The Methylene Spacer Matters: The Structural and Luminescent Effects of Positional Isomerism of n-Methylpyridyltriazole Carboxylate Semi-Rigid Ligands in the Structure of Zn(II) Based Coordination Polymers
Abstract
:1. Introduction
2. Results and Discussion
2.1. Syntheses
2.2. Crystallographic Studies
2.3. Luminescent Properties
2.4. Thermogravimetry (TG) Analyses
3. Materials and Methods
3.1. Materials and General Procedures
3.2. Characterization
3.3. X-ray Powder Diffraction
3.4. Single-Crystal X-ray Diffraction
3.5. General Procedure for the Syntheses of NaL1 and NaL2
3.6. General Procedure Syntheses for 1D CPs [Zn(L1)]n (1) and [Zn(L2)·4H2O]n (2)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chen, C.T.; Suslick, K.S. One-Dimensional Coordination Polymers: Applications to Material Science. Coord Chem. Rev. 1993, 128, 293–322. [Google Scholar] [CrossRef]
- Stavila, V.; Talin, A.A.; Allendorf, M.D. MOF-Based Electronic and Opto-Electronic Devices. Chem. Soc. Rev. 2014, 43, 5994–6010. [Google Scholar] [CrossRef] [PubMed]
- Givaja, G.; Amo-Ochoa, P.; Gómez-García, C.J.; Zamora, F. Electrical Conductive Coordination Polymers. Chem. Soc. Rev. 2012, 41, 115–147. [Google Scholar] [CrossRef] [PubMed]
- Soni, S.; Bajpai, P.K.; Arora, C. A Review on Metal-Organic Framework: Synthesis, Properties and Application. Charact. Appl. Nanomater. 2018, 2, 87–106. [Google Scholar] [CrossRef]
- Baumann, A.E.; Burns, D.A.; Liu, B.; Thoi, V.S. Metal-Organic Framework Functionalization and Design Strategies for Advanced Electrochemical Energy Storage Devices. Commun. Chem. 2019, 2, 86. [Google Scholar] [CrossRef]
- Ghanbari, T.; Abnisa, F.; Wan Daud, W.M.A. A Review on Production of Metal Organic Frameworks (MOF) for CO2 Adsorption. Sci. Total Environ. 2020, 707, 135090. [Google Scholar] [CrossRef]
- Li, J.R.; Kuppler, R.J.; Zhou, H.C. Selective Gas Adsorption and Separation in Metal-Organic Frameworks. Chem. Soc. Rev. 2009, 38, 1477–1504. [Google Scholar] [CrossRef]
- Resnik, K.P.; Yeh, J.T.; Pennline, H.W. Aqua ammonia process for simultaneous removal of CO2, SO2 and NOx. Int. J. Environ. Technol. Manag. 2004, 4, 89–104. [Google Scholar] [CrossRef]
- Wu, H.; Gong, Q.; Olson, D.H.; Li, J. Commensurate Adsorption of Hydrocarbons and Alcohols in Microporous Metal Organic Frameworks. Chem. Rev. 2012, 112, 836–868. [Google Scholar] [CrossRef]
- Zheng, B.; Yun, R.; Bai, J.; Lu, Z.; Du, L.; Li, Y. Expanded Porous MOF-505 Analogue Exhibiting Large Hydrogen Storage Capacity and Selective Carbon Dioxide Adsorption. Inorg. Chem. 2013, 52, 2823–2829. [Google Scholar] [CrossRef]
- Liu, Y.; Lin, S.; Liu, Y.; Sarkar, A.K.; Bediako, J.K.; Kim, H.Y.; Yun, Y.-S. Super-Stable, Highly Efficient, and Recyclable Fibrous Metal-Organic Framework Membranes for Precious Metal Recovery from Strong Acidic Solutions. Small 2019, 15, 1805242. [Google Scholar] [CrossRef]
- Hu, Z.; Zhao, D. De Facto Methodologies toward the Synthesis and Scale-up Production of UiO-66-Type Metal-Organic Frameworks and Membrane Materials. Dalton Trans. 2015, 44, 19018–19040. [Google Scholar] [CrossRef]
- Xu, B.; Xie, J.; Hu, H.-M.M.; Le Yang, X.-L.; Dong, F.-X.X.; Yang, M.-L.L.; Xue, G.-L.L. Synthesis, Crystal Structure, and Luminescence of Zn/Cd Coordination Polymers with a New Fuctionalized Terpyridyl Carboxylate Ligand. Cryst. Growth Des. 2014, 14, 1629–1641. [Google Scholar] [CrossRef]
