Effect of Injection Parameters on the MRI and Dielectric Properties of Condensation-Cured Silicone
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Specification and Preparation of Silicone Gel
2.2. Injection Setup and Process for Preparation of Samples
2.3. Traditional Method for Preparation of Samples
2.4. Dielectric and MRI Measurements of Condensation-Cured Silicone
2.5. Processing Parameters
2.6. Image Analysis
3. Results and Analysis
3.1. Effects of Processing Parameters on Void Volume Fraction
3.2. Effects of Processing Parameters on MRI Relaxometry Properties
3.3. Effects of Processing Parameters on Dielectric Properties
4. Conclusions and Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Motovilova, E.; Aronowitz, E.; Vincent, J.; Shin, J.; Tan, E.T.; Robb, F.; Taracila, V.; Sneag, D.B.; Dyke, J.P.; Winkler, S.A. Silicone-Based Materials with Tailored MR Relaxation Characteristics for Use in Reduced Coil Visibility and in Tissue-Mimicking Phantom Design. Med. Phys. 2023, 50, 3498–3510. [Google Scholar] [CrossRef] [PubMed]
- McGarry, C.K.; Grattan, L.J.; Ivory, A.M.; Leek, F.; Liney, G.P.; Liu, Y.; Miloro, P.; Rai, R.; Robinson, A.P.; Shih, A.J.; et al. Tissue Mimicking Materials for Imaging and Therapy Phantoms: A Review. Phys. Med. Biol. 2020, 65, 23TR01. [Google Scholar] [CrossRef] [PubMed]
- Tino, R.; Yeo, A.; Leary, M.; Brandt, M.; Kron, T. A Systematic Review on 3D-Printed Imaging and Dosimetry Phantoms in Radiation Therapy. Technol. Cancer Res. Treat. 2019, 18, 153303381987020. [Google Scholar] [CrossRef] [PubMed]
- Crasto, N.; Kirubarajan, A.; Sussman, D. Anthropomorphic Brain Phantoms for Use in MRI Systems: A Systematic Review. Magma 2022, 35, 277–289. [Google Scholar] [CrossRef] [PubMed]
- Tibamoso-Pedraza, G.; Navarro, I.; Dion, P.; Raboisson, M.-J.; Lapierre, C.; Miró, J.; Ratté, S.; Duong, L. Design of Heart Phantoms for Ultrasound Imaging of Ventricular Septal Defects. Int. J. Comput. Assist. Radiol. Surg. 2022, 17, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Cheung, C.L.; Looi, T.; Drake, J.; Kim, P.C.W. Magnetic Resonance Imaging Properties of Multimodality Anthropomorphic Silicone Rubber Phantoms for Validating Surgical Robots and Image Guided Therapy Systems. In Medical Imaging 2012: Image-Guided Procedures, Robotic Interventions, and Modeling; SPIE: Bellingham, WA, USA, 2012; Volume 8316, pp. 597–605. [Google Scholar] [CrossRef]
- Filippou, V.; Tsoumpas, C. Recent Advances on the Development of Phantoms Using 3D Printing for Imaging with CT, MRI, PET, SPECT, and Ultrasound. Med. Phys. 2018, 45, e740–e760. [Google Scholar] [CrossRef] [PubMed]
- Chmarra, M.K.; Hansen, R.; Mårvik, R.; Langø, T. Multimodal Phantom of Liver Tissue. PLoS ONE 2013, 8, e64180. [Google Scholar] [CrossRef] [PubMed]
- Liang, D.Y.; Tentori, A.M.; Dimov, I.K.; Lee, L.P. Systematic Characterization of Degas-Driven Flow for Poly(dimethylsiloxane) Microfluidic Devices. Biomicrofluidics 2011, 5, 024108. [Google Scholar] [CrossRef] [PubMed]
- Alamidi, D.F.; Morgan, A.R.; Hubbard Cristinacce, P.L.; Nordenmark, L.H.; Hockings, P.D.; Lagerstrand, K.M.; Young, S.S.; Naish, J.H.; Waterton, J.C.; Maguire, N.C.; et al. COPD Patients Have Short Lung Magnetic Resonance T 1 Relaxation Time. COPD J. Chronic Obstr. Pulm. Dis. 2016, 13, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Biselli, P.; Grossman, P.R.; Kirkness, J.P.; Patil, S.P.; Smith, P.L.; Schwartz, A.R.; Schneider, H. The Effect of Increased Lung Volume in Chronic Obstructive Pulmonary Disease on Upper Airway Obstruction during Sleep. J. Appl. Physiol. 2015, 119, 266–271. [Google Scholar] [CrossRef] [PubMed]
- Naish, J.H.; Parker, G.J.M.; Beatty, P.C.; Jackson, A.; Young, S.S.; Waterton, J.C.; Taylor, C.J. Improved Quantitative Dynamic Regional Oxygen-Enhanced Pulmonary Imaging Using Image Registration. Magn. Reson. Med. 2005, 54, 464–469. [Google Scholar] [CrossRef] [PubMed]
- McGrath, D.M.; Naish, J.H.; O’Connor, J.P.B.; Hutchinson, C.E.; Waterton, J.C.; Taylor, C.J.; Parker, G.J.M. Oxygen-Induced Changes in Longitudinal Relaxation Times in Skeletal Muscle. Magn. Reson. Imaging 2008, 26, 221–227. [Google Scholar] [CrossRef] [PubMed]
- Dietrich, O.; Gaass, T.; Reiser, M.F. T1 Relaxation Time Constants, Influence of Oxygen, and the Oxygen Transfer Function of the Human Lung at 1.5T-A Meta-Analysis. Eur. J. Radiol. 2017, 86, 252–260. [Google Scholar] [CrossRef] [PubMed]
- Mold MaxTM XLSTM II Product Information. Available online: https://www.smooth-on.com/products/mold-max-xls-ii/ (accessed on 9 August 2023).
