Impact of the Configurational Microstructure of Carboxylate-Rich Chitosan Beads on Its Adsorptive Removal of Diclofenac Potassium from Contaminated Water
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Preparation of Chitosan Beads
2.2.2. Preparation of Crosslinked Chitosan Beads
2.2.3. Preparation of Poly(itaconic Acid)-Grafted Chitosan Beads
2.2.4. Characterization of the As-Prepared Chitosan Beads
2.2.5. Adsorption of DCF onto the As-Prepared Poly(itaconic Acid)-Grafted Chitosan Beads
2.2.6. Statistical Analysis
3. Results and Discussion
3.1. Fourier Transform Infrared (FTIR) Spectroscopy
3.2. Thermogravimetric Analysis (TGA)
3.3. Morphological Screening
3.4. Elemental Composition
3.5. X-ray Photoelectron Spectroscopy (XPS) Analysis
3.6. Adsorption of DCF under Different Operational Parameters
3.7. Statistical Analysis
3.8. Modeling of the DCF Adsorption on the Polymeric Adsorbents
3.8.1. Kinetic Modeling
3.8.2. Isotherm Modeling
3.9. Mechanisms of the Graft Copolymerization and the Adsorption Processes
3.10. Regeneration
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Tong, X.; Li, Z.; Chen, W.; Wang, J.; Li, X.; Mu, J.; Tang, Y.; Li, L. Efficient Catalytic Ozonation of Diclofenac by Three-Dimensional Iron (Fe)-doped SBA-16 Mesoporous Structures. J. Colloid Interface Sci. 2020, 578, 461–470. [Google Scholar] [CrossRef]
- El-Sayed, M.M.H.; Elsayed, R.E.; Attia, A.; Farghal, H.H.; Azzam, R.A.; Madkour, T.M. Novel nanoporous membranes of bio-based cellulose acetate, poly(lactic acid) and biodegradable polyurethane in-situ impregnated with catalytic cobalt nanoparticles for the removal of Methylene Blue and Congo Red dyes from wastewater. Carbohydr. Polym. Technol. Appl. 2021, 2, 100123. [Google Scholar] [CrossRef]
- de Andrade, J.R.; Oliveira, M.F.; da Silva, M.G.C.; Vieira, M.G.A. Adsorption of Pharmaceuticals from Water and Wastewater Using Nonconventional Low-Cost Materials: A Review. Ind. Eng. Chem. Res. 2018, 57, 3103–3127. [Google Scholar] [CrossRef]
- Azzam, R.A.; Madkour, T.M. Synthesis of Novel Bio-based Urea-Urethane Aerogels In-Situ Impregnated with Catalytic Metallic Nanoparticles for the Removal of Methylene Blue and Congo Red from Wastewater. J. Polym. Environ. 2021, 29, 1444–1459. [Google Scholar] [CrossRef]
- Staroń, P.; Kuciakowski, J.; Chwastowski, J. Biocomposite of hydrochar and Lindnera jadinii with magnetic properties for adsorptive removal of cadmium ions. J. Environ. Chem. Eng. 2023, 11, 110270. [Google Scholar] [CrossRef]
- Zhao, C.; Liu, J.; Deng, Y.; Tian, Y.; Zhang, G.; Liao, J.; Yang, J.; Yang, Y.; Liu, N.; Sun, Q. Uranium (Ⅵ) adsorption from aqueous solutions by microorganism-graphene oxide composites via an immobilization approach. J. Clean. Prod. 2019, 236, 117624. [Google Scholar] [CrossRef]
- Tambosi, J.L.; Yamanaka, L.Y.; José, H.J.; Moreira, R.d.F.P.M.; Schröder, H.F. Recent Research Data on the Removal of Pharmaceuticals from Sewage Treatment Plants (STP). Quim. Nova 2010, 33, 411–420. [Google Scholar] [CrossRef]
