Characterization of Mechanical, Electrical and Thermal Properties of Bismaleimide Resins Based on Different Branched Structures
Abstract
:1. Introduction
2. Experimental Method
2.1. Materials
2.2. Sample Preparation
2.3. Performance Testing
3. Results and Discussion
3.1. Mechanical Properties
3.2. Insulate Performance
3.3. Thermal Properties
4. Conclusions
- ➢
- The flexural strength of BMI-ODA exhibited enhancement, and the maximum value of 189 MPa increased by 216%.
- ➢
- The flexural modulus of BMI-FDA increased to 5.2 GPa.
- ➢
- The fracture surface of BMI samples changedfrom brittle fracture to ductile fracture.
- ➢
- Unfortunately, the glass transition temperatures of modified BMI resin were different degrees of decline. However, this did not affect its application in PCB.
- ➢
- Owing to the branched structure, the electric dipole per unit volume was effectively reduced, and the dielectric property was degraded. The dielectric constant of BMI-FDA decreased to 3.0 in an electric field with a frequency of 107 Hz, and the dielectric loss of BMI-ODA decreased to 0.0027 in an electric field with frequency between 102 Hz and 103 Hz.
- ➢
- The breakdown field strength of BMI-MT was raised to 37.9 kV/mm2. The volume resistivity slightly improved, and the maximum value of BMI-MT was 4.66 × 1015 Ω·m.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, X.; Liang, G.; Gu, A.; Yuan, L. Flame retarding Cyanate Ester Resin with Low Curing Temperature, High Thermal Resistance, Outstanding Dielectric Property, and Low Water Absorption for High Frequency and High Speed Printed Circuit Broads, Ind. Eng. Chem. Res. 2015, 54, 1806–1815. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Z.; Zhang, X.; Guo, S. Sandwich-Layered Dielectric Film with Intrinsically Excellent Adhesion, Low Dielectric Constant, and Ultralow Dielectric Loss for a High-Frequency Flexible Printed Circuit, Ind. Eng. Chem. Res. 2021, 60, 11749–11759. [Google Scholar] [CrossRef]
- Chen, C.H.; Jheng, J.K.; Juang, T.Y.; Abu-Omar, M.M.; Lin, C.H. Structure-property relationship of vinyl-terminated oligo (2,6-dimethyl-1,4-phenylene ether)s (OPEs): Seeking an OPE with better properties. Eur. Polym. J. 2019, 117, 94–104. [Google Scholar] [CrossRef]
- Wu, B.; Mao, X.; Xu, Y.; Li, R.; Wu, N.; Tang, X. Improved dielectric and thermal properties of core-shell structured SiO2/polyolefin polymer composites for high-frequency copper clad laminates. Appl. Surf. Sci. 2021, 544, 148911. [Google Scholar] [CrossRef]
- Xiong, X.H.; Ren, R.; Chen, P.; Yu, Q.; Wang, J.; Jia, C.X. Preparation and Properties of Modified Bismaleimide Resins Based on Phthalide-Containing Monomer. J. Appl. Polym. Sci. 2013, 30, 1084–1091. [Google Scholar] [CrossRef]
- Jiang, X.; Chu, F.K.; Zhou, X.; Lin, X.J.; Jia, P.F.; Luo, X.Y.; Hu, Y.; Hu, W.Z. Construction of bismaleimide resin with enhanced flame retardancy and mechanical properties based on a novel DOPO-derived bismaleimide monomer. J. Colloid Interface Sci. 2022, 614, 629–641. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Yao, Z.J.; Zhou, J.T. Mechanical and thermal properties of a novel bismaleimide matrix resin for high-performance composite materials. High Perform. Polym. 2016, 28, 945–952. [Google Scholar] [CrossRef]
