Exploring the Molecular Origin for the Long-Range Propagation of the Substrate Effect in Unentangled Poly(methyl methacrylate) Films
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Fluorinated Group Labeled Linear and Ring PMMA
2.3. Film Preparation
2.4. Water Contact Angle Measurement
3. Results
3.1. The Measurement of the Propagation Distance of the Substrate Effect in Fluorinated PMMA Films
3.2. The Molecular Weight Dependence of the Propagation Distance (hl*) of Substrate Effect in Linear PMMA Films
3.3. Exploring the Molecular Origin for the Long-Range Effect of Substrate
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Xu, J.; Liu, Z.; Lan, Y.; Zuo, B.; Wang, X.; Yang, J.; Zhang, W.; Hu, W. Mobility Gradient of Poly(ethylene terephthalate) Chains near a Substrate Scaled by the Thickness of the Adsorbed Layer. Macromolecules 2017, 50, 6804–6812. [Google Scholar] [CrossRef]
- Keddie, J.L.; Jones, R.A.L.; Cory, R.A. Interface and Surface Effects on The Glass-Transition Temperature in Thin Polymer Films. Faraday Discuss. 1994, 98, 219–230. [Google Scholar] [CrossRef]
- Gin, P.; Jiang, N.; Liang, C.; Taniguchi, T.; Akgun, B.; Satija, S.K.; Endoh, M.K.; Koga, T. Revealed Architectures of Adsorbed Polymer Chains at Solid-Polymer Melt Interfaces. Phys. Rev. Lett. 2012, 109, 265501. [Google Scholar] [CrossRef] [PubMed]
- Zuo, B.; Zhou, H.; Davis, M.J.B.; Wang, X.; Priestley, R.D. Effect of Local Chain Conformation in Adsorbed Nanolayers on Confined Polymer Molecular Mobility. Phys. Rev. Lett. 2019, 122, 217801. [Google Scholar] [CrossRef]
- Napolitano, S.; Glynos, E.; Tito, N.B. Glass transition of polymers in bulk, confined geometries, and near interfaces. Rep. Prog. Phys. 2017, 80, 036602. [Google Scholar] [CrossRef] [PubMed]
- Priestley, R.D.; Ellison, C.J.; Broadbelt, L.J.; Torkelson, J.M. Structural Relaxation of Polymer Glasses at Surfaces, Interfaces, and In Between. Science 2005, 309, 456–459. [Google Scholar] [CrossRef]
- Zheng, X.; Rafailovich, M.H.; Sokolov, J.; Strzhemechny, Y.; Schwarz, S.A.; Sauer, B.B.; Rubinstein, M. Long-Range Effects on Polymer Diffusion Induced by a Bounding Interface. Phys. Rev. Lett. 1997, 79, 241–244. [Google Scholar] [CrossRef]
- Xu, J.; Wang, X.; Chen, L.; Ao, W.; Zuo, B.; Zhang, C.; Wang, X. Spatially Heterogeneous Dynamics in Supported Ultrathin Poly(ethylene terephthalate) Films Depend on the Thicknesses of the Film and the Adsorbed Layer. Macromolecules 2022, 55, 7110–7116. [Google Scholar] [CrossRef]
- van Zanten, J.H.; Wallace, W.E.; Wu, W.-l. Effect of Strongly Favorable Substrate Interactions on the Thermal Properties of Ultrathin Polymer Films. Phys. Rev. E 1996, 53, R2053–R2056. [Google Scholar] [CrossRef]
- Xu, J.; Wang, X.; Bian, Z.; Wu, X.; You, J.; Wang, X. Surface crystalline structure of thin poly(l-lactide) films determined by the long-range substrate effect. Polymer 2022, 256, 125217. [Google Scholar] [CrossRef]
- Xu, J.; Lv, C.; Du, B.; Wang, X.; Tsui, O.K.C. Effective Viscosity of Unentangled Random Copolymer Films of Styrene and 4-Methoxystyrene with Different Copolymer Compositions. Macromolecules 2020, 53, 7430–7438. [Google Scholar] [CrossRef]
- Li, R.N.; Chen, F.; Lam, C.-H.; Tsui, O.K.C. Viscosity of PMMA on Silica: Epitome of Systems with Strong Polymer–Substrate Interactions. Macromolecules 2013, 46, 7889–7893. [Google Scholar] [CrossRef]