- Hiew, B.Y.Z.; Lai, K.C.; Gan, S.; Thangalazhy-Gopakumar, S.; Pan, G.-T.; Yang, T.C.-K. Adsorptive Decontamination of Diclofenac by Three-Dimensional Graphene-Based Adsorbent: Response Surface Methodology, Adsorption Equilibrium, Kinetic and Thermodynamic Studies. Environ. Res. 2019, 168, 241–253. [Google Scholar] [CrossRef] [PubMed]
- Baccar, R.; Sarrà, M.; Bouzid, J.; Feki, M.; Blánquez, P. Removal of Pharmaceutical Compounds by Activated Carbon Prepared from Agricultural By-Product. Chem. Eng. J. 2012, 211–212, 310–317. [Google Scholar] [CrossRef]
- Hernando, M.D.; Mezcua, M.; Fernandez-Alba, A.R.; Barceló, D. Environmental Risk Assessment of Pharmaceutical Residues in Wastewater Effluents, Surface Waters and Sediments. Talanta 2006, 69, 334–342. [Google Scholar] [CrossRef]
- Hasan, Z.; Khan, N.A.; Jhung, S.H. Adsorptive Removal for Diclofenac Sodium from Water with Zr-Based Metal–Organic Frameworks. Chem. Eng. J. 2016, 284, 1406–1413. [Google Scholar] [CrossRef]
- Murray, K.E.; Thomas, S.M.; Bodour, A.A. Prioritizing Research for Trace Pollutants and Emerging Contaminants in the Freshwater Environment. Environ. Pollut. 2010, 158, 3462–3471. [Google Scholar] [CrossRef] [PubMed]
- Prakash Reddy, N.C.; Anjaneyulu, Y.; Sivasankari, B.; Ananda Rao, K. Comparative Toxicity Studies in Birds Using Nimesulide and Diclofenac Sodium. Environ. Toxicol. Pharmacol. 2006, 22, 142–147. [Google Scholar] [CrossRef]
- Wu, Z.; Zhong, H.; Yuan, X.; Wang, H.; Wang, L.; Chen, X.; Zeng, G.; Wu, Y. Adsorptive Removal of Methylene Blue by Rhamnolipid-Functionalized Graphene Oxide from Wastewater. Water Res. 2014, 67, 330–344. [Google Scholar] [CrossRef] [PubMed]
- Karimi-Maleh, H.; Ayati, A.; Davoodi, R.; Tanhaei, B.; Karimi, F.; Malekmohammadi, S.; Orooji, Y.; Fu, L.; Sillanpää, M. Recent Advances in Using of Chitosan-Based Adsorbents for Removal of Pharmaceutical Contaminants: A Review. J. Clean. Prod. 2021, 291, 125880. [Google Scholar] [CrossRef]
- Kyzas, G.Z.; Kostoglou, M.; Lazaridis, N.K.; Lambropoulou, D.A.; Bikiaris, D.N. Environmental Friendly Technology for The Removal of Pharmaceutical Contaminants from Wastewaters Using Modified Chitosan Adsorbents. Chem. Eng. J. 2013, 222, 248–258. [Google Scholar] [CrossRef]
- Topal, M.; Topal, E.I.A. Optimization of Tetracycline Removal with Chitosan Obtained from Mussel Shells Using RSM. J. Ind. Eng. Chem. 2020, 84, 315–321. [Google Scholar] [CrossRef]
- Tzereme, A.; Christodoulou, E.; Kyzas, G.Z.; Kostoglou, M.; Bikiaris, D.N.; Lambropoulou, D.A. Chitosan Grafted Adsorbents for Diclofenac Pharmaceutical Compound Removal from Single-Component Aqueous Solutions and Mixtures. Polymers 2019, 11, 497. [Google Scholar] [CrossRef]
- Li, Z.; Liu, Y.; Zou, S.; Lu, C.; Bai, H.; Mu, H.; Duan, J. Removal and Adsorption Mechanism of Tetracycline and Cefotaxime Contaminants in Water by NiFe2O4-COF-Chitosan-Terephthalaldehyde Nanocomposites Film. Chem. Eng. J. 2020, 381, 123008–123021. [Google Scholar] [CrossRef]
