Modulating Polymer Ultrathin Film Crystalline Fraction and Orientation with Nanoscale Curvature
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Substrate Preparation
2.3. Morphological Characterization
2.4. Structural Characterization
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Joshi, S.; Pingel, P.; Grigorian, S.; Panzner, T.; Pietsch, U.; Neher, D.; Forster, M.; Scherf, U. Bimodal Temperature Behavior of Structure and Mobility in High Molecular Weight P3HT Thin Films. Macromolecules 2009, 42, 4651–4660. [Google Scholar] [CrossRef]
- Roncali, J. Conjugated Poly(Thiophenes): Synthesis, Functionalization, and Applications. Chem. Rev. 1992, 92, 711–738. [Google Scholar] [CrossRef]
- Agbolaghi, S.; Zenoozi, S. A Comprehensive Review on Poly(3-Alkylthiophene)-Based Crystalline Structures, Protocols and Electronic Applications. Org. Electron. 2017, 51, 362–403. [Google Scholar] [CrossRef]
- Nava-Sanchez, R.; Casados-Cruz, G.; Morales-Acevedo, A. Effect of the P3HT Concentration in the Precursor Solution on the Crystallinity of Annealed P3HT Thin Films Prepared by Spin-Coating. In 2022 19th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE), Mexico City, Mexico, 9–11 November 2022; IEEE: Mexico City, Mexico, 2022; pp. 1–6. [Google Scholar]
- Yu, L.; Davidson, E.; Sharma, A.; Andersson, M.R.; Segalman, R.; Müller, C. Isothermal Crystallization Kinetics and Time–Temperature–Transformation of the Conjugated Polymer: Poly(3-(2′-Ethyl)Hexylthiophene). Chem. Mater. 2017, 29, 5654–5662. [Google Scholar] [CrossRef]
- Crossland, E.J.W.; Rahimi, K.; Reiter, G.; Steiner, U.; Ludwigs, S. Systematic Control of Nucleation Density in Poly(3-Hexylthiophene) Thin Films. Adv. Funct. Mater. 2011, 21, 518–524. [Google Scholar] [CrossRef]
- Tremel, K.; Ludwigs, S. Morphology of P3HT in Thin Films in Relation to Optical and Electrical Properties. In P3HT Revisited—From Molecular Scale to Solar Cell Devices; Ludwigs, S., Ed.; Advances in Polymer Science; Springer: Berlin/Heidelberg, Germany, 2014; Volume 265, pp. 39–82. [Google Scholar]
- Salammal, S.T.; Mikayelyan, E.; Grigorian, S.; Pietsch, U.; Koenen, N.; Scherf, U.; Kayunkid, N.; Brinkmann, M. Impact of Thermal Annealing on the Semicrystalline Nanomorphology of Spin-Coated Thin Films of Regioregular Poly(3-Alkylthiophene)s as Observed by High-Resolution Transmission Electron Microscopy and Grazing Incidence X-Ray Diffraction. Macromolecules 2012, 45, 5575–5585. [Google Scholar] [CrossRef]
- An, L.; Duan, Y.; Yuan, Y.; Zhou, L.; Zhang, J. Effect of Thermal Annealing on the Microstructure of P3HT Thin Film Investigated by RAIR Spectroscopy. Vib. Spectrosc. 2013, 68, 40–44. [Google Scholar] [CrossRef]
- Yang, H.; Zhang, R.; Wang, L.; Zhang, J.; Yu, X.; Liu, J.; Xing, R.; Geng, Y.; Han, Y. Face-On and Edge-On Orientation Transition and Self-Epitaxial Crystallization of All-Conjugated Diblock Copolymer. Macromolecules 2015, 48, 7557–7566. [Google Scholar] [CrossRef]
- Kim, D.H.; Jang, Y.; Park, Y.D.; Cho, K. Layered Molecular Ordering of Self-Organized Poly(3-Hexylthiophene) Thin Films on Hydrophobized Surfaces. Macromolecules 2006, 39, 5843–5847. [Google Scholar] [CrossRef]
- Zhang, X.; Richter, L.J.; DeLongchamp, D.M.; Kline, R.J.; Hammond, M.R.; McCulloch, I.; Heeney, M.; Ashraf, R.S.; Smith, J.N.; Anthopoulos, T.D.; et al. Molecular Packing of High-Mobility Diketo Pyrrolo-Pyrrole Polymer Semiconductors with Branched Alkyl Side Chains. J. Am. Chem. Soc. 2011, 133, 15073–15084. [Google Scholar] [CrossRef]