- Devi, K.A.; Nair, C.P.R.; Ninan, K.N. Bismaleimide Modified Epoxy-Diallyibisphnol System-Effect of Bismaleimide Nature on Properties. Polym. Polym. Compos. 2009, 17, 141–149. [Google Scholar]
- Su, H.L.; Hsu, J.M.; Pan, J.P.; Chern, C.S. Silica Nanoparticles Modified with Vinyltriethoxysilane and Their Copolymerization with N,N′-Bismaleimide- 4,4′-Diphenylmethan. J Appl. Polym. Sci. 2007, 103, 3600–3608. [Google Scholar] [CrossRef]
- Zhang, Z.W.; Tian, D.; Niu, Z.Q.; Zhou, Y.J.; Hou, X.; Ma, X.Y. Enhanced toughness and lowered dielectric loss of reactive POSS modified bismaleimide resin as well as the silica fiber reinforced composites. Polym. Compos. 2021, 42, 6900–6911. [Google Scholar] [CrossRef]
- Han, Y.; Zhou, H.; Ge, K.K.; Guo, Y.; Liu, F.; Zhao, T. Toughness reinforcement of bismaleimide resin using functionalized carbon nanotubes. High Perform. Polym. 2014, 26, 874–883. [Google Scholar]
- Kirmani, M.H.; Sachdeva, G.; Pandey, R.; Odegerd, G.M.; Liang, R.; Kumar, S. Cure Behavior Changes and Compression of Carbon Nanotubes in Aerospace Grade Bismaleimide-Carbon Nanotube Sheet Nanocomposites. ACS Appl. Nano Mater. 2021, 4, 2476–2485. [Google Scholar] [CrossRef]
- Kirmani, M.H.; Ramachandran, J.; Arias-Monje, P.J.; Gulgunje, P.; Kumar, S. The effects of processing and carbon nanotube type on the impact strength of aerospace-grade bismaleimide based nanocomposites. Polym. Eng. Sci. 2022, 62, 1187–1196. [Google Scholar] [CrossRef]
- Liu, C.; Dong, Y.F.; Lin, Y.; Yan, H.X.; Zhang, W.B.; Bao, Y.; Ma, J.Z. Enhanced mechanical and tribological properties of graphene/bismaleimide composites by using reduced graphene oxide with non-covalent functionalization. Compos. Part B 2019, 165, 491–499. [Google Scholar] [CrossRef]
- Jiang, H.; Ji, Y.Y.; Gan, J.T.; Wang, L. Enhancement of Thermal and Mechanical Properties of Bismaleimide Using a Graphene Oxide Modified by Epoxy Silane. Materials 2020, 13, 3836. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.Y.; Yan, H.X.; Liu, T.Y.; Niu, S. Nanosheets of MoS2 and reduced graphene oxide as hybrid fillers improved the mechanical and tribological properties of bismaleimide composites. Compos. Sci. Technol. 2016, 125, 47–54. [Google Scholar] [CrossRef]
- Yuan, Y.H.; Peng, C.; Chen, D.; Wu, Z.J.; Li, S.C.; Sun, T.; Liu, X. Synthesis of a coupling agent containing polyurethane chain and its influence on improving the dispersion of SiO2 nanoparticles in epoxy/amine thermoset. Compos. Part A 2021, 149, 106573. [Google Scholar] [CrossRef]
- Martin-Gallego, M.; Verdejo, R.; Gestos, A.; Lopez-Manchado, M.A.; Guo, Q.P. Morphology and mechanical properties of nanostructured thermoset/block copolymer blends with carbon nanoparticles. Compos. Part A 2015, 71, 136–143. [Google Scholar] [CrossRef] [Green Version]