- Privar, Y.; Shashura, D.; Pestov, A.; Modin, E.; Baklykov, A.; Marinin, D.; Bratskaya, S. Metal-Chelate Sorbents Based on Carboxyalkylchitosans: Ciprofloxacin Uptake by Cu(II) and Al(III)-Chelated Cryogels of N-(2-Carboxyethyl)chitosan. Int. J. Biol. Macromol. 2019, 131, 806–811. [Google Scholar] [CrossRef]
- Nazraz, M.; Yamini, Y.; Asiabi, H. Chitosan-Based Sorbent for Efficient Removal and Extraction of Ciprofloxacin and Norfloxacin from Aqueous Solutions. Microchim. Acta 2019, 186, 459. [Google Scholar] [CrossRef]
- Malakootian, M.; Nasiri, A.; Mahdizadeh, H. Preparation of CoFe2O4/Activated Carbon@Chitosan as a New Magnetic Nanobiocomposite for Adsorption of Ciprofloxacin in Aqueous Solutions. Water Sci. Technol. 2018, 78, 2158–2170. [Google Scholar] [CrossRef]
- Karimi-Maleh, H.; Shafieizadeh, M.; Taher, M.A.; Opoku, F.; Kiarii, E.M.; Govender, P.P.; Ranjbari, S.; Rezapour, M.; Orooji, Y. The Role of Magnetite/Graphene Oxide Nano-Composite as a High-Efficiency Adsorbent for Removal of Phenazopyridine Residues from Water Samples, an Experimental/Theoretical Investigation. J. Mol. Liq. 2020, 298, 112040. [Google Scholar] [CrossRef]
- Zhang, S.; Dong, Y.; Yang, Z.; Yang, W.; Wu, J.; Dong, C. Adsorption of Pharmaceuticals on Chitosan-Based Magnetic Composite Particles with Core-Brush Topology. Chem. Eng. J. 2016, 304, 325–334. [Google Scholar] [CrossRef]
- Lu, Y.; Fan, L.; Yang, L.-Y.; Huang, F.; Ouyang, X.-K. PEI-Modified Core-Shell/Bead-Like Amino Silica Enhanced Poly (Vinyl Alcohol)/Chitosan for Diclofenac Sodium Efficient Adsorption. Carbohydr. Polym. 2020, 229, 115459–115466. [Google Scholar] [CrossRef]
- Lu, Y.; Wang, Z.; Ouyang, X.-K.; Ji, C.; Liu, Y.; Huang, F.; Yang, L.-Y. Fabrication of Cross-Linked Chitosan Beads Grafted by Polyethylenimine for Efficient Adsorption of Diclofenac Sodium from Water. Int. J. Biol. Macromol. 2020, 145, 1180–1188. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, T.O.; Matias, A.E.B.; Braga, L.R.; Evangelista, S.M.; Prado, A.G.S. Calorimetric Studies of Removal of Nonsteroidal Anti-Inflammatory Drugs Diclofenac and Dipyrone from Water. J. Therm. Anal. Calorim. 2011, 106, 475–481. [Google Scholar] [CrossRef]
- Santos, J.M.N.d.; Pereira, C.R.; Foletto, E.L.; Dotto, G.L. Alternative Synthesis for ZnFe2O4/Chitosan Magnetic Particles to Remove Diclofenac from Water by Adsorption. Int. J. Biol. Macromol. 2019, 131, 301–308. [Google Scholar] [CrossRef] [PubMed]
- Yoong, Y.H.; Chong, W.C.; Chung, Y.T.; Teoh, H.C. Magnetite Activated Carbon/Chitosan Composite from Biomass for Removal of Diclofenac in Aqueous Solution. IOP Conf. Ser. Earth Environ. Sci. 2019, 463, 012183–012190. [Google Scholar] [CrossRef]