- Inoue, R.; Nakamura, M.; Matsui, K.; Kanaya, T.; Nishida, K.; Hino, M. Distribution of Glass Transition Temperature in Multilayered Poly(methyl methacrylate) Thin Film Supported on a Si Substrate as Studied by Neutron Reflectivity. Phys. Rev. E 2013, 88, 032601. [Google Scholar] [CrossRef]
- Frank, B.; Gast, A.P.; Russell, T.P.; Brown, H.R.; Hawker, C. Polymer Mobility in Thin Films. Macromolecules 1996, 29, 6531–6534. [Google Scholar] [CrossRef]
- Lee, H.; Jo, S.; Hirata, T.; Yamada, N.L.; Tanaka, K.; Kim, E.; Ryu, D.Y. Interpenetration of Chemically Identical Polymer onto Grafted Substrates. Polymer 2015, 74, 70–75. [Google Scholar] [CrossRef]
- Perez-de-Eulate, N.G.; Sferrazza, M.; Cangialosi, D.; Napolitano, S. Irreversible Adsorption Erases the Free Surface Effect on the Tg of Supported Films of Poly(4-tert-butylstyrene). ACS Macro Lett. 2017, 6, 354–358. [Google Scholar] [CrossRef]
- Wu, X.; Xu, J.; Sun, W.; Hong, Y.; Zhang, C.; Zhang, L.; Wang, X. Interfacial Effect in Supported Thin PET Films Covered with a Thin PPO Layer. Macromolecules 2020, 53, 8683–8692. [Google Scholar] [CrossRef]
- Algers, J.; Suzuki, R.; Ohdaira, T.; Maurer, F.H.J. Free Volume and Density Gradients of Amorphous Polymer Surfaces As Determined by Use of a Pulsed Low-Energy Positron Lifetime Beam and PVT Data. Macromolecules 2004, 37, 4201–4210. [Google Scholar] [CrossRef]
- Wang, T.; Yan, J.; Yuan, H.; Xu, J.; Lam, H.Y.; Yu, X.; Lv, C.; Du, B.; Tsui, O.K.C. Tg Confinement Effect of Random Copolymers of 4-tert-Butylstyrene and 4-Acetoxystyrene with Different Compositions. ACS Macro Lett. 2019, 8, 1280–1284. [Google Scholar] [CrossRef]
- Yu, X.; Yiu, P.; Weng, L.-T.; Chen, F.; Tsui, O.K.C. Effective Viscosity of Lightly UVO-Treated Polystyrene Films on Silicon with Different Molecular Weights. Macromolecules 2019, 52, 877–885. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, Y.; Zhou, H.; Hong, Y.; Zuo, B.; Wang, X.; Zhang, L. Probing the Utmost Distance of Polymer Dynamics Suppression by a Substrate by Investigating the Diffusion of Fluorinated Tracer-Labeled Polymer Chains. Macromolecules 2017, 50, 5905–5913. [Google Scholar] [CrossRef]
- Siretanu, I.; Chapel, J.P.; Drummond, C. Substrate Remote Control of Polymer Film Surface Mobility. Macromolecules 2012, 45, 1001–1005. [Google Scholar] [CrossRef]
- Wallace, W.E.; van Zanten, J.H.; Wu, W.L. Influence of an Impenetrable Interface on a Polymer Glass-Transition Temperature. Phys. Rev. E 1995, 52, R3329–R3332. [Google Scholar] [CrossRef]
- Zhang, X.; Lee, F.K.; Tsui, O.K.C. Wettability of End-Grafted Polymer Brush by Chemically Identical Polymer Films. Macromolecules 2008, 41, 8148–8151. [Google Scholar] [CrossRef]
- Ren, W.; Wang, X.; Shi, J.; Xu, J.; Taneda, H.; Yamada, N.L.; Kawaguchi, D.; Tanaka, K.; Wang, X. The role of the molecular weight of the adsorbed layer on a substrate in the suppressed dynamics of supported thin polystyrene films. Soft Matter 2022, 18, 1997–2005. [Google Scholar] [CrossRef] [PubMed]
- Bai, L.; Luo, P.; Yang, X.; Xu, J.; Kawaguchi, D.; Zhang, C.; Yamada, N.L.; Tanaka, K.; Zhang, W.; Wang, X. Enhanced Glass Transition Temperature of Thin Polystyrene Films Having an Underneath Cross-Linked Layer. ACS Macro Lett. 2022, 11, 210–216. [Google Scholar] [CrossRef]
- Lee, H.; Ahn, H.; Naidu, S.; Seong, B.S.; Ryu, D.Y.; Trombly, D.M.; Ganesan, V. Glass Transition Behavior of PS Films on Grafted PS Substrates. Macromolecules 2010, 43, 9892–9898. [Google Scholar] [CrossRef]
- Jiang, N.; Shang, J.; Di, X.; Endoh, M.K.; Koga, T. Formation Mechanism of High-Density, Flattened Polymer Nanolayers Adsorbed on Planar Solids. Macromolecules 2014, 47, 2682–2689. [Google Scholar] [CrossRef]
