The Effect of Alginate Concentration on Crystallinity, Morphology, and Thermal Stability Properties of Hydroxyapatite/Alginate Composite
Abstract
:1. Introduction
No | Komposit | Obat | Ref. |
---|---|---|---|
1 | CS-ALG | Metronidazole | [21] |
2 | CNT-ALG | Theophylline | [22] |
3 | core-shell CS-ALG | Bovine serum albumin | [23] |
4 | HAp-ALG | Ofloxacin | [24] |
5 | MMT-ALG | Irinotecan | [25] |
6 | MMT-ALG | Venlafaxine HCl | [26] |
7 | ALG-PVP- HAp | Diclofenac sodium | [27] |
8 | β-TCP-ALG | Vancomycin | [28] |
2. Materials and Methods
2.1. Materials
2.2. Fabrication of HAp/Alg Composites
2.3. Characterizations
3. Results and Discussion
3.1. The XRF Analysis
3.2. The Structural Analysis
3.3. The FTIR Analysis
3.4. Surface Morphologies and Chemical Compositions
3.5. Thermal Stability
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mobika, J.; Rajkumar, M.; Nithya Priya, V.; Linto Sibi, S.P. Effect of Chitosan Reinforcement on Properties of Hydroxyapatite/Silk Fibroin Composite for Biomedical Application. Phys. E Low-Dimens. Syst. Nanostructures 2021, 131, 114734. [Google Scholar] [CrossRef]
- Adhikari, J.; Perwez, M.S.; Das, A.; Saha, P. Development of Hydroxyapatite Reinforced Alginate–Chitosan Based Printable Biomaterial-Ink. Nano-Struct. Nano-Objects 2021, 25, 100630. [Google Scholar] [CrossRef]
- Wulandari, W.; Wellia, D.V.; Jamarun, N. The Effect of PH on the Synthesis and Characterization Hydroxyapatite from Bamboo Shell (Sollen Spp.) with Emulsion Method. J. Appl. Chem. 2021, 10, 872–879. [Google Scholar]
- Azis, Y.; Jamarun, N.; Arief, S.; Nur, H. Facile Synthesis of Hydroxyapatite Particles from Cockle Shells (Anadaragranosa) by Hydrothermal Method. Orient. J. Chem. 2015, 31, 1099–1105. [Google Scholar] [CrossRef]
- Jamarun, N.; Azharman, Z.; Arief, S.; Sari, T.P.; Asril, A.; Elfina, S. Effect of Temperature on Synthesis of Hydroxyapatite from Limestone. Rasayan J. Chem. 2015, 8, 133–137. [Google Scholar]
- Layrolle, P.; Ito, A.; Tateishi, T. Sol-Gel Synthesis of Amorphous Calcium Phosphate and Sintering into Microporous Hydroxyapatite Bioceramics. J. Am. Ceram. Soc. 2005, 81, 1421–1428. [Google Scholar] [CrossRef]
- Shirkhanzadeh, M. Direct Formation of Nanophase Hydroxyapatite on Cathodically Polarized Electrodes. J. Mater. Sci. Mater. Med. 1998, 9, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.R.; Kalainathan, S. Growth and Characterization of Nano-Crystalline Hydroxyapatite at Physiological Conditions. Cryst. Res. Technol. 2008, 43, 640–644. [Google Scholar] [CrossRef]
- Türk, S.; Altınsoy; ÇelebiEfe, G.; Ipek, M.; Özacar, M.; Bindal, C. Microwave–Assisted Biomimetic Synthesis of Hydroxyapatite Using Different Sources of Calcium. Mater. Sci. Eng. C 2017, 76, 528–535. [Google Scholar] [CrossRef]
- Minaev, N.V.; Minaeva, S.A.; Sherstneva, A.A.; Chernenok, T.V.; Sedova, Y.K.; Minaeva, E.D.; Yusupov, V.I.; Akopova, T.A.; Timashev, P.S.; Demina, T.S. Controlled Structure of Polyester / Hydroxyapatite Microparticles Fabricated via Pickering Emulsion Approach. Polymers 2022, 14, 4309. [Google Scholar] [CrossRef]
- Bose, S.; Saha, S.K. Synthesis and Characterization of Hydroxyapatite Nanopowders by Emulsion Technique. Chem. Mater. 2003, 23, 4464–4469. [Google Scholar] [CrossRef]