- Shen, X.; Hu, W.; Russell, T.P. Measuring the Degree of Crystallinity in Semicrystalline Regioregular Poly(3-Hexylthiophene). Macromolecules 2016, 49, 4501–4509. [Google Scholar] [CrossRef]
- Verploegen, E.; Mondal, R.; Bettinger, C.J.; Sok, S.; Toney, M.F.; Bao, Z. Effects of Thermal Annealing Upon the Morphology of Polymer-Fullerene Blends. Adv. Funct. Mater. 2010, 20, 3519–3529. [Google Scholar] [CrossRef]
- Peng, R.; Zhu, J.; Pang, W.; Cui, Q.; Wu, F.; Liu, K.; Wang, M.; Pan, G. Thermal Annealing Effects on the Absorption and Structural Properties of Regioregular Poly (3-Hexylthiophene) Films. J. Macromol. Sci. 2011, 50, 624–636. [Google Scholar] [CrossRef]
- Gu, K.; Wang, Y.; Li, R.; Tsai, E.; Onorato, J.W.; Luscombe, C.K.; Priestley, R.D.; Loo, Y.-L. Role of Postdeposition Thermal Annealing on Intracrystallite and Intercrystallite Structuring and Charge Transport in Poly(3-Hexylthiophene). ACS Appl. Mater. Interfaces 2021, 13, 999–1007. [Google Scholar] [CrossRef]
- Wang, T.; Pearson, A.J.; Lidzey, D.G.; Jones, R.A.L. Evolution of Structure, Optoelectronic Properties, and Device Performance of Polythiophene:Fullerene Solar Cells during Thermal Annealing. Adv. Funct. Mater. 2011, 21, 1383–1390. [Google Scholar] [CrossRef]
- Singh, C.R.; Gupta, G.; Lohwasser, R.; Engmann, S.; Balko, J.; Thelakkat, M.; Thurn-Albrecht, T.; Hoppe, H. Correlation of Charge Transport with Structural Order in Highly Ordered Melt-Crystallized Poly(3-Hexylthiophene) Thin Films. J. Polym. Sci. Part B Polym. Phys. 2013, 51, 943–951. [Google Scholar] [CrossRef]
- Joseph Kline, R.; McGehee, M.D.; Toney, M.F. Highly Oriented Crystals at the Buried Interface in Polythiophene Thin-Film Transistors. Nat. Mater. 2006, 5, 222–228. [Google Scholar] [CrossRef]
- Malik, S.; Nandi, A.K. Crystallization Mechanism of Regioregular Poly(3-Alkyl Thiophene)s. J. Polym. Sci. B Polym. Phys. 2002, 40, 2073–2085. [Google Scholar] [CrossRef]
- Sun, X.; Ren, Z.; Liu, J.; Takahashi, I.; Yan, S. Structure Evolution of Poly(3-Hexylthiophene) on Si Wafer and Poly(Vinylphenol) Sublayer. Langmuir 2014, 30, 7585–7592. [Google Scholar] [CrossRef]
- Kim, D.H.; Jang, Y.; Park, Y.D.; Cho, K. Surface-Induced Conformational Changes in Poly(3-Hexylthiophene) Monolayer Films. Langmuir 2005, 21, 3203–3206. [Google Scholar] [CrossRef]
- Ruffino, R.; Tuccitto, N.; Messina, G.M.L.; Kozma, E.; Catellani, M.; Li-Destri, G.; Marletta, G. Polymer Crystallization on Nanocurved Substrates: Distortion Versus Dewetting. J. Phys. Chem. C 2019, 123, 8967–8974. [Google Scholar] [CrossRef]
- Ruffino, R.; Fichera, L.; Valenti, A.; Jankowski, M.; Konovalov, O.; Messina, G.M.L.; Licciardello, A.; Tuccitto, N.; Li-Destri, G.; Marletta, G. Tuning the Randomization of Lamellar Orientation in Poly(3-Hexylthiophene) Thin Films with Substrate Nano-Curvature. Polymer 2021, 230, 124071. [Google Scholar] [CrossRef]
- Donose, B.C.; Taran, E.; Vakarelski, I.U.; Shinto, H.; Higashitani, K. Effects of Cleaning Procedures of Silica Wafers on Their Friction Characteristics. J. Colloid Interface Sci. 2006, 299, 233–237. [Google Scholar] [CrossRef]
- Qu, Y.; Li, L.; Lu, G.; Zhou, X.; Su, Q.; Xu, W.; Li, S.; Zhang, J.; Yang, X. A Novel Melting Behavior of Poly(3-Alkylthiophene) Cocrystals: Premelting and Recrystallization of Component Polymers. Polym. Chem. 2012, 3, 3301–3307. [Google Scholar] [CrossRef]
- Usov, I.; Mezzenga, R. FiberApp: An Open-Source Software for Tracking and Analyzing Polymers, Filaments, Biomacromolecules, and Fibrous Objects. Macromolecules 2015, 48, 1269–1280. [Google Scholar] [CrossRef]
