Extraction and Characterization of Cocoa Bean Shell Cell Wall Polysaccharides
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Cocoa Bean Shells
2.3. Proximate Compositional Analysis of Cocoa Bean Shells
2.4. Isolation of Cell Wall Materials from Cocoa Bean Shells
2.5. Alkaline Extraction of Cocoa Bean Shell Cell Wall Material Polysaccharides
2.6. Structural Characterization of Carbohydrates
2.6.1. Determination of Total Neutral Sugars and Uronic Acid Contents
2.6.2. Monosaccharide Profile
2.6.3. Molecular Weight Distribution
2.7. Extraction and Determination of Polyphenols Content
2.8. Determination of Phenolic Compounds via LC-MS
2.9. Prebiotic Activity Assay
2.10. Determination of Short Chain Fatty Acid Catabolites
2.11. Statistical Analysis
3. Results and Discussion
3.1. Characterizaton of Cocoa Bean Shells and Its Cell Wall Material
3.2. Polyphenolic Profile of Cocoa Bean Shells and Its Cell Wall Material
3.3. Extraction of Cell Wall Polysaccharides and Their Characterization
3.4. Prebiotic Activity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Soeharsono; Amin, M.; Cahyono, A. The Use of Cocoa Bean Waste as a Supplement in Male Bali Cattle Feeding. In Proceedings of the International Seminar on Livestock Production and Veterinary Technology, West Java, Indonesia, 1 March 2017. [Google Scholar]
- Adeyina, A.; Apata, D.; Annongu, A.; Olatunde, O.; Alli, O.; Okupke, K.M. Performance and Physiological Response of Weaner Rabbits Fed Hot Water Treated Cocoa Bean Shell Based Diet. Res. J. Vet. Sci. 2010, 5, 53–57. [Google Scholar]
- Bernaert, H.; Ruysscher, I.D. Process of Producing Cocoa Shell Powder. U.S. Patent Application No. US9375024B2, 28 June 2016. [Google Scholar]
- Martínez-Cervera, S.; Salvador, A.; Muguerza, B.; Moulay, L.; Fiszman, S.M. Cocoa Fibre and Its Application as a Fat Replacer in Chocolate Muffins. LWT-Food Sci. Technol. 2011, 44, 729–736. [Google Scholar] [CrossRef]
- Choi, J.; Kim, N.; Choi, H.Y.; Han, Y.S. Effect of Cacao Bean Husk Powder on the Quality Properties of Pork Sausages. Food Sci. Anim. Resour. 2019, 39, 742–755. [Google Scholar] [CrossRef]
- Grillo, G.; Boffa, L.; Binello, A.; Mantegna, S.; Cravotto, G.; Chemat, F.; Dizhbite, T.; Lauberte, L.; Telysheva, G. Cocoa Bean Shell Waste Valorisation; Extraction from Lab to Pilot-Scale Cavitational Reactors. Food Res. Int. 2019, 115, 200–208. [Google Scholar] [CrossRef]
- Redgwell, R.J.; Hansen, C.E. Isolation and Characterisation of Cell Wall Polysaccharides from Cocoa (Theobroma cacao L.) Beans. Planta 2000, 210, 823–830. [Google Scholar] [CrossRef]
- Redgwell, R.J.; Trovato, V.; Merinat, S.; Curti, D.; Hediger, S.; Manez, A. Dietary Fibre in Cocoa Shell: Characterisation of Component Polysaccharides. Food Chem. 2003, 81, 103–112. [Google Scholar] [CrossRef]
- Lecumberri, E.; Mateos, R.; Izquierdo-Pulido, M.; Rupérez, P.; Goya, L.; Bravo, L. Dietary Fibre Composition, Antioxidant Capacity and Physico-Chemical Properties of a Fibre-Rich Product from Cocoa (Theobroma cacao L.). Food Chem. 2007, 104, 948–954. [Google Scholar] [CrossRef]
- Vojvodić, A.; Komes, D.; Vovk, I.; Belščak-Cvitanović, A.; Bušić, A. Compositional Evaluation of Selected Agro-Industrial Wastes as Valuable Sources for the Recovery of Complex Carbohydrates. Food Res. Int. 2016, 89, 565–573. [Google Scholar] [CrossRef]