- Soares, B.G.; Oliveira, M.D.; Meireles, D.; Sirqueira, A.S.; Mauler, R.S. Dynamically Vulcanized Polypropylene/Nitrile Rubber Blends: The Effect of Peroxide/Bis-Maleimide Curing System and Different Compatibilizing Systems. J. Appl. Polym. Sci. 2008, 110, 3566–3573. [Google Scholar] [CrossRef]
- Xi, J.J.; Yu, Z.Q. Toughening mechanism of rubber reinforced epoxy composites by thermal and microwave curing. J. Appl. Polym. Sci. 2018, 135, 45767. [Google Scholar]
- Mai, K.C.; Huang, J.W.; Zeng, H.M. Studies of the stability of thermoplastic-modified bismaleimide resin. J. Appl. Polym. Sci. 1997, 66, 1965–1970. [Google Scholar] [CrossRef]
- Sun, S.J.; Guo, M.C.; Yi, X.S.; Zhang, Z.G. Phase separation morphology and mode II interlaminar fracture toughness of bismaleimide laminates toughened by thermoplastics with triphenylphosphine oxide group. Sci. China Technol. Sci. 2017, 60, 444–451. [Google Scholar] [CrossRef]
- Chen, Y.F.; Dong, L.; Zhao, H.; Liu, Z.D.; Zhu, L.; Shang, Y.Y. Microstructure, mechanical properties and heat-resistance properties of bismaleimide composites modified synergistically by alumina and two kinds of thermoplastic resins. High Perform. Polym. 2021, 33, 519–527. [Google Scholar] [CrossRef]
- Wang, D.Z.; Wang, X.; Liu, L.Z.; Qu, C.Y.; Liu, C.W.; Yang, H.D. Vinyl-terminated butadiene acrylonitrile improves the toughness, processing window, and thermal stability of bismaleimide resin. High Perform. Polym. 2017, 29, 1199–1208. [Google Scholar] [CrossRef]
- Liu, X.Y.; Yu, Y.F.; Li, S.J. Viscoelastic phase separation in polyethersulfone modified bismaleimide resin. Eur. Polym. J. 2006, 42, 835–842. [Google Scholar] [CrossRef]
- Fang, Q.; Ding, X.M.; Wu, X.Y.; Jiang, L.X. Syntheses of an Aromatic Nitrile Ether Diamine and the Bismaleimide Bearing the Diamine and the Properties of Their Copolymers with 4,4′-Bismaleimidodiphenylmethane0(BMDPM). J. Appl. Polym. Sci. 2002, 85, 1317–1327. [Google Scholar] [CrossRef]
- Liu, S.Y.; Xiong, X.H.; Chen, P.; Ji, Y.R.; Ren, R. Bismaleimide-diamine copolymers containing phthalide cardo structure and their modified BMI resins. High Perform. Polym. 2018, 30, 527–538. [Google Scholar] [CrossRef]
- Qu, C.Y.; Zhao, L.W.; Wang, D.Z.; Li, H.F.; Xiao, W.B.; Yue, C.E. Bis [4-(4-maleimidephen-oxy)phenyl]propane/N,N-4,4′-Bismaleimidodiphenylmethyene Blend Modified with Diallyl Bisphenol A. J. Appl. Polym. Sci. 2014, 131, 12. [Google Scholar] [CrossRef]
- Liu, Y.L.; Tsai, S.H.; Wu, C.S.; Jeng, R.J. Preparation and characterization of hyperbranched polyaspartimides from bismaleimides and triamines. J. Polym. Sci. Part A Polym. Chem. 2004, 42, 5921–5928. [Google Scholar] [CrossRef]
- Qin, H.H.; Mather, P.T.; Naek, J.B.; Tan, L.S. Modification of bisphenol-A based bismaleimide resin (BPA-BMI) with an allyl-terminated hyperbranched polyimide (AT-PAEKI). Polymer 2006, 47, 2813–2821. [Google Scholar] [CrossRef]
- Shi, J.H.; Zhang, X.R.; Weng, L.; Sun, X.; Zhu, P.W.; Wang, Q.Y. High toughness and excellent electrical performance bismaleimide resin modified by hyperbranched unsaturated polyester of flexible aliphatic side chains. High Perform. Polym. 2021, 33, 695–703. [Google Scholar] [CrossRef]
