Can Pyrolysis Oil Be Used as a Feedstock to Close the Gap in the Circular Economy of Polyolefins?
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- US Environmental Protection Agency. Advancing Sustainable Materials Management: 2014 Fact Sheet; United States Environmental Protection Agency, Office of Land and Emergency Management: Washington, DC, USA, 2016; p. 22. [Google Scholar]
- Hopewell, J.; Dvorak, R.; Kosior, E. Plastics Recycling: Challenges and Opportunities. Philos. Trans. R. Soc. Biol. Sci. 2009, 364, 2115–2126. [Google Scholar] [CrossRef] [PubMed]
- Rahimi, A.; García, J.M. Chemical Recycling of Waste Plastics for New Materials Production. Nat. Rev. Chem. 2017, 1, 0046. [Google Scholar] [CrossRef]
- Heller, M.C.; Mazor, M.H.; Keoleian, G.A. Plastics in the US: Toward a Material Flow Characterization of Production, Markets and End of Life. Environ. Res. Lett. 2020, 15, 094034. [Google Scholar] [CrossRef]
- Kunwar, B.; Cheng, H.N.; Chandrashekaran, S.R.; Sharma, B.K. Plastics to Fuel: A Review. Renew. Sustain. Energy Rev. 2016, 54, 421–428. [Google Scholar] [CrossRef]
- The Environmental Impact of Plastic Straws—Facts, Statistics and Infographic. Available online: https://get-green-now.com/environmental-impact-plastic-straws (accessed on 11 November 2022).
- Geyer, R.; Jambeck, J.R.; Law, K.L. Production, Use, and Fate of All Plastics Ever Made. Sci. Adv. 2017, 3, e1700782. [Google Scholar] [CrossRef] [PubMed]
- Celik, G.; Kennedy, R.M.; Hackler, R.A.; Ferrandon, M.; Tennakoon, A.; Patnaik, S.; Lapointe, A.M.; Ammal, S.C.; Heyden, A.; Perras, F.A.; et al. Upcycling Single-Use Polyethylene into High-Quality Liquid Products. ACS Cent. Sci 2019, 5, 1795–1803. [Google Scholar] [CrossRef]
- Ragaert, K.; Delva, L.; van Geem, K. Mechanical and Chemical Recycling of Solid Plastic Waste. Waste Manag. 2017, 69, 24–58. [Google Scholar] [CrossRef]
- Miandad, R.; Barakat, M.A.; Aburiazaiza, A.S.; Rehan, M.; Nizami, A.S. Catalytic Pyrolysis of Plastic Waste: A Review. Process Saf. Environ. Prot. 2016, 102, 822–838. [Google Scholar] [CrossRef]
- Hong, M.; Chen, E.Y.-X. Chemically Recyclable Polymers: A Circular Economy Approach to Sustainability. Green Chem. 2017, 19, 3692–3706. [Google Scholar] [CrossRef]
- Delferro, M.; Ferrandon, M.S.; Kennedy, R.M.; Celik, G.; Hackler, R.A.; Poeppelmeier, K.R.; Sadow, A.D. Catalytic Upcycling of Polymers. U.S. Patent 17/000,969, 4 March 2021. [Google Scholar]
- Hackler, R.A.; Vyavhare, K.; Kennedy, R.M.; Celik, G.; Kanbur, U.; Griffin, P.J.; Sadow, A.D.; Zang, G.; Elgowainy, A.; Sun, P.; et al. Synthetic Lubricants Derived from Plastic Waste and Their Tribological Performance. ChemSusChem 2021, 14, 4181–4189. [Google Scholar] [CrossRef]
- Celik, G.; Vyavhare, K.; Kennedy, R.M.; Hackler, R.A.; Erdemir, A.; Delferro, M. Catalytic Upcycling of Polyolefins into Lubricants. U.S. Patent 11,499,110, 15 November 2022. [Google Scholar]
- Karaba, A.; Dvořáková, V.; Patera, J.; Zámostný, P. Improving the Steam-Cracking Efficiency of Naphtha Feedstocks by Mixed/Separate Processing. J. Anal. Appl. Pyrolysis 2020, 146, 104768. [Google Scholar] [CrossRef]
- Rahimpour, M.R.; Jafari, M.; Iranshahi, D. Progress in Catalytic Naphtha Reforming Process: A Review. Appl. Energy 2013, 109, 79–93. [Google Scholar] [CrossRef]
- Ross, J.R.H. Catalysis in the Production of Energy Carriers from Oil. In Contemporary Catalysis: Fundamentals and Current Applications; Marinakis, K., Ed.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 233–249. [Google Scholar]
- Speight, J.G. 9—Gas Condensate. In Natural Gas: A Basic Handbook; Hammon, K., Ed.; Gulf Professional Publishing: Houston, TX, USA, 2019; pp. 325–358. [Google Scholar]
