaros, A. 3D Printing in Regenerative Medicine: Technologies and Resources Utilized. Int. J. Mol. Sci. 2022, 23, 14621. [Google Scholar] [CrossRef] [PubMed]
- Melčová, V.; Svoradová, K.; Menčík, P.; Kontárová, S.; Rampichová, M.; Hedvičáková, V.; Sovková, V.; Přikryl, R.; Vojtová, L. FDM 3D Printed Composites for Bone Tissue Engineering Based on Plasticized Poly(3-hydroxybutyrate)/poly(d,l-lactide) Blends. Polymers 2020, 12, 2806. [Google Scholar] [CrossRef] [PubMed]
- Kantaros, A. Bio-Inspired Materials: Exhibited Characteristics and Integration Degree in Bio-Printing Operations. American J. Eng. Appl. Sci. 2022, 15, 255–263. [Google Scholar] [CrossRef]
- Chung, J.J.; Im, H.; Kim, S.H.; Park, J.W.; Jung, Y. Toward biomimetic scaffolds for tissue engineering: 3D printing techniques in regenerative medicine. Front. Bioeng. Biotechnol. 2020, 8, 586406. [Google Scholar] [CrossRef]
- Hong, M. Oscillating Heat Pipes; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, Z.; Chang, C. Fabrication and Thermal Performance of a Polymer-Based Flexible Oscillating Heat Pipe via 3D Printing Technology. Polymers 2023, 15, 414. https://doi.org/10.3390/polym15020414
Han Z, Chang C. Fabrication and Thermal Performance of a Polymer-Based Flexible Oscillating Heat Pipe via 3D Printing Technology. Polymers. 2023; 15(2):414. https://doi.org/10.3390/polym15020414
Chicago/Turabian StyleHan, Zhaoyang, and Chao Chang. 2023. "Fabrication and Thermal Performance of a Polymer-Based Flexible Oscillating Heat Pipe via 3D Printing Technology" Polymers 15, no. 2: 414. https://doi.org/10.3390/polym15020414
APA StyleHan, Z., & Chang, C. (2023). Fabrication and Thermal Performance of a Polymer-Based Flexible Oscillating Heat Pipe via 3D Printing Technology. Polymers, 15(2), 414. https://doi.org/10.3390/polym15020414