- Zhang, Y.; Shen, Z.; Dai, C.; Zhou, X. Removal of Selected Pharmaceuticals from Aqueous Solution Using Magnetic Chitosan: Sorption Behavior and Mechanism. Environ. Sci. Pollut. Res. 2014, 21, 12780–12789. [Google Scholar] [CrossRef]
- Dai, J.; Ma, S.; Wu, Y.; Han, L.; Zhang, L.; Zhu, J.; Liu, X. Polyesters Derived from Itaconic Acid for the Properties and Bio-Based Content Enhancement of Soybean Oil-Based Thermosets. Green Chem. 2015, 17, 2383–2392. [Google Scholar] [CrossRef]
- Kumar, S.; Samal, S.K.; Mohanty, S.; Nayak, S.K. Synthesis and Characterization of Itaconic-Based Epoxy Resins. Polym. Adv. Technol. 2017, 29, 160–170. [Google Scholar] [CrossRef]
- Ge, H.; Hua, T.; Wang, J. Preparation and Characterization of Poly (Itaconic Acid)-Grafted Crosslinked Chitosan Nanoadsorbent for High Uptake of Hg2+And Pb2+. Int. J. Biol. Macromol. 2017, 95, 954–961. [Google Scholar] [CrossRef]
- Soto, D.; Urdaneta, J.; Pernia, K.; León, O.; Muñoz-Bonilla, A. Fernández-García, M. Itaconic Acid Grafted Starch Hydrogels as Metal Remover: Capacity, Selectivity and Adsorption Kinetics. J. Polym. Environ. 2016, 24, 343–355. [Google Scholar] [CrossRef]
- Habiba, U.; Siddique, T.A.; Joo, T.C.; Salleh, A.; Ang, B.C.; Afifi, A.M. Synthesis of chitosan/polyvinyl alcohol/zeolite composite for removal of methyl orange, Congo red and chromium(VI) byflocculation/adsorption. Carbohydr. Polym. 2017, 157, 1568–1576. [Google Scholar] [CrossRef]
- Liu, B.; Chen, X.; Zheng, H.; Wang, Y.; Sun, Y.; Zhao, C.; Zhang, S. Rapid and Efficient Removal of Heavy Metal and Cationic Dye by Carboxylate-Rich Magnetic Chitosan Flocculants: Role of Ionic Groups. Carbohydr. Polym. 2018, 181, 327–336. [Google Scholar] [CrossRef]
- Sakthivel, M.; Franklin, D.S.; Guhanathan, S. pH-sensitive Itaconic acid based polymeric hydrogels for dye removal applications. Ecotoxicol. Environ. Saf. 2016, 134, 427–432. [Google Scholar] [CrossRef]
- Bayramoglu, G.; Arica, M.Y. Reversible immobilization of catalase on fibrous polymer grafted and metal chelated chitosan membrane. J. Mol. Catal. B Enzym. 2010, 62, 297–304. [Google Scholar] [CrossRef]
- Kyzas, G.Z.; Siafaka, P.I.; Lambropoulou, D.A.; Lazaridis, N.K.; Bikiaris, D.N. Poly(itaconic acid)-Grafted Chitosan Adsorbents with Different Cross-Linking for Pb(II) and Cd(II) Uptake. Langmuir 2014, 30, 120–131. [Google Scholar] [CrossRef]
- Abd El-Aziz, M.E.; Morsi, S.M.; Kamal, K.H.; Khattab, T.A. Preparation of Isopropyl Acrylamide Grafted Chitosan and Carbon Bionanocomposites for Adsorption of Lead Ion and Methylene Blue. Polymers 2022, 14, 4485. [Google Scholar] [CrossRef]
- Marcos-Fernández, A.; Lozano, A.E.; González, L.; Rodríguez, A. Hydrogen Bonding in Copoly(ether−urea)s and Its Relationship with the Physical Properties. Macromolecules 1997, 30, 3584–3592. [Google Scholar] [CrossRef]
- Lu, J.; Jin, R.-N.; Liu, C.; Wang, Y.-F.; Ouyang, X. Magnetic Carboxylated Cellulose Nanocrystals as Adsorbent for The Removal of Pb(II) from Aqueous Solution. Int. J. Biol. Macromol. 2016, 93, 547–556. [Google Scholar] [CrossRef]