- Khodaei, N.; Karboune, S. Extraction and Structural Characterisation of Rhamnogalacturonan I-Type Pectic Polysaccharides from Potato Cell Wall. Food Chem. 2013, 139, 617–623. [Google Scholar] [CrossRef] [PubMed]
- Spadoni Andreani, E.; Karboune, S. Comparison of Enzymatic and Microwave-assisted Alkaline Extraction Approaches for the Generation of Oligosaccharides from American Cranberry (Vaccinium macrocarpon) Pomace. J. Food Sci. 2020, 85, 2443–2451. [Google Scholar] [CrossRef] [PubMed]
- Aguiló-Aguayo, I.; Walton, J.; Viñas, I.; Tiwari, B.K. Ultrasound Assisted Extraction of Polysaccharides from Mushroom By-Products. LWT 2017, 77, 92–99. [Google Scholar] [CrossRef]
- Spadoni Andreani, E.; Karboune, S.; Liu, L. Extraction and Characterization of Cell Wall Polysaccharides from Cranberry (Vaccinium macrocarpon Var. Stevens) Pomace. Carbohydr. Polym. 2021, 267, 118212. [Google Scholar] [CrossRef]
- Zhu, J.; Guo, F.; Ma, C.; Wang, H.; Wen, J.; Yu, Y. The Alkaline Extraction Efficiency of Bamboo Cell Walls Is Related to Their Structural Differences on Both Anatomical and Molecular Level. Ind. Crops Prod. 2022, 178, 114628. [Google Scholar] [CrossRef]
- Li, M.; Heckwolf, M.; Crowe, J.D.; Williams, D.L.; Magee, T.D.; Kaeppler, S.M.; de Leon, N.; Hodge, D.B. Cell-Wall Properties Contributing to Improved Deconstruction by Alkaline Pre-Treatment and Enzymatic Hydrolysis in Diverse Maize (Zea mays L.) Lines. EXBOTJ 2015, 66, 4305–4315. [Google Scholar] [CrossRef]
- Bonnina, E.; Brunel, M.; Gouy, Y.; Lesage-Meessen, L.; Asther, M.; Thibault, J.F. Aspergillus Niger I-1472 and Pycnoporus Cinnabarinus MUCL39533, selected for the Biotransformation of Ferulic Acid to Vanillin, Are Also Able to Produce Cell Wall Polysaccharide-Degrading Enzymes and Feruloyl Esterases. Enzym. Microb. Technol. 2001, 28, 70–80. [Google Scholar] [CrossRef]
- Zykwinska, A.; Rondeau-Mouro, C.; Garnier, C.; Thibault, J.F.; Ralet, M.C. Alkaline Extractability of Pectic Arabinan and Galactan and Their Mobility in Sugar Beet and Potato Cell Walls. Carbohydr. Polym. 2006, 65, 510–520. [Google Scholar] [CrossRef]
- Spadoni Andreani, E.; Li, M.; Ronholm, J.; Karboune, S. Feruloylation of Polysaccharides from Cranberry and Characterization of Their Prebiotic Properties. Food Biosci. 2021, 42, 101071. [Google Scholar] [CrossRef]
- Farooq, U.; Liu, X.; Zhang, H. Enhancement of Short Chain Fatty Acid Production by Co-Cultures of Probiotics Fermentation with Pearl Millet (Pennisetum glaucum) Fibre Fractions. J. Pure Appl. Microbiol. 2017, 11, 2031–2038. [Google Scholar] [CrossRef]
- Islamova, Z.I.; Ogai, D.K.; Abramenko, O.I.; Lim, A.L.; Abduazimov, B.B.; Malikova, M.K.; Rakhmanberdyeva, R.K.; Khushbaktova, Z.A.; Syrov, V.N. Comparative Assessment of the Prebiotic Activity of Some Pectin Polysaccharides. Pharm. Chem. J. 2017, 51, 288–291. [Google Scholar] [CrossRef]
- Mohd Nor, N.A.N.; Abbasiliasi, S.; Marikkar, M.N.; Ariff, A.; Amid, M.; Lamasudin, D.U.; Abdul Manap, M.Y.; Mustafa, S. Defatted Coconut Residue Crude Polysaccharides as Potential Prebiotics: Study of Their Effects on Proliferation and Acidifying Activity of Probiotics in Vitro. J. Food Sci. Technol. 2017, 54, 164–173. [Google Scholar] [CrossRef]