- Ocando, C.; Dinescu, S.; Samoila, I.; Daniela Ghitulica, C.; Cucuruz, A.; Costache, M.; Averous, L. Fabrication and Properties of Alginate-Hydroxyapatite Biocomposites as Efficient Biomaterials for Bone Regeneration. Eur. Polym. J. 2021, 151, 110444. [Google Scholar] [CrossRef]
- Jariya, S.A.I.; Padmanabhan, V.P.; Kulandaivelu, R.; Prakash, N.; Mohammad, F.; Al-Lohedan, H.A.; Paiman, S.; Schirhagl, R.; Hossain, M.A.M.; Sagadevan, S. Drug Delivery and Antimicrobial Studies of Chitosan-Alginate Based Hydroxyapatite Bioscaffolds Formed by the Casein Micelle Assisted Synthesis. Mater. Chem. Phys. 2021, 272, 125019. [Google Scholar] [CrossRef]
- Zheng, Y.; Wang, L.; Bai, X.; Xiao, Y.; Che, J. Bio-Inspired Composite by Hydroxyapatite Mineralization on (Bis)Phosphonate-Modified Cellulose-Alginate Scaffold for Bone Tissue Engineering. Colloids Surf. A Physicochem. Eng. Asp. 2022, 635, 127958. [Google Scholar] [CrossRef]
- Salim, S.A.; Loutfy, S.A.; El-Fakharany, E.M.; Taha, T.H.; Hussien, Y.; Kamoun, E.A. Influence of Chitosan and Hydroxyapatite Incorporation on Properties of Electrospun PVA/HA Nanofibrous Mats for Bone Tissue Regeneration: Nanofibers Optimization and in-Vitro Assessment. J. Drug Deliv. Sci. Technol. 2021, 62, 102417. [Google Scholar] [CrossRef]
- Sikkema, R.; Keohan, B.; Zhitomirsky, I. Alginic Acid Polymer-Hydroxyapatite Composites for Bone Tissue Engineering. Polymers 2021, 13, 3070. [Google Scholar] [CrossRef]
- Rahyussalim, A.J.; Aprilya, D.; Handidwiono, R.; Whulanza, Y.; Ramahdita, G.; Kurniawati, T. The Use of 3D Polylactic Acid Scaffolds with Hydroxyapatite/Alginate Composite Injection and Mesenchymal Stem Cells as Laminoplasty Spacers in Rabbits. Polymers 2022, 14, 3292. [Google Scholar] [CrossRef]
- Hasnain, M.S.; Ahmed, S.A.; Behera, A.; Alkahtani, S.; Nayak, A.K. Inorganic Materials–Alginate Composites in Drug Delivery; Academic Press: Cambridge, MA, USA, 2020; ISBN 9780128176405. [Google Scholar]
- Sekar, S.; Eswaran, S.; Kolanthai, E.; Rajaram, V.; Kalkura, N. Materials Today: Proceedings Enhanced Stability of Hydroxyapatite / Sodium Alginate Nanocomposite for Effective Fluoride Adsorption. Mater. Today Proc. 2022, 58, 909–917. [Google Scholar] [CrossRef]
- Sukhodub, L.F.; Sukhodub, L.B.; Litsis, O.; Prylutskyy, Y. Synthesis and Characterization of Hydroxyapatite-Alginate Nanostructured Composites for the Controlled Drug Release. Mater. Chem. Phys. 2018, 217, 228–234. [Google Scholar] [CrossRef]
- Javadzadeh, Y.; Hamedeyazdan, S.; Adibkia, K.; Kiafar, F.; Zarrintan, M.H.; Barzegar-Jalali, M. Evaluation of Drug Release Kinetics and Physico-Chemical Characteristics of Metronidazole Floating Beads Based on Calcium Silicate and Gas-Forming Agents. Pharm. Dev. Technol. 2009, 15, 329–338. [Google Scholar] [CrossRef]
- Zhang, X.; Hui, Z.; Wan, D.; Huang, H.; Huang, J.; Yuan, H.; Yu, J. Alginate Microsphere Filled with Carbon Nanotube as Drug Carrier. Int. J. Biol. Macromol. 2010, 47, 389–395. [Google Scholar] [CrossRef]