- Sesia, R.; Ferraris, S.; Sangermano, M.; Spriano, S. UV-Cured chitosan-based hydrogels strengthened by tannic acid for the removal of copper ions from water. Polymers 2022, 14, 4645. [Google Scholar] [CrossRef]
- Dragan, E.S.; Cocarta, A.I.; Dinu, M.V. Facile Fabrication of Chitosan/Poly(Vinyl Amine) Composite Beads with Enhanced Sorption of Cu2+. Equilibrium, Kinetics, and Thermodynamics. J. Chem. Eng. 2014, 255, 659–669. [Google Scholar] [CrossRef]
- Jilal, I.; El Barkany, S.; Bahari, Z.; Sundman, O.; El Idrissi, A.; Abou-Salama, M.; Romane, A.; Zannagui, C.; Amhamdi, H. New Quaternized Cellulose Based on Hydroxyethyl Cellulose (HEC) Grafted EDTA: Synthesis, Characterization and Application for Pb (II) and Cu (II) Removal. Carbohydr. Polym. 2018, 180, 156–167. [Google Scholar] [CrossRef] [PubMed]
- Milosavljević, N.B.; Milašinović, N.Z.; Popović, I.G.; Filipović, J.M.; Kalagasidis, K.M.T. Preparation and Characterization of pH-Sensitive Hydrogels Based on Chitosan, Itaconic Acid and Methacrylic Acid. Polym. Int. 2011, 60, 443–452. [Google Scholar] [CrossRef]
- Franklin, D.S.; Guhanathan, S. Investigation of Citric Acid–Glycerol Based pH-Sensitive Biopolymeric Hydrogels for Dye Removal Applications: A Green Approach. Ecotoxicol. Environ. Saf. 2015, 121, 80–86. [Google Scholar] [CrossRef]
- Acharyulu, S.R.; Gomathi, T.; Sudha, P.N. Synthesis and Characterization of Cross Linked Chitosan-Polystyrene Polymer Blends. Der Pharm. Lett. 2013, 5, 74–83. [Google Scholar]
- Sutirman, Z.A.; Sanagi, M.M.; Abd Karim, K.J.; Wan Ibrahim, W.A. Preparation of Methacrylamide-Functionalized Crosslinked Chitosan by Free Radical Polymerization for The Removal of Lead Ions. Carbohydr. Polym. 2016, 151, 1091–1099. [Google Scholar] [CrossRef]
- Madkour, T.M.; Mark, J.E. Some evidence on pore sizes in poly (dimethylsiloxane) elastomers having unimodal, bimodal, or trimodal distributions of network chain lengths. Polym. Bull. 1993, 31, 615–621. [Google Scholar] [CrossRef]
- Sadeghi, M.; Ghasemi, N.; Soliemani, F. Graft Copolymerization Methacrylamide Monomer onto Carboxymethyl Cellulose in Homogeneous Solution and Optimization of Effective Parameters. World Appl. Sci. J. 2012, 16, 119–125. [Google Scholar]
- Madkour, T.M.; Azzam, R.A. Non-Gaussian behavior of self-assembled thermoplastic polyurethane elastomers synthesized using two-step polymerization and investigated using constant-strain stress relaxation and molecular modeling techniques. Eur. Polym. J. 2013, 49, 439–451. [Google Scholar] [CrossRef]
- Jiang, F.; Zhang, D.; Ouyang, X.; Yang, L.-Y. Fabrication of porous polyethyleneimine-functionalized chitosan/Span 80 microspheres for adsorption of diclofenac sodium from aqueous solutions. Sustain. Chem. Pharm. 2021, 21, 100418–100428. [Google Scholar] [CrossRef]