- Romanens, E.; Näf, R.; Lobmaier, T.; Pedan, V.; Leischtfeld, S.F.; Meile, L.; Schwenninger, S.M. A Lab-Scale Model System for Cocoa Bean Fermentation. Appl. Microbiol. Biotechnol. 2018, 102, 3349–3362. [Google Scholar] [CrossRef]
- Saint-Denis, T.; Goupy, J. Optimization of a Nitrogen Analyser Based on the Dumas Method. Anal. Chim. Acta 2004, 515, 191–198. [Google Scholar] [CrossRef]
- Latimer, G.W.; AOAC International (Eds.) Official Methods of Analysis of AOAC International, 20th ed.; AOAC International: Gaithersburg, MD, USA, 2016; ISBN 978-0-935584-87-5. [Google Scholar]
- Blumenkrantz, N.; Asboe-Hansen, G. New Method for Quantitative Determination of Uronic Acids. Anal. Biochem. 1973, 54, 484–489. [Google Scholar] [CrossRef] [PubMed]
- DuBois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric Method for Determination of Sugars and Related Substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. [14] Analysis of Total Phenols and Other Oxidation Substrates and Antioxidants by Means of Folin-Ciocalteu Reagent. In Methods in Enzymology; Elsevier: Amsterdam, The Netherlands, 1999; Volume 299, pp. 152–178. ISBN 978-0-12-182200-2. [Google Scholar]
- Yang, J.; Martínez, I.; Walter, J.; Keshavarzian, A.; Rose, D.J. In Vitro Characterization of the Impact of Selected Dietary Fibers on Fecal Microbiota Composition and Short Chain Fatty Acid Production. Anaerobe 2013, 23, 74–81. [Google Scholar] [CrossRef] [PubMed]
- Fakhlaei, R.; Rozzamri, A.; Hussain, N. Composition, Color and Antioxidant Properties of Cocoa Shell at Different Roasting Temperatures. Food Res. 2019, 4, 585–593. [Google Scholar] [CrossRef] [PubMed]
- Agus, B.A.P.; Mohamad, N.N.; Hussain, N. Composition of Unfermented, Unroasted, Roasted Cocoa Beans and Cocoa Shells from Peninsular Malaysia. Food Meas. 2018, 12, 2581–2589. [Google Scholar] [CrossRef]
- Martínez, R.; Torres, P.; Meneses, M.A.; Figueroa, J.G.; Pérez-Álvarez, J.A.; Viuda-Martos, M. Chemical, Technological and in Vitro Antioxidant Properties of Cocoa (Theobroma cacao L.) Co-Products. Food Res. 2012, 49, 39–45. [Google Scholar] [CrossRef]
- Mellinas, A.C.; Jiménez, A.; Garrigós, M.C. Optimization of Microwave-Assisted Extraction of Cocoa Bean Shell Waste and Evaluation of Its Antioxidant, Physicochemical and Functional Properties. LWT 2020, 127, 109361. [Google Scholar] [CrossRef]
- Okiyama, D.C.G.; Navarro, S.L.B.; Rodrigues, C.E.C. Cocoa Shell and Its Compounds: Applications in the Food Industry. Trends Food Sci. Technol. 2017, 63, 103–112. [Google Scholar] [CrossRef]
- Adeyeye, E.I.; Akinyeye, R.O.; Ogunlade, I.; Olaofe, O.; Boluwade, J.O. Effect of Farm and Industrial Processing on the Amino Acid Profile of Cocoa Beans. Food Chem. 2010, 118, 357–363. [Google Scholar] [CrossRef]
- Younes, A.; Li, M.; Karboune, S. Cocoa Bean Shells: A Review into the Chemical Profile, the Bioactivity and the Biotransformation to Enhance Their Potential Applications in Foods. Crit. Rev. Food Sci. Nutr. 2022, 2022, 2065659. [Google Scholar] [CrossRef] [PubMed]
- El-Saied, H.M.; Morsi, M.K.; Amer, M.M.A. Composition of Cocoa Shell Fat as Related to Cocoa Butter. Z. Ernährungswiss 1981, 20, 145–151. [Google Scholar] [CrossRef]
- Chau, C.F.; Huang, Y.L. Characterization of Passion Fruit Seed Fibres—A Potential Fibre Source. Food Chem. 2004, 85, 189–194. [Google Scholar] [CrossRef]