- Feng, R.; Jiang, F.-L.; Chen, L.; Yan, C.-F.; Wu, M.-Y.; Hong, M.-C. A Luminescent Homochiral 3D Cd(Ii) Framework with a Threefold Interpenetrating Uniform Net 86. Chem. Commun. 2009, 5296–5298. [Google Scholar] [CrossRef]
- Cui, Y.; Yue, Y.; Qian, G.; Chen, B. Luminescent Functional Metal-Organic Frameworks. Chem. Rev. 2012, 112, 1126–1162. [Google Scholar] [CrossRef]
- Liao, S.-Y.Y.; Gu, W.; Yang, L.-Y.Y.; Li, T.-H.H.; Zhang, M.; Wang, L.; Liu, X. Three New Metal–Organic Frameworks Constructed from Triazol-Phenyl Polycarboxyl Acid: Synthesis, Crystal Structures and Properties. Polyhedron 2012, 36, 38–44. [Google Scholar] [CrossRef]
- Janiak, C. Engineering Coordination Polymers towards Applications. Dalton Trans. 2003, 2781–2804. [Google Scholar] [CrossRef]
- Czaja, A.U.; Trukhan, N.; Müller, U. Industrial Applications of Metal-Organic Frameworks. Chem. Soc. Rev. 2009, 38, 1284–1293. [Google Scholar] [CrossRef]
- Jiao, L.; Seow, J.Y.R.; Skinner, W.S.; Wang, Z.U.; Jiang, H.-L. Metal–Organic Frameworks: Structures and Functional Applications. Mater. Today 2019, 27, 43–68. [Google Scholar] [CrossRef]
- Masoomi, M.Y.; Morsali, A. Applications of Metal–Organic Coordination Polymers as Precursors for Preparation of Nano-Materials. Coord. Chem. Rev. 2012, 256, 2921–2943. [Google Scholar] [CrossRef]
- He, C.; Liu, D.; Lin, W. Nanomedicine Applications of Hybrid Nanomaterials Built from Metal–Ligand Coordination Bonds: Nanoscale Metal–Organic Frameworks and Nanoscale Coordination Polymers. Chem. Rev. 2015, 115, 11079–11108. [Google Scholar] [CrossRef] [PubMed]
- Peterson, K.; Anderson, J.; Bourne, D.; Charns, M.P.; Gorin, S.S.; Hynes, D.M.; McDonald, K.M.; Singer, S.J.; Yano, E.M. Health Care Coordination Theoretical Frameworks: A Systematic Scoping Review to Increase Their Understanding and Use in Practice. J. Gen. Intern. Med. 2019, 34, 90–98. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.-K.; Yang, X.-D.; Yang, G.-Y.; Zhang, J. Bipyridinium Derivative-Based Coordination Polymers: From Synthesis to Materials Applications. Coord. Chem. Rev. 2019, 378, 533–560. [Google Scholar] [CrossRef]
- Cheng, P.-C.; Wu, M.-H.; Xie, M.-Y.; Huang, W.-J.; He, H.-Y.; Wu, T.-T.; Lo, Y.-C.; Proserpio, D.M.; Chen, J.-D. Construction of N,N′-Di(3-Pyridyl)Adipoamide-Based Zn(Ii) and Cd(Ii) Coordination Networks by Tuning the Isomeric Effect of Polycarboxylate Ligands. CrystEngComm 2013, 15, 10346. [Google Scholar] [CrossRef]
- Ma, L.-F.; Li, X.-Q.; Meng, Q.-L.; Wang, L.-Y.; Du, M.; Hou, H.-W. Significant Positional Isomeric Effect on Structural Assemblies of Zn(II) and Cd(II) Coordination Polymers Based on Bromoisophthalic Acids and Various Dipyridyl-Type Coligands. Cryst. Growth Des. 2011, 11, 175–184. [Google Scholar] [CrossRef]
- Cai, H.; Xu, C.; Zhou, Y.-P.; Tong, X.-Q.; Guo, Y. Molecular Tectonics of Mixed-Ligand Metal-Organic Frameworks: Positional Isomeric Effect, and Structural Diversification. J. Mol. Struct. 2016, 1108, 263–268. [Google Scholar] [CrossRef]
- Liu, C.-J.; Zhang, T.-T.; Li, W.-D.; Wang, Y.-Y.; Chen, S.-S. Coordination Assemblies of Zn(II) Coordination Polymers: Positional Isomeric Effect and Optical Properties. Crystals 2019, 9, 664. [Google Scholar] [CrossRef]