- Lim, S.-F.; Zheng, Y.-M.; Zou, S.-W.; Chen, J.P. Characterization of copper adsorption onto an alginate encapsulated magnetic sorbent by a combined FT-IR, XPS, and mathematical modeling study. Environ. Sci. Technol. 2008, 42, 2551–2556. [Google Scholar] [CrossRef] [PubMed]
- Lv, Y.; Liang, Z.; Li, Y.; Chen, Y.; Liu, K.; Yang, G.; Liu, Y.; Lin, C.; Ye, X.; Shi, Y.; et al. Efficient adsorption of diclofenac sodium in water by a novel functionalized cellulose aerogel. Environ. Res. 2021, 194, 110652. [Google Scholar] [CrossRef]
- Huang, Y.; Wu, H.; Shao, T.; Zhao, X.; Peng, H.; Gong, Y.; Wan, H. Enhanced copper adsorption by DTPA-chitosan/alginate composite beads: Mechanism and application in simulated electroplating wastewater. Chem. Eng. J. 2018, 339, 322–333. [Google Scholar] [CrossRef]
- Hu, D.; Huang, H.; Jiang, R.; Wang, N.; Xu, H.; Wang, Y.-G.; Ouyang, X. Adsorption of diclofenac sodium on bilayer amino-functionalized cellulose nanocrystals/chitosan composite. J. Hazard. Mater. 2019, 369, 483–493. [Google Scholar] [CrossRef]
- Cui, J.; Yu, Z.; Lau, D. Effect of Acetyl Group on Mechanical Properties of Chitin/Chitosan Nanocrystal: A Molecular Dynamics Study. Int. J. Mol. Sci. 2016, 17, 61. [Google Scholar] [CrossRef]
- Soares, S.F.; Fernandes, T.; Sacramento, M.; Trindade, T.; Daniel-da-Silva, A.L. Magnetic Quaternary Chitosan Hybrid Nanoparticles for the Efficient Uptake of Diclofenac from Water. Carbohydr. Polym. 2019, 203, 35–44. [Google Scholar] [CrossRef]
- Madkour, T.M.; Hamdi, M.S. Elastomers with two crosslinking systems of different lengths viewed as bimodal networks. J. Appl. Polym. Sci. 1996, 61, 1239–1244. [Google Scholar] [CrossRef]
- Sabaa, M.W.; Madkour, T.M.; Yassin, A.A. Polymerization products of p-benzoquinone as bound antioxidants for SBR. Part II—The antioxidizing efficiency. Polym. Degrad. Stab. 1988, 22, 205–222. [Google Scholar] [CrossRef]
- Malek, N.N.A.; Jawad, A.H.; Ismail, K.; Razuan, R.; ALOthman, Z.A. Fly ash modified magnetic chitosan-polyvinyl alcohol blend for reactive orange 16 dye removal: Adsorption parametric optimization. Int. J. Biol. Macromol. 2021, 189, 464–476. [Google Scholar] [CrossRef] [PubMed]
- Abdel Salam, J.; Saleh, A.A.; El Nenaiey, T.T.; Yang, H.; Shoeib, T.; El-Sayed, M.M.H. Mono- and multi-component biosorption of caffeine and salicylic acid onto processed cape gooseberry husk agri-food waste. ACS Omega 2023, 8, 20697–20707. [Google Scholar] [CrossRef] [PubMed]
- Farghal, H.; Nebsen, M.; El-Sayed, M.M.H. Multifunctional chitosan/xylan-coated magnetite nanoparticles for the simultaneous adsorption of the emerging contaminants Pb(II), salicylic acid, and congo red dye. Water 2023, 15, 829. [Google Scholar] [CrossRef]
- Farghal, H.; Nebsen, M.; El-Sayed, M.M.H. Eco-friendly biopolymer/activated charcoal magnetic nanocomposites with enhanced stability and adsorption properties for water treatment applications, Accepted. J. Polym. Environ. 2023. [Google Scholar] [CrossRef]