- Sudha, M.L.; Baskaran, V.; Leelavathi, K. Apple Pomace as a Source of Dietary Fiber and Polyphenols and Its Effect on the Rheological Characteristics and Cake Making. Food Chem. 2007, 104, 686–692. [Google Scholar] [CrossRef]
- Martín-Cabrejas, M.A.; Valiente, C.; Esteban, R.M.; Mollá, E.; Waldron, K. Cocoa Hull: A Potential Source of Dietary Fibre. J. Sci. Food Agric. 1994, 66, 307–311. [Google Scholar] [CrossRef]
- Xiao, M.; Yi, J.; Bi, J.; Zhao, Y.; Peng, J.; Hou, C.; Lyu, J.; Zhou, M. Modification of Cell Wall Polysaccharides during Drying Process Affects Texture Properties of Apple Chips. J. Food Qual. 2018, 2018, 4510242. [Google Scholar] [CrossRef]
- Andres-Lacueva, C.; Monagas, M.; Khan, N.; Izquierdo-Pulido, M.; Urpi-Sarda, M.; Permanyer, J.; Lamuela-Raventós, R.M. Flavanol and Flavonol Contents of Cocoa Powder Products: Influence of the Manufacturing Process. J. Agric. Food Chem. 2008, 56, 3111–3117. [Google Scholar] [CrossRef]
- Forsyth, W.G.C.; Quesnel, V.C.; Roberts, J.B. The Interaction of Polyphenols and Proteins during Cacao Curing. J. Sci. Food Agric. 1958, 9, 181–184. [Google Scholar] [CrossRef]
- Rojo-Poveda, O.; Barbosa-Pereira, L.; Zeppa, G.; Stévigny, C. Cocoa Bean Shell—A By-Product with Nutritional Properties and Biofunctional Potential. Nutrients 2020, 12, 1123. [Google Scholar] [CrossRef]
- Hernández-Hernández, C.; Viera-Alcaide, I.; Morales-Sillero, A.M.; Fernández-Bolaños, J.; Rodríguez-Gutiérrez, G. Bioactive Compounds in Mexican Genotypes of Cocoa Cotyledon and Husk. Food Chem. 2018, 240, 831–839. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hečimović, I.; Belščak-Cvitanović, A.; Horžić, D.; Komes, D. Comparative Study of Polyphenols and Caffeine in Different Coffee Varieties Affected by the Degree of Roasting. Food Chem. 2011, 129, 991–1000. [Google Scholar] [CrossRef] [PubMed]
- Brebu, M.; Vasile, C. Thermal Degradation of Lignin—A Review. Cellul. Chem. Technol. 2010, 44, 353. [Google Scholar]
- Miller, K.B.; Stuart, D.A.; Smith, N.L.; Lee, C.Y.; McHale, N.L.; Flanagan, J.A.; Ou, B.; Hurst, W.J. Antioxidant Activity and Polyphenol and Procyanidin Contents of Selected Commercially Available Cocoa-Containing and Chocolate Products in the United States. J. Agric. Food Chem. 2006, 54, 4062–4068. [Google Scholar] [CrossRef] [PubMed]
- Payne, M.J.; Hurst, W.J.; Stuart, D.A.; Ou, B.; Fan, E.; Ji, H.; Kou, Y. Determination of Total Procyanidins in Selected Chocolate and Confectionery Products Using DMAC. J. AOAC Int. 2010, 93, 89–96. [Google Scholar] [CrossRef] [PubMed]
- Jiménez, A.; Guillén, R.; Fernández-Bolaños, J.; Heredia, A. Cell Wall Composition of Olives. J. Food Sci. 1994, 59, 1192–1196. [Google Scholar] [CrossRef]
- Shoaib, M.; Shehzad, A.; Omar, M.; Rakha, A.; Raza, H.; Sharif, H.R.; Shakeel, A.; Ansari, A.; Niazi, S. Inulin: Properties, Health Benefits and Food Applications. Carbohydr. Polym. 2016, 147, 444–454. [Google Scholar] [CrossRef] [PubMed]
- Broadbent, J.R.; Neeno-Eckwall, E.C.; Stahl, B.; Tandee, K.; Cai, H.; Morovic, W.; Horvath, P.; Heidenreich, J.; Perna, N.T.; Barrangou, R.; et al. Analysis of the Lactobacillus Casei Supragenome and Its Influence in Species Evolution and Lifestyle Adaptation. BMC Genom. 2012, 13, 533. [Google Scholar] [CrossRef]