- Cisterna, J.; Araneda, C.; Narea, P.; Cárdenas, A.; Llanos, J.; Brito, I. The Positional Isomeric Effect on the Structural Diversity of Cd(II) Coordination Polymers, Using Flexible Positional Isomeric Ligands Containing Pyridyl, Triazole, and Carboxylate Fragments. Molecules 2018, 23, 2634. [Google Scholar] [CrossRef]
- Huang, F.P.; Tian, J.L.; Chen, G.J.; Li, D.D.; Gu, W.; Liu, X.; Yan, S.P.; Liao, D.Z.; Cheng, P. A Case Study of the ZnII-BDC/Bpt Mixed-Ligand System: Positional Isomeric Effect, Structural Diversification and Luminescent Properties. CrystEngComm 2010, 12, 1269–1279. [Google Scholar] [CrossRef]
- Du, M.; Jiang, X.-J.; Zhao, X.-J. Molecular Tectonics of Mixed-Ligand Metal-Organic Frameworks: Positional Isomeric Effect, Metal-Directed Assembly, and Structural Diversification. Inorg. Chem. 2007, 46, 3984–3995. [Google Scholar] [CrossRef]
- Vallejos, J.; Brito, I.; Cárdenas, A.; Bolte, M.; Conejeros, S.; Alemany, P.; Llanos, J. Self-Assembly of Discrete Metallocycles versus Coordination Polymers Based on Cu(I) and Ag(I) Ions and Flexible Ligands: Structural Diversification and Luminescent Properties. Polymers 2016, 8, 46. [Google Scholar] [CrossRef]
- Tang, C.W.; VanSlyke, S.A. Organic Electroluminescent Diodes. Appl. Phys. Lett. 1987, 51, 913–915. [Google Scholar] [CrossRef]
- Metelitsa, A.V.; Burlov, A.S.; Bezuglyi, S.O.; Borodkina, I.G.; Bren, V.A.; Garnovskii, A.D.; Minkin, V.I. Luminescent Complexes with Ligands Containing C=N Bond. Russ. J. Coord. Chem. 2006, 32, 858–868. [Google Scholar] [CrossRef]
- Yang, W.; Schmider, H.; Wu, Q.; Zhang, Y.; Wang, S. Syntheses, Structures, and Fluxionality of Blue Luminescent Zinc(II) Complexes: Zn(2,2‘,2‘ ‘-Tpa)Cl2, Zn(2,2‘,2‘ ‘-Tpa)2 (O2 CCF3)2, and Zn(2,2‘,3‘ ‘-Tpa)4 (O2 CCF3)2 (Tpa = Tripyridylamine). Inorg. Chem. 2000, 39, 2397–2404. [Google Scholar] [CrossRef]
- Sano, T.; Nishio, Y.; Hamada, Y.; Takahashi, H.; Usuki, T.; Shibata, K. Design of Conjugated Molecular Materials for Optoelectronics. J. Mater. Chem. 2000, 10, 157–161. [Google Scholar] [CrossRef]
- Yu, G.; Yin, S.; Liu, Y.; Shuai, Z.; Zhu, D. Structures, Electronic States, and Electroluminescent Properties of a Zinc(II) 2-(2-Hydroxyphenyl)Benzothiazolate Complex. J. Am. Chem. Soc. 2003, 125, 14816–14824. [Google Scholar] [CrossRef]
- Larionov, S.v.; Savels’eva, Z.A.; Klevtsova, R.F.; Glinskaya, L.A.; Uskov, E.M.; Popov, S.A.; Tkachev, A.V. Crystal Structure and Photoluminescence of the Optically Active Complex [ZnL1Cl2], Where L1 = Pyrazolylquinoline—A Derivative of Monoterpenoid (+)-3-Carene. J. Struct. Chem. 2010, 51, 519–525. [Google Scholar] [CrossRef]
- Vallejos, J.; Brito, I.; Cárdenas, A.; Bolte, M.; Llanos, J.; López-rodríguez, M.; Lavín, V.; Martín, I.R. A Direct White-Light-Emitting Coordination Polymers with Tunable Green–White Photoluminescence by Variation of Counterion. Inorg. Chem. Commun. 2014, 39, 14–20. [Google Scholar] [CrossRef]
- Vallejos, J.; Brito, I.; Cárdenas, A.; Bolte, M.; Llanos, J.; López-Rodríguez, M. A Novel Double-Stranded Staircase Cu(I)-Iodide Coordination Polymer Based on Bis(4-Pyridyl-Carboxylate) Ligand with Flexible Propyl Spacer. Inorg. Chem. Commun. 2012, 24, 59–62. [Google Scholar] [CrossRef]
- Vallejos, J.; Brito, I.; Cárdenas, A.; Llanos, J.; Bolte, M. Mercury coordination polymers with flexible ethane-1,2-diyl-bis-(pyridyl-3-carboxylate): Synthesis, structures, thermal and luminescent properties. J. Solid State Chem. 2015, 223, 17–22. [Google Scholar] [CrossRef]