- Lange, J.-P. Managing Plastic Waste—Sorting, Recycling, Disposal and Product Redesign. ACS Sustain. Chem. Eng. 2021, 9, 15722–15738. [Google Scholar] [CrossRef]
- Das, P.; Tiwari, P. The Effect of Slow Pyrolysis on the Conversion of Packaging Waste Plastics (PE and PP) into Fuel. Waste Manag. 2018, 79, 615–624. [Google Scholar] [CrossRef]
- Nanda, S.; Berruti, F. Thermochemical Conversion of Plastic Waste to Fuels: A Review. Environ. Chem. Lett. 2021, 19, 123–148. [Google Scholar] [CrossRef]
- Dogu, O.; Pelucchi, M.; Van de Vijver, R.; Van Steenberge, P.H.M.; D’hooge, D.R.; Cuoci, A.; Mehl, M.; Frassoldati, A.; Faravelli, T.; Van Geem, K.M. The Chemistry of Chemical Recycling of Solid Plastic Waste via Pyrolysis and Gasification: State-of-the-Art, Challenges, and Future Directions. Prog. Energy Combust. Sci. 2021, 84, 100901. [Google Scholar] [CrossRef]
- Zhang, F.; Zhao, Y.; Wang, D.; Yan, M.; Zhang, J.; Zhang, P.; Ding, T.; Chen, L.; Chen, C. Current Technologies for Plastic Waste Treatment: A Review. J. Clean. Prod. 2021, 282, 124523. [Google Scholar] [CrossRef]
- Al-Salem, S.M.; Antelava, A.; Constantinou, A.; Manos, G.; Dutta, A. A Review on Thermal and Catalytic Pyrolysis of Plastic Solid Waste (PSW). J. Environ. Manag. 2017, 197, 177–198. [Google Scholar] [CrossRef]
- Lopez, G.; Artetxe, M.; Amutio, M.; Bilbao, J.; Olazar, M. Thermochemical Routes for the Valorization of Waste Polyolefinic Plastics to Produce Fuels and Chemicals. A Review. Renew. Sustain. Energy Rev. 2017, 73, 346–368. [Google Scholar] [CrossRef]
- Van Der Ree, T.; Weser, G. Method and System for Transferring Plastic Waste into a Fuel Having Properties of Diesel/Heating Oil. U.S. Patent 15/544,260, 11 January 2008. [Google Scholar]
- ASTM Standard D7169-05; Standard Test Method for Bromine Numbers of Petroleum Distillates and Commercial Aliphatic Olefins by Electrometric Titration. ASTM International: West Conshohocken, PA, USA, 2008; pp. 213–221. [CrossRef] [Green Version]
- Mangesh, V.L.; Padmanabhan, S.; Ganesan, S.; Prabhudevrahul, D.; Kumar Reddy, T.D. Prospects of Pyrolysis Oil from Plastic Waste as Fuel for Diesel Engines: A Review. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Frontiers in Automobile and Mechanical Engineering, Sathyabama University, Chennai, India, 7–9 July 2016; IOP Publishing: Bristol, UK, 2017; Volume 197. [Google Scholar] [CrossRef]
- Lissitsyna, K.; Huertas, S.; Quintero, L.C.; Polo, L.M. PIONA Analysis of Kerosene by Comprehensive Two-Dimensional Gas Chromatography Coupled to Time of Flight Mass Spectrometry. Fuel 2014, 116, 716–722. [Google Scholar] [CrossRef]
- Kusenberg, M.; Zayoud, A.; Roosen, M.; Thi, H.D.; Abbas-Abadi, M.S.; Eschenbacher, A.; Kresovic, U.; de Meester, S.; van Geem, K.M. A Comprehensive Experimental Investigation of Plastic Waste Pyrolysis Oil Quality and Its Dependence on the Plastic Waste Composition. Fuel Process. Technol. 2022, 227, 107090. [Google Scholar] [CrossRef]
- Sojak, L.; Kubineca, R.; Jurdakovaa, H.; Hajekovab, E.; Bajus, M. GC-MS of Polyethylene and Polypropylene Thermal Cracking Products. Pet. Coal 2006, 48, 1–14. [Google Scholar]
- Kopinke, F.D.; Zimmermann, G.; Reyniers, G.C.; Froment, G.F. Relative Rates of Coke Formation from Hydrocarbons in Steam Cracking of Naphtha. 2. Paraffins, Naphthenes, Mono-, Di-, and Cycloolefins, and Acetylenes. Ind. Eng. Chem. Res. 1993, 32, 56–61. [Google Scholar] [CrossRef]
- Kopinke, F.D.; Zimmermann, G.; Reyniers, G.C.; Froment, G.F. Relative Rates of Coke Formation from Hydrocarbons in Steam Cracking of Naphtha. 3. Aromatic Hydrocarbons. Ind. Eng. Chem. Res. 1993, 32, 2620–2625. [Google Scholar] [CrossRef]