- Oyewole, D.O.; Oyewole, O.K.; Kushnir, K.; Shi, T.; Oyelade, O.V.; Adeniji, S.A.; Agyei-Tuffour, B.; Evans-Lutterodt, K.; Titova, L.V.; Soboyejo, W.O. Pressure and Thermal Annealing Effects on the Photoconversion Efficiency of Polymer Solar Cells. AIP Adv. 2021, 11.4, 045304. [Google Scholar] [CrossRef]
- Ali, K.; Pietsch, U.; Grigorian, S. Enhancement of Field-Effect Mobility Due to Structural Ordering in Poly(3-Hexylthiophene) Films by the Dip-Coating Technique. J. Appl. Crystallogr. 2013, 46, 908–911. [Google Scholar] [CrossRef]
- Son, S.Y.; Park, T.; You, W. Understanding of Face-On Crystallites Transitioning to Edge-On Crystallites in Thiophene-Based Conjugated Polymers. Chem. Mater. 2021, 33, 4541–4550. [Google Scholar] [CrossRef]
- Joshi, S.; Grigorian, S.; Pietsch, U. X-ray Structural and Crystallinity Studies of Low and High Molecular Weight Poly(3-hexylthiophene). Phys. Status Solidi A 2008, 205, 488–496. [Google Scholar] [CrossRef]
- Joshi, S.; Grigorian, S.; Pietsch, U.; Pingel, P.; Zen, A.; Neher, D.; Scherf, U. Thickness Dependence of the Crystalline Structure and Hole Mobility in Thin Films of Low Molecular Weight Poly(3-Hexylthiophene). Macromolecules 2008, 41, 6800–6808. [Google Scholar] [CrossRef]
- Jiao, X.; Statz, M.; Lai, L.; Schott, S.; Jellett, C.; McCulloch, I.; Sirringhaus, H.; McNeill, C.R. Resolving Different Physical Origins toward Crystallite Imperfection in Semiconducting Polymers: Crystallite Size vs Paracrystallinity. J. Phys. Chem. B 2020, 124, 10529–10538. [Google Scholar] [CrossRef]
- Mwema, F.M.; Akinlabi, E.T. The Use of Power Spectrum Density for Surface Characterization of Thin Films. In book: Photoenergy and Thin Film Materials; Yang, X.-Y., Ed.; John Wiley & Sons Inc: Hoboken, NJ, USA, 2019; Chapter 9; pp. 379–411. [Google Scholar]
- Li Destri, G.; Keller, T.F.; Catellani, M.; Punzo, F.; Jandt, K.D.; Marletta, G. Crystalline Monolayer Ordering at Substrate/Polymer Interfaces in Poly(3-Hexylthiophene) Ultrathin Films. Macromol. Chem. Phys. 2011, 212, 905–914. [Google Scholar] [CrossRef]
- Li Destri, G.; Keller, T.F.; Catellani, M.; Punzo, F.; Jandt, K.D.; Marletta, G. Interfacial Free Energy Driven Nanophase Separation in Poly(3-Hexylthiophene)/[6,6]-Phenyl-C61-Butyric Acid Methyl Ester Thin Films. Langmuir 2012, 28, 5257–5266. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruffino, R.; Jankowski, M.; Konovalov, O.; Punzo, F.; Tuccitto, N.; Li-Destri, G. Modulating Polymer Ultrathin Film Crystalline Fraction and Orientation with Nanoscale Curvature. Polymers 2023, 15, 4453. https://doi.org/10.3390/polym15224453
Ruffino R, Jankowski M, Konovalov O, Punzo F, Tuccitto N, Li-Destri G. Modulating Polymer Ultrathin Film Crystalline Fraction and Orientation with Nanoscale Curvature. Polymers. 2023; 15(22):4453. https://doi.org/10.3390/polym15224453
Chicago/Turabian StyleRuffino, Roberta, Maciej Jankowski, Oleg Konovalov, Francesco Punzo, Nunzio Tuccitto, and Giovanni Li-Destri. 2023. "Modulating Polymer Ultrathin Film Crystalline Fraction and Orientation with Nanoscale Curvature" Polymers 15, no. 22: 4453. https://doi.org/10.3390/polym15224453
APA StyleRuffino, R., Jankowski, M., Konovalov, O., Punzo, F., Tuccitto, N., & Li-Destri, G. (2023). Modulating Polymer Ultrathin Film Crystalline Fraction and Orientation with Nanoscale Curvature. Polymers, 15(22), 4453. https://doi.org/10.3390/polym15224453