- Boguta, A.M.; Bringel, F.; Martinussen, J.; Jensen, P.R. Screening of Lactic Acid Bacteria for Their Potential as Microbial Cell Factories for Bioconversion of Lignocellulosic Feedstocks. Microb. Cell Fact. 2014, 13, 97. [Google Scholar] [CrossRef]
- Kim, J.H.; Block, D.E.; Shoemaker, S.P.; Mills, D.A. Atypical Ethanol Production by Carbon Catabolite Derepressed Lactobacilli. Bioresour. Technol. 2010, 101, 8790–8797. [Google Scholar] [CrossRef]
- Slavin, J. Fiber and Prebiotics: Mechanisms and Health Benefits. Nutrients 2013, 5, 1417–1435. [Google Scholar] [CrossRef] [PubMed]
- Koropatkin, N.M.; Cameron, E.A.; Martens, E.C. How Glycan Metabolism Shapes the Human Gut Microbiota. Nat. Rev. Microbiol. 2012, 10, 323–335. [Google Scholar] [CrossRef] [Green Version]
- Ashaolu, T.J.; Ashaolu, J.O.; Adeyeye, S.A.O. Fermentation of Prebiotics by Human Colonic Microbiota in Vitro and Short-chain Fatty Acids Production: A Critical Review. J. Appl. Microbiol. 2021, 130, 677–687. [Google Scholar] [CrossRef] [PubMed]
- Jun, H.I.; Lee, C.H.; Song, G.S.; Kim, Y.S. Characterization of the Pectic Polysaccharides from Pumpkin Peel. LWT-Food Sci. Technol. 2006, 39, 554–561. [Google Scholar] [CrossRef]
- Bianchi, F.; Larsen, N.; de Mello Tieghi, T.; Adorno, M.A.T.; Kot, W.; Saad, S.M.I.; Jespersen, L.; Sivieri, K. Modulation of Gut Microbiota from Obese Individuals by in Vitro Fermentation of Citrus Pectin in Combination with Bifidobacterium Longum BB-46. Appl. Microbiol. Biotechnol. 2018, 102, 8827–8840. [Google Scholar] [CrossRef] [PubMed]
- Schell, M.A.; Karmirantzou, M.; Snel, B.; Vilanova, D.; Berger, B.; Pessi, G.; Zwahlen, M.C.; Desiere, F.; Bork, P.; Delley, M.; et al. The Genome Sequence of Bifidobacterium Longum Reflects Its Adaptation to the Human Gastrointestinal Tract. Proc. Natl. Acad. Sci. USA 2002, 99, 14422–14427. [Google Scholar] [CrossRef]
- Becerra, J.E.; Yebra, M.J.; Monedero, V. An L-Fucose Operon in the Probiotic Lactobacillus Rhamnosus GG Is Involved in Adaptation to Gastrointestinal Conditions. Appl. Environ. Microbiol. 2015, 81, 3880–3888. [Google Scholar] [CrossRef]
- Li, Y.; Wang, S.; Sun, Y.; Zheng, H.; Tang, Y.; Gao, X.; Song, C.; Liu, J.; Long, Y.; Liu, L.; et al. Apple Polysaccharide Could Promote the Growth of Bifidobacterium Longum. Int. J. Biol. Macromol. 2020, 152, 1186–1193. [Google Scholar] [CrossRef]
- Vriesmann, L.C.; de Mello Castanho Amboni, R.; de Oliveira Petkowicz, C. Cacao Pod Husks (Theobroma Cacao L.): Composition and Hot-Water-Soluble Pectins. Ind. Crops Prod. 2011, 34, 1173–1181. [Google Scholar] [CrossRef]
- Larsen, N.; de Souza, C.B.; Krych, L.; Kot, W.; Leser, T.D.; Sørensen, O.B.; Blennow, A.; Venema, K.; Jespersen, L. Effect of Potato Fiber on Survival of Lactobacillus Species at Simulated Gastric Conditions and Composition of the Gut Microbiota in Vitro. Food Res. Int. 2019, 125, 108644. [Google Scholar] [CrossRef]
- Ferreira-Lazarte, A.; Moreno, F.J.; Cueva, C.; Gil-Sánchez, I.; Villamiel, M. Behaviour of Citrus Pectin during Its Gastrointestinal Digestion and Fermentation in a Dynamic Simulator (Simgi®). Carbohydr. Polym. 2019, 207, 382–390. [Google Scholar] [CrossRef]