- Housmans, C.; Sferrazza, M.; Napolitano, S. Kinetics of Irreversible Chain Adsorption. Macromolecules 2014, 47, 3390–3393. [Google Scholar] [CrossRef]
- Sun, S.; Xu, H.; Han, J.; Zhu, Y.; Zuo, B.; Wang, X.; Zhang, W. The Architecture of the Adsorbed Layer at the Substrate Interface Determines the Glass Transition of Supported Ultrathin Polystyrene Films. Soft Matter 2016, 12, 8348–8358. [Google Scholar] [CrossRef]
- Anderson, B.J.; Zukoski, C.F. Rheology and Microstructure of an Unentangled Polymer Nanocomposite Melt. Macromolecules 2008, 41, 9326–9334. [Google Scholar] [CrossRef]
- Torres, J.A.; Nealey, P.F.; de Pablo, J.J. Molecular Simulation of Ultrathin Polymeric Films near the Glass Transition. Phys. Rev. Lett. 2000, 85, 3221–3224. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Chen, X.; Cao, X.; Xu, J.; Zuo, B.; Zhang, L.; Wang, X.; Yang, J.; Yao, Y. Fabrication of polymer brush surfaces with highly-ordered perfluoroalkyl side groups at the brush end and their antibiofouling properties. J. Mater. Chem. B 2015, 3, 4388–4400. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Elupula, R.; Grayson, S.M.; Torkelson, J.M. Major Impact of Cyclic Chain Topology on the Tg-Confinement Effect of Supported Thin Films of Polystyrene. Macromolecules 2016, 49, 257–268. [Google Scholar] [CrossRef]
- Wool, R.P. Polymer entanglements. Macromolecules 1993, 26, 1564–1569. [Google Scholar] [CrossRef]
- Fetters, L.J.; Lohse, D.J.; Milner, S.T.; Graessley, W.W. Packing Length Influence in Linear Polymer Melts on the Entanglement, Critical, and Reptation Molecular Weights. Macromolecules 1999, 32, 6847–6851. [Google Scholar] [CrossRef]
- Doi, Y.; Matsubara, K.; Ohta, Y.; Nakano, T.; Kawaguchi, D.; Takahashi, Y.; Takano, A.; Matsushita, Y. Melt Rheology of Ring Polystyrenes with Ultrahigh Purity. Macromolecules 2015, 48, 3140–3147. [Google Scholar] [CrossRef]
- Zuo, B.; Liu, Y.; Wang, L.; Zhu, Y.; Wang, Y.; Wang, X. Depth Profile of the Segmental Dynamics at a Poly(methyl methacrylate) Film Surface. Soft Matter 2013, 9, 9376–9384. [Google Scholar] [CrossRef]
- Koga, T.; Jiang, N.; Gin, P.; Endoh, M.K.; Narayanan, S.; Lurio, L.B.; Sinha, S.K. Impact of an Irreversibly Adsorbed Layer on Local Viscosity of Nanoconfined Polymer Melts. Phys. Rev. Lett. 2011, 107, 225901. [Google Scholar] [CrossRef]
- Horn, R.G.; Hirz, S.J.; Hadziioannou, G.; Frank, C.W.; Catala, J.M. A Reevaluation of Forces Measured Across Thin Polymer Films: Nonequilibrium and Pinning Effects. J. Chem. Phys. 1989, 90, 6767–6774. [Google Scholar] [CrossRef]
- Fetters, L.J.; Lohse, D.J.; Richter, D.; Witten, T.A.; Zirkel, A. Connection between Polymer Molecular Weight, Density, Chain Dimensions, and Melt Viscoelastic Properties. Macromolecules 1994, 27, 4639–4647. [Google Scholar] [CrossRef]
- Rouse, P.E. A Theory of the Linear Viscoelastic Properties of Dilute Solutions of Coiling Polymers. J. Chem. Phys. 1953, 21, 1272–1280. [Google Scholar] [CrossRef]
- Polson, J.M.; MacLennan, R.G. Entropic force of cone-tethered polymers interacting with a planar surface. Phys. Rev. E 2022, 106, 024501. [Google Scholar] [CrossRef]
- Maghrebi, M.F.; Kantor, Y.; Kardar, M. Polymer-mediated entropic forces between scale-free objects. Phys. Rev. E 2012, 86, 061801. [Google Scholar] [CrossRef]
- Tanaka, K.; Takahara, A.; Kajiyama, T. Film Thickness Dependence of the Surface Structure of Immiscible Polystyrene/Poly(methyl methacrylate) Blends. Macromolecules 1996, 29, 3232–3239. [Google Scholar] [CrossRef]