- Soják, L.; Kubinec, R.; Jurdáková, H.; Hájeková, E.; Bajus, M. High Resolution Gas Chromatographic–Mass Spectrometric Analysis of Polyethylene and Polypropylene Thermal Cracking Products. J. Anal. Appl. Pyrolysis 2007, 78, 387–399. [Google Scholar] [CrossRef]
- Kusenberg, M.; Faussone, G.C.; Thi, H.D.; Roosen, M.; Grilc, M.; Eschenbacher, A.; de Meester, S.; van Geem, K.M. Maximizing Olefin Production via Steam Cracking of Distilled Pyrolysis Oils from Difficult-to-Recycle Municipal Plastic Waste and Marine Litter. Sci. Total Environ. 2022, 838, 156092. [Google Scholar] [CrossRef] [PubMed]
Test | Unit | Light Naphtha | Heavy Naphtha | Py Oil-1 | Py Oil-2 | Method |
---|---|---|---|---|---|---|
Density, 15 °C | g/cm3 | Min. 0.67, max. 0.72 | ≥0.73 | 0.79 | 0.78 | ASTM D4052 |
Total Sulfur | wt.% | Max. 0.060 | Max. 0.10 | 0.3 | 0.006 | ASTM D5453 |
IBP * | °C | ≥33 | ≥50 | 60 | 55 | ASTM D1160 |
5% Fraction | °C | - | - | 97 | 97 | |
10% Fraction | °C | - | Min. 85 | 115 | 115 | |
20% Fraction | °C | - | - | 145 | 140 | |
30% Fraction | °C | - | Min. 105 | 155 | 165 | |
40% Fraction | °C | - | - | 195 | 210 | |
50% Fraction | °C | Min. 115 | Min. 120 | 232 | 242 | |
60% Fraction | °C | - | - | 272 | 280 | |
70% Fraction | °C | - | Min. 135 | 325 | 338 | |
80% Fraction | °C | - | - | 365 | 372 | |
90% Fraction | °C | Min. 170 | Min. 170 | 380 | 385 |
Mass (%) | Boiling Point (°C) | |||
---|---|---|---|---|
Light Naphtha | Heavy Naphta | Py Oil-1 | Py Oil-2 | |
5 | 36.4 | 96.0 | 61.7 | 66.4 |
10 | 40.8 | 101.5 | 110.1 | 123.5 |
15 | - | 107.6 | 132.5 | 133.2 |
20 | 46.0 | 113.1 | 133.9 | 134.3 |
30 | 50.7 | 117.9 | 136.0 | 158.9 |
40 | 55.6 | 125.0 | 190.2 | 227.6 |
50 | 60.6 | 128.7 | 234.5 | 246.9 |
60 | 66.6 | 134.7 | 275.2 | 303.4 |
70 | 72.2 | 140.5 | 320.0 | 339.7 |
80 | 79.1 | 146.5 | 374.3 | 382.4 |
85 | - | 150.3 | 407.2 | 405.4 |
90 | 89.9 | 151.8 | 436.2 | 430.4 |
95 | 100.2 | 157.9 | 474.0 | 464.0 |
96 | - | 159.1 | 485.2 | 472.2 |
97 | - | 160.7 | 495.8 | 483.6 |
98 | - | 163.2 | 508.9 | 497.2 |
99 | - | 167.1 | 527.5 | 517.7 |
FBP * | 117.9 | 171.4 | 541.6 | 537.9 |
Sample | Bromine Number (g/100 g) |
---|---|
Light Naphtha | 1.2 |
Heavy Naphtha | 0.3 |
Py oil-1 | 85 |
Py oil-2 | 304 |
Py oil-1-F210 | 88 |
Py oil-2-F210 | 216 |
Component | Light Naphtha, % (w/w) | Heavy Naphtha, % (w/w) | Py Oil-1-F210, % (w/w) | Py Oil-2-F210, % (w/w) |
---|---|---|---|---|
Naphthenes | 15.7 | 36.3 | 9.3 | 10.1 |
i-Paraffins | 41.7 | 28.8 | 19.1 | 19.1 |
n-Paraffins | 40.3 | 25.9 | 7.8 | 5.5 |
Cyclic Olefins | - | - | 45.3 | 43.4 |
Olefins | 0.1 | 0.3 | 15.0 | 16.8 |
Aromatics | 2.2 | 8.8 | 3.5 | 5.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Erkmen, B.; Ozdogan, A.; Ezdesir, A.; Celik, G. Can Pyrolysis Oil Be Used as a Feedstock to Close the Gap in the Circular Economy of Polyolefins? Polymers 2023, 15, 859. https://doi.org/10.3390/polym15040859
Erkmen B, Ozdogan A, Ezdesir A, Celik G. Can Pyrolysis Oil Be Used as a Feedstock to Close the Gap in the Circular Economy of Polyolefins? Polymers. 2023; 15(4):859. https://doi.org/10.3390/polym15040859
Chicago/Turabian StyleErkmen, Berrak, Adem Ozdogan, Ayhan Ezdesir, and Gokhan Celik. 2023. "Can Pyrolysis Oil Be Used as a Feedstock to Close the Gap in the Circular Economy of Polyolefins?" Polymers 15, no. 4: 859. https://doi.org/10.3390/polym15040859
APA StyleErkmen, B., Ozdogan, A., Ezdesir, A., & Celik, G. (2023). Can Pyrolysis Oil Be Used as a Feedstock to Close the Gap in the Circular Economy of Polyolefins? Polymers, 15(4), 859. https://doi.org/10.3390/polym15040859