- Chengxiao, Y.; Dongmei, W.; Kai, Z.; Hou, L.; Xiao, H.; Ding, T.; Liu, D.; Ye, X.; Linhardt, R.J.; Chen, S. Challenges of Pectic Polysaccharides as a Prebiotic from the Perspective of Fermentation Characteristics and Anti-Colitis Activity. Carbohydr. Polym. 2021, 270, 118377. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Fischer, J.; Wicker, L. Intermolecular Binding of Blueberry Pectin-Rich Fractions and Anthocyanin. Food Chem. 2016, 194, 986–993. [Google Scholar] [CrossRef] [PubMed]
- Markowiak-Kopeć, P.; Śliżewska, K. The Effect of Probiotics on the Production of Short-Chain Fatty Acids by Human Intestinal Microbiome. Nutrients 2020, 12, 1107. [Google Scholar] [CrossRef] [PubMed]
- Al-Lahham, S.H.; Peppelenbosch, M.P.; Roelofsen, H.; Vonk, R.J.; Venema, K. Biological Effects of Propionic Acid in Humans; Metabolism, Potential Applications and Underlying Mechanisms. Biochim. Et Biophys. Acta (BBA)-Mol. Cell Biol. Lipids 2010, 1801, 1175–1183. [Google Scholar] [CrossRef]
- Karboune, S.; Seo, S.; Li, M.; Waglay, A.; Lagacé, L. Biotransformation of Sucrose Rich Maple Syrups into Fructooligosaccharides, Oligolevans and Levans Using Levansucrase Biocatalyst: Bioprocess Optimization and Prebiotic Activity Assessment. Food Chem. 2022, 382, 132355. [Google Scholar] [CrossRef] [PubMed]
- Cummings, J.H.; Pomare, E.W.; Branch, W.J.; Naylor, C.P.; Macfarlane, G.T. Short Chain Fatty Acids in Human Large Intestine, Portal, Hepatic and Venous Blood. Gut 1987, 28, 1221–1227. [Google Scholar] [CrossRef]
- Liu, C.; Kolida, S.; Charalampopoulos, D.; Rastall, R.A. An Evaluation of the Prebiotic Potential of Microbial Levans from Erwinia Sp. 10119. J. Funct. Foods 2020, 64, 103668. [Google Scholar] [CrossRef]
- LeBlanc, G.; Chain, F.; Martín, R.; Bermúdez-Humarán, L.G.; Courau, S.; Langella, P. Beneficial Effects on Host Energy Metabolism of Short-Chain Fatty Acids and Vitamins Produced by Commensal and Probiotic Bacteria. Microb. Cell Fact. 2017, 16, 79. [Google Scholar] [CrossRef] [PubMed]
- Macfarlane, S.; Macfarlane, G.T. Regulation of Short-Chain Fatty Acid Production. Proc. Nutr. Soc. 2003, 62, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Kwoji, D.; Aiyegoro, O.A.; Okpeku, M.; Adeleke, M.A. Multi-Strain Probiotics: Synergy among Isolates Enhances Biological Activities. Biology 2021, 10, 322. [Google Scholar] [CrossRef] [PubMed]
- Puvanasundram, P.; Chong, C.M.; Sabri, S.; Yusoff, M.S.; Karim, M. Multi-Strain Probiotics: Functions, Effectiveness and Formulations for Aquaculture Applications. Aquac. Rep. 2021, 21, 100905. [Google Scholar] [CrossRef]
Proximate Analyses of CBS | ||||
---|---|---|---|---|
Components | Content (%, w/dry w) | |||
Fermented CCN51 | Dried CCN 51 | Roasted CCN 51 | Roasted NAC | |
Protein | 13 ± 2 b | 18.9 ± 1.0 a | 12.8 ± 1.1 b | 19.8 ± 1.9 a |
Fat | 0.3 ± 0.04 c | 2.3 ± 0.4 b | 2.1 ± 0.4 b | 7.6 ± 0.4 a |
Ash | 6.1 ± 0.07 b | 7.1 ± 0.1 a | 6.5 ± 0.5 ab | 7.1 ± 0.3 a |
CHO | 80.6 ± 2.1 a | 71.7 ± 1.6 b | 78.7 ± 1.1 a | 65.5 ± 1.6 c |
Fiber | 61.4 ± 8.3 a | 50.2 ± 7.3 a | 50.1 ± 0.3 a | 54.3 ± 2.8 a |
Polyphenol content * | 0.5 ± 0.1 a | 0.6 ± 0.1 a | 0.6 ± 0.1 a | 0.4 ± 0.02 a |
Composition of CWM of CBS | ||||
CWM yield | 40.6 ± 12.6 | 41.6 ± 2.6 | 49.4 ± 0.04 | 48.1 ± 3.2 |
Polyphenol content * | 0.05 ± 0.002 c | 0.1 ± 0.01 a | 0.1 ± 0.01 b | 0.1 ± 0.01 b |
Protein content * | 16.6 ± 0.8 a | 17.6 ± 1.6 a | 17.3 ± 1.4 a | 12.9 ± 1.1 a |