- Simonin, J.-P. On the comparison of pseudo-first order and pseudo-second order rate laws in the modeling of adsorption kinetics. Chem. Eng. J. 2016, 300, 254–263. [Google Scholar] [CrossRef]
Samples | Chitosan | APS Initiator | IA Monomer |
---|---|---|---|
CS | 1 | 0 | 0 |
P(IA)-g-CS-I0.02-M3 * | 1 | 0.02 | 3 |
P(IA)-g-CS-I0.06-M3 | 1 | 0.06 | 3 |
P(IA)-g-CS-I0.1-M3 | 1 | 0.1 | 3 |
P(IA)-g-CS-I0.02-M1 | 1 | 0.02 | 1 |
P(IA)-g-CS-I0.02-M5 | 1 | 0.02 | 5 |
Samples | Content (wt%) | |||
---|---|---|---|---|
CK | NK | OK | CK + OK | |
CS | 26.66 | 17.85 | 55.49 | 82.15 |
P(IA)-g-CS-I0.02-M3 | 28.02 | 13.22 | 58.76 | 86.78 |
P(IA)-g-CS-I0.06-M3 | 24.75 | 12.48 | 61.07 | 86.52 |
P(IA)-g-CS-I0.1-M3 | 26.45 | 13.70 | 61.55 | 86.30 |
P(IA)-g-CS-I0.02-M1 | 28.03 | 13.90 | 58.07 | 86.10 |
P(IA)-g-CS-I0.02-M5 | 28.34 | 11.91 | 59.75 | 88.09 |
Adsorbents | qe, mg/g | k2, g·mg−1·min−1 | R2 |
---|---|---|---|
CS | 28.01 | 0.002 | 0.9915 |
P(IA)-CS-g-I0.02-M3 | 44.84 | 0.065 | 1.0000 |
P(IA)-CS-g-I0.06-M3 | 44.84 | 0.031 | 0.9999 |
P(IA)-CS-g-I0.1-M3 | 44.44 | 0.015 | 0.9998 |
P(IA)-CS-g-I0.02-M1 | 43.67 | 0.026 | 1.0000 |
P(IA)-CS-g-I0.02-M3 | 44.84 | 0.065 | 1.0000 |
P(IA)-CS-g-I0.02-M5 | 44.25 | 0.008 | 0.9992 |
Adsorbent | Langmuir Isotherm | Freundlich Isotherm | ||||
---|---|---|---|---|---|---|
qm (mg/g) | kd (L/mg) | R2 | Kf (mg/g)(L/mg)n | 1/n | R2 | |
CS | 35.97 | 3.42 | 0.972 | 12.49 | 0.334 | 0.951 |
P(IA)-g-CS-I0.02-M3 | 48.31 | 0.19 | 0.999 | 41.69 | 0.078 | 0.967 |
P(IA)-g-CS-I0.06-M3 | 48.08 | 0.14 | 0.997 | 42.27 | 0.068 | 0.951 |
P(IA)-g-CS-I0.1-M3 | 47.85 | 0.12 | 0.999 | 43.35 | 0.050 | 0.957 |
P(IA)-g-CS-I0.02-M1 | 47.39 | 0.13 | 0.999 | 42.56 | 0.058 | 0.952 |
P(IA)-g-CS-I0.02-M5 | 48.08 | 0.14 | 0.999 | 43.35 | 0.049 | 0.958 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elsayed, R.E.; Hassanein, D.; El-Sayed, M.M.H.; Madkour, T.M. Impact of the Configurational Microstructure of Carboxylate-Rich Chitosan Beads on Its Adsorptive Removal of Diclofenac Potassium from Contaminated Water. Polymers 2023, 15, 4274. https://doi.org/10.3390/polym15214274
Elsayed RE, Hassanein D, El-Sayed MMH, Madkour TM. Impact of the Configurational Microstructure of Carboxylate-Rich Chitosan Beads on Its Adsorptive Removal of Diclofenac Potassium from Contaminated Water. Polymers. 2023; 15(21):4274. https://doi.org/10.3390/polym15214274
Chicago/Turabian StyleElsayed, Rasha E., Dina Hassanein, Mayyada M. H. El-Sayed, and Tarek M. Madkour. 2023. "Impact of the Configurational Microstructure of Carboxylate-Rich Chitosan Beads on Its Adsorptive Removal of Diclofenac Potassium from Contaminated Water" Polymers 15, no. 21: 4274. https://doi.org/10.3390/polym15214274
APA StyleElsayed, R. E., Hassanein, D., El-Sayed, M. M. H., & Madkour, T. M. (2023). Impact of the Configurational Microstructure of Carboxylate-Rich Chitosan Beads on Its Adsorptive Removal of Diclofenac Potassium from Contaminated Water. Polymers, 15(21), 4274. https://doi.org/10.3390/polym15214274