- Han, S.H.; Li, Y.N.; Hao, F.Y.; Zhou, H.; Qi, S.L.; Tian, G.F.; Wu, D.Z. Ultra-low dielectric constant polyimides: Combined efforts of fluorination and micro-branched crosslink structure. Eur. Polym. J. 2021, 143, 110206. [Google Scholar] [CrossRef]
- Jiang, Z.J.; Yuan, L.; Liang, G.Z.; Gu, A.J. Unique liquid multi-maleimide terminated branched polysiloxane and its flame retarding bismaleimide resin with outstanding thermal and mechanical properties. Polym. Degrad. Stab. 2015, 121, 30–41. [Google Scholar] [CrossRef]
- Lee, J.; Yoo, S.; Kim, D.; Kim, Y.H.; Park, S.; Park, N.K.; So, Y.; Kim, J.; Park, J.; Ko, M.J.; et al. Intrinsic Low-Dielectric Constant and Low-Dielectric Loss Aliphatic-Aromatic Copolyimides: The Effect of Chemical Structure. Mater. Today Commun. 2022, 33, 104479. [Google Scholar] [CrossRef]
- Yang, J.P.; Chen, Z.K.; Yang, G.; Fu, S.Y.; Ye, L. Simultaneous improvements in the cryogenic tensile strength, ductility and impact strength of epoxy resins by a hyperbranched polymer. Polymer 2008, 49, 3168–3175. [Google Scholar] [CrossRef]
- Gao, F.; Zhang, X.R.; Weng, L.; Chen, Y.J.; Shi, J.H. High toughness, thermal resistance and excellent dielectric properties phenolic epoxy vinyl ester resin modified by hyperbranched polyimide. Pigment. Resin Technol. 2021, 51, 441–448. [Google Scholar] [CrossRef]
- Lizundia, E.; Serna, I.; Axpe, E.; Vilas, J.L. Free-volume effects on the thermomechanical performance of epoxy–SiO2 nanocomposites. J. Appl. Polym. Sci. 2017, 134, 45216. [Google Scholar] [CrossRef]
Sample | BMI resin | ODA/g | FDA/g | MT/g |
---|---|---|---|---|
BMI-0 | 100 | |||
BMI-ODA | 100 | 13.9 | ||
BMI-FDA | 100 | 24.3 | ||
BMI-MT | 100 | 14.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, H.; Shi, J.; Zhang, X.; Yang, Z.; Weng, L.; Wang, Q.; Yan, S.; Yu, L.; Yang, J. Characterization of Mechanical, Electrical and Thermal Properties of Bismaleimide Resins Based on Different Branched Structures. Polymers 2023, 15, 592. https://doi.org/10.3390/polym15030592
Cai H, Shi J, Zhang X, Yang Z, Weng L, Wang Q, Yan S, Yu L, Yang J. Characterization of Mechanical, Electrical and Thermal Properties of Bismaleimide Resins Based on Different Branched Structures. Polymers. 2023; 15(3):592. https://doi.org/10.3390/polym15030592
Chicago/Turabian StyleCai, Haihui, Jiahao Shi, Xiaorui Zhang, Zhou Yang, Ling Weng, Qingye Wang, Shaohui Yan, Lida Yu, and Junlong Yang. 2023. "Characterization of Mechanical, Electrical and Thermal Properties of Bismaleimide Resins Based on Different Branched Structures" Polymers 15, no. 3: 592. https://doi.org/10.3390/polym15030592
APA StyleCai, H., Shi, J., Zhang, X., Yang, Z., Weng, L., Wang, Q., Yan, S., Yu, L., & Yang, J. (2023). Characterization of Mechanical, Electrical and Thermal Properties of Bismaleimide Resins Based on Different Branched Structures. Polymers, 15(3), 592. https://doi.org/10.3390/polym15030592