Neutral sugar content * | 31.4 ± 5.3 c | 29.9 ± 7.6 bc | 41.9 ± 5.8 a | 40.9 ± 8.0 ab |
Uronic acid content * | 32.5 ± 7.6 a | 36.5 ± 14.7 a | 22.8 ± 2 a | 29.8 ± 2.7 a |
Monosaccharide profile (%, g/100 g rel. proportion) | ||||
Fucose | 2.6 ± 0.03 a | 3.6 ± 2.4 a | 2.4 ± 0.05 a | 2.8 ± 1.6 a |
Rhamnose | 6.2 ± 0.9 ab | 5.1 ± 1.1 b | 6.9 ± 0.4 ab | 6.4 ± 0.1 a |
Arabinose | 13.8 ± 2.1 a | 13.6 ± 1.26 a | 17.2 ± 1.1 a | 14.2 ± 0.9 a |
Galactose | 22.7 ± 2.5 a | 23.7 ± 3.9 a | 29.2 ± 1.4 a | 27.2 ± 0.7 a |
Glucose | 3.3 ± 0.1 b | 5.2 ± 0.7 b | 7.1 ± 0.8 a | 5.9 ± 0.3 a |
Xylose + Mannose | 0.9 ± 0.3 a | 1.3 ± 0.12 a | 1.9 ± 0.15 a | 1.5 ± 0.2 a |
Uronic acids | 50.5 ± 5.9 a | 47.5 ± 1.1 a | 35.1 ± 2.0 a | 42.1 ± 2.2 a |
Hemi-cellulosic PS * | 13.9 ± 0.8 a | 19.4 ± 6.1 a | 17.8 ± 1.9 a | 17.5 ± 2.9 a |
Pectic PS * | 86.0 ± 0.8 a | 80.6 ± 6.1 a | 82.2 ± 1.9 a | 82.5 ± 2.9 a |
Polyphenol Profile of CBS and CWM (ng/Kg CBS/CWM CBS) | ||||
Gallic acid | 0.2 ± 0.01 ab/0.3 ± 0.03 a | 0.2 ± 0.06 a/0.2 ± 0.02 ab | 0.1 ± 0.02 bc/n.d. **c | n.d. **c/n.d. **c |
Protocatechuic acid | 7.2 ± 1.9 c/9.3 ± 0.03 c | 23.2 ± 3.9 b/34.6 ± 5.2 a | 7.0 ± 0.5 cd/5.3 ± 0.3 cd | 1.3 ± 0.1 d/7.5 ± 1.1 c |
Catechin | 4.1 ± 0.4 cd/6.4 ± 0.1 cd | 24.3 ± 6.7 a/20.2 ± 0.9 ab | 0.3 ± 0.06 d/0.4 ± 0.04 d | 13.0 ± 1.3 bc/2.1 ± 0.4 d |
Epicatechin | 37.4 ± 0.1 bc/65.8 ± 1.7 ab | 122.8 ± 7.5 a/124.4 ± 26.9 a | 6.1 ± 0.5 bc/10.1 ± 0.7 bc | 0.9 ± 0.1 c/19.8 ± 2.6 bc |
Caffeic acid | 0.1 ± 0.03 b/0.4 ± 0.1 b | 0.3 ± 0.1 b/0.4 ± 0.1 b | 0.1 ± 0.003 b/9.6 ± 0.9 b | 1.1 ± 0.1 a/0.3 ± 0.1 b |
p-Coumaric acid | 0.05 ± 0.01 b/0.05 ± 0.0005 b | 0.1 ± 0.01 ab/0.1 ± 0.02 ab | n.d. **b/n.d. **b | 0.1 ± 0.01 ab/0.2 ± 0.04 a |
Ferulic acid | 0.2 ± 0.01 a/0.2 ± 0.04 a | 0.1 ± 0.04 a/0.05 ± 0.0001 a | 0.4 a/0.3 ± 0.2 a | 0.2 ± 0.1 a/1.2 ± 0.1 a |
Quercetin | 2.1 ± 0.1 bc/4.6 ± 0.5 a | 3.1 ± 0.3 ab/6.0 ± 1.1 a | 0.4 ± 0.04 d/0.5 ± 0.003 d | 0.8 ± 0.1 cd/n.d. ** d |
Caffeine | 261.6 ± 1.2 a/257.6 ± 7.9 a | 139.4 ± 3.9 a/169.5 ± 13.1 a | 4.5 ± 0.2 a/19.3 ± 0.4 a | 17.7 ± 0.1 a/22.3 ± 5.0 a |
Fermented CCN51 | Dried CCN 51 | Roasted CCN 51 | Roasted NAC | |
---|---|---|---|---|
0.5 M KOH | ||||
PS yield (%, w/w) | 23.7 ± 0.01 | 24.4 ± 0.05 | 29.1 ± 0.4 | 35.4 ± 4.3 |
Neutral sugar content * | 27.1 ± 1.9 a | 25.5 ± 3.2 a | 20.6 ± 0.7 b | 13.5 ± 2.3 b |
Uronic acid content * | 54.5 ± 9.3 a | 55.1 ± 0.9 a | 58.3 ± 5.2 a | 49.8 ± 3.02 a |
Uronic/Neutral Sugar ratio | 2.01 | 2.16 | 2.83 | 3.69 |
Monosaccharide Composition (%, g/100 g–relative proportion) | ||||
Fucose | 0.9 ± 0.2 b | 0.7 ± 0.07 b | 1.8 ± 0.02 a | 1.8 ± 0.1 a |
Rhamnose | 11.9 ± 0.6 a | 9.9 ± 0.8 a | 12.4 ± 0.3 a | 6.8 ± 1.1 b |
Arabinose | 16.4 ± 0.9 a | 13.9 ± 0.8 a | 8.6 ± 0.01 b | 7.8 ± 0.6 b |
Galactose | 22.4 ± 0.9 a | 18.5 ± 0.4 b | 8.1 ± 0.2 c | 17.5 ± 1.3 b |
Glucose | 1.1 ± 0.1 b | 3.7 ± 1.1 a | 5.2 ± 0.5 a | 2.9 ± 0.1 ab |
Xylose+ Mannose | 4.4 ± 0.9 b | 8.5 ± 1.9 ab | 12.6 ± 2.0 c | 5.0 ± 0.4 b |
Uronic acids | 42.9 ± 2.5 b | 44.9 ± 2.6 b | 51.4 ± 3.1 ab | 58.2 ± 2.8 b |
Pectic neutral sugars * | 88.8 ± 1.7 a | 76.8 ± 4.2 b | 59.9 ± 2.8 c | 76.8 ± 1.8 b |
Branching | 3.3 | 3.3 | 1.3 | 3.7 |
4 M KOH | ||||
PS yield (%, w/w) | 19.5 ± 0.05 | 21.1 ± 0.07 | 32.9 ± 0.08 | 53.6 ± 8.1 |
Neutral sugar content * | 13.9 ± 2.1 a | 12.3 ± 0.7 a | 11.4 ± 1.4 a | 10.7 ± 0.2 a |