- Wu, C.; Fan, W.; Gelinsky, M.; Xiao, Y.; Chang, J.; Friis, T.; Cuniberti, G. In Situ Preparation and Protein Delivery of Silicate-Alginate Composite Microspheres with Core-Shell Structure. J. R. Soc. Interface 2011, 8, 1804–1814. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roul, J.; Mohapatra, R.; Kumar Sahoo, S. QR Code for Mobile Users Preparation, Characterization and Drug Delivery Behavior of Novel Biopolymer/Hydroxyapatite Nanocomposite Beads. Asian J. Biomed. Pharm. Sci. 2013, 3, 33–38. [Google Scholar]
- Iliescu, R.I.; Andronescu, E.; Ghitulica, C.D.; Voicu, G.; Ficai, A.; Hoteteu, M. Montmorillonite-Alginate Nanocomposite as a Drug Delivery System—Incorporation and in Vitro Release of Irinotecan. Int. J. Pharm. 2014, 463, 184–192. [Google Scholar] [CrossRef] [PubMed]
- Jain, S.; Datta, M. Montmorillonite-Alginate Microspheres as a Delivery Vehicle for Oral Extended Release of Venlafaxine Hydrochloride. J. Drug Deliv. Sci. Technol. 2016, 33, 149–156. [Google Scholar] [CrossRef]
- Hasnain, M.S.; Nayak, A.K.; Singh, M.; Tabish, M.; Ansari, M.T.; Ara, T.J. Alginate-Based Bipolymeric-Nanobioceramic Composite Matrices for Sustained Drug Release. Int. J. Biol. Macromol. 2016, 83, 71–77. [Google Scholar] [CrossRef]
- Seidenstuecker, M.; Ruehe, J.; Suedkamp, N.P.; Serr, A.; Wittmer, A.; Bohner, M.; Bernstein, A.; Mayr, H.O. Composite Material Consisting of Microporous β-TCP Ceramic and Alginate for Delayed Release of Antibiotics. Acta Biomater. 2017, 51, 433–446. [Google Scholar] [CrossRef]
- Abdulkareem, M.H.; Abdalsalam, A.H.; Bohan, A.J. Influence of Chitosan on the Antibacterial Activity of Composite Coating (PEEK /HAp) Fabricated by Electrophoretic Deposition. Prog. Org. Coat. 2019, 130, 251–259. [Google Scholar] [CrossRef]
- Wan, F.; Ping, H.; Wang, W.; Zou, Z.; Xie, H.; Su, B.L.; Liu, D.; Fu, Z. Hydroxyapatite-Reinforced Alginate Fibers with Bioinspired Dually Aligned Architectures. Carbohydr. Polym. 2021, 267, 118167. [Google Scholar] [CrossRef]
- Ali, A.; Hasan, A.; Negi, Y.S. Effect of Carbon Based Fillers on Xylan/Chitosan/Nano-HAp Composite Matrix for Bone Tissue Engineering Application. Int. J. Biol. Macromol. 2022, 197, 1–11. [Google Scholar] [CrossRef]
- Prekajski Đorđević, M.; Maletaškić, J.; Stanković, N.; Babić, B.; Yoshida, K.; Yano, T.; Matović, B. In-Situ Immobilization of Sr Radioactive Isotope Using Nanocrystalline Hydroxyapatite. Ceram. Int. 2018, 44, 1771–1777. [Google Scholar] [CrossRef]
- Sirajudheen, P.; Karthikeyan, P.; Vigneshwaran, S.; Basheer, M.C.; Meenakshi, S. Complex Interior and Surface Modified Alginate Reinforced Reduced Graphene Oxide-Hydroxyapatite Hybrids: Removal of Toxic Azo Dyes from the Aqueous Solution. Int. J. Biol. Macromol. 2021, 175, 361–371. [Google Scholar] [CrossRef]
- Charlena; Bikharudin, A.; Wahyudi, S.T. Erizal Synthesis and Characterization of Hydroxyapatite-Collagen-Chitosan (Ha/Col/Chi) Composite by Using Ex-Situ Wet Precipitation Method. Rasayan J. Chem. 2017, 10, 766–770. [Google Scholar] [CrossRef]
- Bera, M.; Gupta, P.; Maji, P.K. Facile One-Pot Synthesis of Graphene Oxide by Sonication Assisted Mechanochemical Approach and Its Surface Chemistry. J. Nanosci. Nanotechnol. 2018, 18, 902–912. [Google Scholar] [CrossRef] [PubMed]
- Hoang, V.; Doan, M.; Mondal, S.; Mai, T.; Vo, T.; Duong, C.; Dat, D.; Nguyen, V.T.; Park, S.; Choi, J.; et al. Colloids and Surfaces B: Biointerfaces Fluorescence Conjugated Nanostructured Cobalt-Doped Hydroxyapatite Platform for Imaging-Guided Drug Delivery Application. Colloids Surf. B Biointerfaces 2022, 214, 112458. [Google Scholar] [CrossRef]