- Bense, A.; Lizee, M.; Guillet, T.; Gallot, G. Spatial Distribution of Air Bubbles Created by an Imping Water Jet into a Free Water Surface. Emergent Sci. 2022, 6, 3. [Google Scholar] [CrossRef]
- Profillidis, V.A.; Botzoris, G.N. Pearson Correlation Coefficient—An Overview. ScienceDirect Topics. Available online: https://www.sciencedirect.com/topics/social-sciences/pearson-correlation-coefficient (accessed on 5 August 2023).
- Cho, E.; Chiu, L.L.Y.; Lee, M.; Naila, D.; Sadanand, S.; Waldman, S.D.; Sussman, D. Characterization of Mechanical and Dielectric Properties of Silicone Rubber. Polymers 2021, 13, 1831. [Google Scholar] [CrossRef] [PubMed]
- Seran, E.; Godefroy, M.; Pili, E.; Michielsen, N.; Bondiguel, S. What We Can Learn from Measurements of Air Electric Conductivity in 222Rn-Rich Atmosphere. Earth Space Sci. 2017, 4, 91–106. [Google Scholar] [CrossRef]
- MacKenzie, K.J.D.; Smith, M.E. (Eds.) Chapter 3—Experimental Approaches. In Multinuclear Solid-State NMR of Inorganic Materials; Pergamon Materials Series; Springer: Berlin/Heidelberg, Germany, 2002; Volume 6, pp. 111–197. Available online: https://www.sciencedirect.com/science/article/pii/S1470180402800049 (accessed on 1 December 2023).
Mixed Viscosity [cp] | Specific Gravity [g/cc] | Specific Vol. [cu.in. /lb.] | Pot Life [min] | Cure Time [h] | Shore Hardness | Tensile Strength [psi] | 100% Modulus [psi] | Elongation at Break [%] | Die B Tear Strength [pli] | Shrinkage [in./in.] | |
---|---|---|---|---|---|---|---|---|---|---|---|
Mold Max XLS II | 30,000 | 1.22 | 22.7 | 40 | 24 | 30 | 550 | 95 | 375 | 110 | 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cristant, C.; Kolasangiani, K.; Sadanand, S.; Bougherara, H.; Sussman, D. Effect of Injection Parameters on the MRI and Dielectric Properties of Condensation-Cured Silicone. Polymers 2023, 15, 4670. https://doi.org/10.3390/polym15244670
Cristant C, Kolasangiani K, Sadanand S, Bougherara H, Sussman D. Effect of Injection Parameters on the MRI and Dielectric Properties of Condensation-Cured Silicone. Polymers. 2023; 15(24):4670. https://doi.org/10.3390/polym15244670
Chicago/Turabian StyleCristant, Conor, Kamal Kolasangiani, Siddharth Sadanand, Habiba Bougherara, and Dafna Sussman. 2023. "Effect of Injection Parameters on the MRI and Dielectric Properties of Condensation-Cured Silicone" Polymers 15, no. 24: 4670. https://doi.org/10.3390/polym15244670
APA StyleCristant, C., Kolasangiani, K., Sadanand, S., Bougherara, H., & Sussman, D. (2023). Effect of Injection Parameters on the MRI and Dielectric Properties of Condensation-Cured Silicone. Polymers, 15(24), 4670. https://doi.org/10.3390/polym15244670