Uronic acid content * | 47.9 ± 5.1 a | 60.3 ± 9.3 a | 60.8 ± 3.6 a | 51.6 ± 1.4 a |
Uronic/Neutral Sugar ratio | 3.44 | 4.89 | 5.31 | 4.84 |
Monosaccharide Composition (%, g/100 g–relative proportion) | ||||
Fucose | 1.2 ± 0.2 b | 1.8 ± 0.1 b | 4.3 ± 0.1 a | 3.4 ± 0.4 a |
Rhamnose | 3.5 ± 0.1 ab | 2.3 ± 0.4 b | 3.7 ± 0.3 a | 3.7 ± 0.5 a |
Arabinose | 5.9 ± 0.7 c | 4.2 ± 0.3 c | 10.6 ± 0.6 b | 13.4 ± 0.6 a |
Galactose | 14.9 ± 1.8 a | 15.9 ± 0.4 a | 10.7 ± 0.4 b | 9.9 ± 0.2 b |
Glucose | 2.2 ± 0.7 a | 4.2 ± 2.2 a | 1.5 ± 0.1 a | 2.03 ± 0.04 a |
Xylose + Mannose | 15.9 ± 0.6 a | 7.1 ± 1.8 b | 2.6 ± 0.04 c | 3.03 ± 0.2 c |
Uronic acids | 56.4 ± 1.0 a | 64.6 ± 4.9 a | 66.7 ± 1.4 a | 64.5 ± 1.02 a |
Pectic neutral sugars * | 55.6 ± 4.5 b | 63.6 ± 5.9 ab | 74.85 ± 0.62 a | 76.1 ± 1.3 a |
Branching | 6 | 8.9 | 5.8 | 6.3 |
Time (h) | Glucose | Inulin | RhamnoG | NAC | CCN | |
---|---|---|---|---|---|---|
Lactic acid | 24 | 313.0 ± 4.0 a | 212.5 ± 15.5 a | 508.8 ± 10.3 a | 427.6 ± 62.0 a | 343.0 ± 85.9 a |
48 | 386.0 ± 16.2 a | 315.7 ± 14.8 a | 293.5 ± 26.0 a | 354.7 ± 41.1 a | 393.0 ± 44.2 a | |
Acetic acid | 24 | 58.1 ± 8.4 a | 46.4 *a | 112.2 ± nd*a | 42.5 ± 0.9 a | 71.9 *a |
48 | 111.7 *a | 66.4 *a | 39.0 ± 8.5 a | 35.3 ± 3.0 a | 96.8 *a | |
Propionic acid | 24 | 4.7 *a | 1.0 ± 0.04 a | 1.8 ± 0.03 a | 1.1 ± 0.1 a | 1.2 *a |
48 | 0.7 *b | 0.4 *b | 0.6 ± 0.06 b | 1.1 ± 0.2 ab | 1.9 ± 0.3 a | |
Butyric acid | 24 | 1.8 *a | 0.3 *a | 0.4 ± 0.04 a | - | - |
48 | - | - | - | - | - | |
Total | 24 | 377.6 | 260.2 | 623.2 | 471.2 | 416.1 |
48 | 498.4 | 382.5 | 333.1 | 391.1 | 491.7 |
Time (h) | Glucose | Inulin | RhamnoG | NAC | CCN | |
---|---|---|---|---|---|---|
Lactic acid | 24 | 31.3 ± 5.1 a | 56.3 *a | 178.0 * a | 169.0 ± 2.4 a | 273.2 ± 66.4 a |
48 | 404.4 ± 96.6 a | 281.3 ± 1.8 a | 327.9 ± 2.1 a | 299.8 ± 18.3 a | 216.2 ± 1.5 a | |
Acetic acid | 24 | 44.4 ± 3.9 a | 43.7 ± 10.3 a | 52.6 *a | 39.5 *a | 53.9 *a |
48 | 230.1 ± 11.3 a | 55.3 ± 3.6 b | 50.5 ± 1.5 b | 28.6 ± 2.9 b | 53.3 *b | |
Propionic acid | 24 | 1.9 ± 0.4 a | 1.3 ± 0.2 a | 2.6 ± 0.4 a | 1.9 ± 0.2 a | 1.7 *a |
48 | 0.6 *a | 0.5 ± 0.1 a | 0.5 ± 0.03 a | 0.3 *a | 2.0 *a | |
Butyric acid | 24 | 0.3 * | 0.3 * | - | - | - |
48 | - | - | - | - | - | |
Total | 24 | 77.9 | 101.6 | 233.3 | 210.4 | 328.8 |
48 | 635.1 | 337.1 | 378.9 | 328.7 | 271.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Younes, A.; Karboune, S.; Liu, L.; Andreani, E.S.; Dahman, S. Extraction and Characterization of Cocoa Bean Shell Cell Wall Polysaccharides. Polymers 2023, 15, 745. https://doi.org/10.3390/polym15030745
Younes A, Karboune S, Liu L, Andreani ES, Dahman S. Extraction and Characterization of Cocoa Bean Shell Cell Wall Polysaccharides. Polymers. 2023; 15(3):745. https://doi.org/10.3390/polym15030745
Chicago/Turabian StyleYounes, Amalie, Salwa Karboune, Lan Liu, Eugenio Spadoni Andreani, and Sarah Dahman. 2023. "Extraction and Characterization of Cocoa Bean Shell Cell Wall Polysaccharides" Polymers 15, no. 3: 745. https://doi.org/10.3390/polym15030745
APA StyleYounes, A., Karboune, S., Liu, L., Andreani, E. S., & Dahman, S. (2023). Extraction and Characterization of Cocoa Bean Shell Cell Wall Polysaccharides. Polymers, 15(3), 745. https://doi.org/10.3390/polym15030745