- Vázquez, M.S.; Estevez, O.; Ascencio-Aguirre, F.; Mendoza-Cruz, R.; Bazán-Díaz, L.; Zorrila, C.; Herrera-Becerra, R. Tannic Acid Assisted Synthesis of Flake-like Hydroxyapatite Nanostructures at Room Temperature. Appl. Phys. A Mater. Sci. Process. 2016, 122, 1–7. [Google Scholar] [CrossRef]
- Akter Jahan, S.; Mollah, M.Y.A.; Ahmed, S.; Abu Bin Hasan Susan, M. Nano-Hydroxyapatite Prepared from Eggshell-Derived Calcium-Precursor Using Reverse Microemulsions as Nanoreactor. Mater. Today Proc. 2017, 4, 5497–5506. [Google Scholar] [CrossRef]
Sample | 2θ (Degree) (211) | FWHM | Average Crystal Size (nm) |
---|---|---|---|
HAp | 31.80 | 0.74009 | 4.80 |
HAp/Alg 9.10% | 31.75 | 0.97988 | 5.90 |
HAp/Alg 16.7% | 31.99 | 1.42138 | 5.99 |
HAp/Alg 23.1% | 32.18 | 1.66924 | 4.28 |
HAp/Alg 28.6% | 32.08 | 1.57521 | 5.23 |
HAp/Alg 33.3% | 32.03 | 1.54234 | 5.60 |
Functional Group and Mode Vibration | Wavenumber (cm-1) | ||||||
---|---|---|---|---|---|---|---|
Alg | HAp | HAp/Alg 9.1% | HAp/Alg 16.7% | HAp/Alg 23.1% | HAp/Alg 28.6% | HAp/Alg 33.3% | |
Phosphate (PO43-) | |||||||
v1 symmetric stretching | - | 963 | 963 | 963 | 963 | 963 | 963 |
v2 bending | - | 438.56 | 467.22 | 477.64 | 452.55 | 476.00 | 461.19 |
v3 asymmetric stretching | - | 1023.51 | 1022.49 | 1022.82 | 1022.18 | 1022.33 | 1022.34 |
v4 bending | - | 560.64 and 603 | 559.5 and 603 | 558.67 and 603 | 558.93 and 603 | 558.74 and 603 | 559.05 and 603 |
O–H stretching | - | 3359 | 3364.37 | 3358.43 | 3357.47 | 3360.84 | 3348.93 |
C=C stretching | 1640 | 1638.96 | 1637.35 | 1633.32 | 1629.33 | 1629.39 | |
O–H of the carboxyl group | 789 | - | 789.00 | 788.00 | 787.74 | 788.24 | 787.28 |
COO symmetric stretching | 1421 | - | 1455 | 1446.5 | 1443 | 1424 | 1423 |
COO asymmetric stretching | 1613 | - | - | - | - | - | - |
C–H stretching | 2173 | 2164.50 | 2164.11 | 2175 | 2174 | 2186 | 2175.34 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wulandari, W.; Islami, D.M.; Wellia, D.V.; Emriadi, E.; Sisca, V.; Jamarun, N. The Effect of Alginate Concentration on Crystallinity, Morphology, and Thermal Stability Properties of Hydroxyapatite/Alginate Composite. Polymers 2023, 15, 614. https://doi.org/10.3390/polym15030614
Wulandari W, Islami DM, Wellia DV, Emriadi E, Sisca V, Jamarun N. The Effect of Alginate Concentration on Crystallinity, Morphology, and Thermal Stability Properties of Hydroxyapatite/Alginate Composite. Polymers. 2023; 15(3):614. https://doi.org/10.3390/polym15030614
Chicago/Turabian StyleWulandari, Wulandari, Dini Muthiah Islami, Diana Vanda Wellia, Emriadi Emriadi, Vivi Sisca, and Novesar Jamarun. 2023. "The Effect of Alginate Concentration on Crystallinity, Morphology, and Thermal Stability Properties of Hydroxyapatite/Alginate Composite" Polymers 15, no. 3: 614. https://doi.org/10.3390/polym15030614
APA StyleWulandari, W., Islami, D. M., Wellia, D. V., Emriadi, E., Sisca, V., & Jamarun, N. (2023). The Effect of Alginate Concentration on Crystallinity, Morphology, and Thermal Stability Properties of Hydroxyapatite/Alginate Composite. Polymers, 15(3), 614. https://doi.org/10.3390/polym15030614