- Gagliardi, S.; Arrighi, V.; Ferguson, R.; Dagger, A.C.; Semlyen, J.A.; Higgins, J.S. On the Difference in Scattering Behavior of Cyclic and Linear Polymers in Bulk. J. Chem. Phys. 2005, 122, 064904. [Google Scholar] [CrossRef] [PubMed]
- de Gennes, P.G. Glass transitions in thin polymer films. Eur. Phys. J. E 2000, 2, 201–205. [Google Scholar] [CrossRef]
- Hoskins, J.N.; Grayson, S.M. Synthesis and Degradation Behavior of Cyclic Poly(ε-caprolactone). Macromolecules 2009, 42, 6406–6413. [Google Scholar] [CrossRef]
- Opsteen, J.A.; van Hest, J.C.M. Modular Synthesis of ABC Type Block Copolymers by “Click” Chemistry. J. Polym. Sci. Part A Polym. Chem. 2007, 45, 2913–2924. [Google Scholar] [CrossRef]
- Matyjaszewski, K.; Nakagawa, Y.; Gaynor, S.G. Synthesis of Well-Defined Azido and Amino End-Functionalized Polystyrene by Atom Transfer Radical Polymerization. Macromol. Rapid Commun. 2003, 18, 1057–1066. [Google Scholar] [CrossRef]
- Gavrilov, M.; Amir, F.; Kulis, J.; Hossain, M.D.; Jia, Z.; Monteiro, M.J. Densely Packed Multicyclic Polymers. ACS Macro Lett. 2017, 6, 1036–1041. [Google Scholar] [CrossRef] [PubMed]
- Ge, Z.; Zhou, Y.; Xu, J.; Liu, H.; Chen, D.; Liu, S. High-Efficiency Preparation of Macrocyclic Diblock Copolymers via Selective Click Reaction in Micellar Media. J. Am. Chem. Soc. 2009, 131, 1628–1629. [Google Scholar] [CrossRef] [PubMed]
- Roovers, J.; Toporowski, P.M. Synthesis of high molecular weight ring polystyrenes. Macromolecules 1983, 16, 843–849. [Google Scholar] [CrossRef]
- Deffieux, A.; Schappacher, M.; Rique-Lurbet, L. Towards the selective synthesis of macrocyclic vinyl polymers of controlled size. Macromol. Symp. 1995, 95, 103–119. [Google Scholar] [CrossRef]
- Oike, H.; Hamada, M.; Eguchi, S.; Danda, Y.; Tezuka, Y. Novel Synthesis of Single- and Double-Cyclic Polystyrenes by Electrostatic Self-Assembly and Covalent Fixation with Telechelics Having Cyclic Ammonium Salt Groups. Macromolecules 2001, 34, 2776–2782. [Google Scholar] [CrossRef]
- Zaldua, N.; Liénard, R.; Josse, T.; Zubitur, M.; Mugica, A.; Iturrospe, A.; Arbe, A.; De Winter, J.; Coulembier, O.; Müller, A.J. Influence of Chain Topology (Cyclic versus Linear) on the Nucleation and Isothermal Crystallization of Poly(l-lactide) and Poly(d-lactide). Macromolecules 2018, 51, 1718–1732. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, J.; Guo, X.; Guo, H.; Zhang, Y.; Wang, X. Exploring the Molecular Origin for the Long-Range Propagation of the Substrate Effect in Unentangled Poly(methyl methacrylate) Films. Polymers 2023, 15, 4655. https://doi.org/10.3390/polym15244655
Xu J, Guo X, Guo H, Zhang Y, Wang X. Exploring the Molecular Origin for the Long-Range Propagation of the Substrate Effect in Unentangled Poly(methyl methacrylate) Films. Polymers. 2023; 15(24):4655. https://doi.org/10.3390/polym15244655
Chicago/Turabian StyleXu, Jianquan, Xiaojin Guo, Hongkai Guo, Yizhi Zhang, and Xinping Wang. 2023. "Exploring the Molecular Origin for the Long-Range Propagation of the Substrate Effect in Unentangled Poly(methyl methacrylate) Films" Polymers 15, no. 24: 4655. https://doi.org/10.3390/polym15244655
APA StyleXu, J., Guo, X., Guo, H., Zhang, Y., & Wang, X. (2023). Exploring the Molecular Origin for the Long-Range Propagation of the Substrate Effect in Unentangled Poly(methyl methacrylate) Films. Polymers, 15(24), 4655. https://doi.org/10.3390/polym15244655