- Narea, P.; Cisterna, J.; Cárdenas, A.; Amo-Ochoa, P.; Zamora, F.; Climent, C.; Alemany, P.; Conejeros, S.; Llanos, J.; Brito, I. Crystallization Induced Enhanced Emission in Two New Zn(II) and Cd(II) Supramolecular Coordination Complexes with the 1-(3,4-Dimethylphenyl)-5-Methyl-1H-1,2,3-Triazole-4-Carboxylate Ligand. Polymers 2020, 12, 1756. [Google Scholar] [CrossRef] [PubMed]
- Narea, P.; Hernández, B.; Cisterna, J.; Cárdenas, A.; Llanos, J.; Amo-Ochoa, P.; Zamora, F.; Priego, J.L.; Cortijo, M.; Delgado, G.E.; et al. Heterobimetallic Three-Dimensional 4d-4f Coordination Polymers Based on 5-Methyl-1-(Pyridyn-4-Ylmethyl)-1H-1,2,3-Triazole-3,4-Dicarboxylate. J. Solid State Chem. 2022, 310, 123027. [Google Scholar] [CrossRef]
- Hernández, B.; Narea, P.; Espinoza, D.; Navarrete, A.; Aguirre, G.; Delgado, G.E.; Cárdenas, A.; Brito, I.; Cisterna, J. Novel Zn(II) and Cd(II) Coordination Polymers Derived from 1,2,3-Triazole-1,3-Diketone Ligand. Syntheses and Structural, Thermal, Computational, and Luminescent Studies. J. Solid State Chem. 2022, 312, 123156. [Google Scholar] [CrossRef]
- Kamalraj, V.R.; Senthil, S.; Kannan, P. One-Pot Synthesis and the Fluorescent Behavior of 4-Acetyl-5-Methyl-1,2,3-Triazole Regioisomers. J. Mol. Struct. 2008, 892, 210–215. [Google Scholar] [CrossRef]
- Robin, A.Y.; Fromm, K.M. Coordination Polymer Networks with O- and N-Donors: What They Are, Why and How They Are Made. Coord. Chem. Rev. 2006, 250, 2127–2157. [Google Scholar] [CrossRef]
- Rietveld, H.M. Line Profiles of Neutron Powder-Diffraction Peaks for Structure Refinement. Acta Crystallogr. 1967, 22, 151–152. [Google Scholar] [CrossRef]
- Rodriguez-Carvajal, J. FullProf Program. Available online: https://www.ill.eu/sites/fullprof/php/FullProf_News_2021.htm (accessed on 27 December 2022).
- Allen, F.H.; Kennard, O.; Watson, D.G.; Brammer, L.; Orpen, A.G.; Taylor, R. Tables of Bond Lengths Determined by X-Ray and Neutron-Diffraction. Part 1. Bond Lengths in Organic-Compounds. J. Chem. Soc. Perkin. Trans. 1987, 2, S1–S19. [Google Scholar] [CrossRef]
- Brito, I.; Kesternich, V.; Pérez-Fehrmann, M.; Araneda, C.; Cárdenas, A. Crystal Structure of Ethyl 5-Methyl-1-(Pyridin-3-Yl)-1H-1,2,3-Triazole-4-Carboxylate, C11H12N4O2. Z. Für Krist. -New Cryst. Struct. 2017, 232, 1011–1012. [Google Scholar] [CrossRef]
- Bernstein, J.; Davis, R.E.; Shimoni, L.; Chang, N.-L. Patterns in Hydrogen Bonding: Functionality and Graph Set Analysis in Crystals. Angew. Chem. Int. Ed. Engl. 1995, 34, 1555–1573. [Google Scholar] [CrossRef]
- Stoughton, R.W.; Rollefson, G.K. The Influence of Ionic Strength on the Quenching of Fluorescence in Aqueous Solutions. J. Am. Chem. Soc. 1939, 61, 2634–2638. [Google Scholar] [CrossRef]
- Song, J.; Duan, B.-F.; Lu, J.-F.; Wu, R.; Du, Q.-C. Hydrothermal Synthesis of Three Zinc(II) Coordination Polymers from 0D to 2D: Synthesis, Structure, Luminescence Properties and Effect of Auxiliary Ligand on Their Structural Architectures. J. Mol. Struct. 2019, 1195, 252–258. [Google Scholar] [CrossRef]
- Ejarque, D.; Calvet, T.; Font-Bardia, M.; Pons, J. Steric Crowding of a Series of Pyridine Based Ligands Influencing the Photophysical Properties of Zn (II) Complexes. CrystEngComm 2021, 23, 6199–6213. [Google Scholar] [CrossRef]
- Wang, X.-M.; Chen, S.; Fan, R.-Q.; Zhang, F.-Q.; Yang, Y.-L. Facile Luminescent Tuning of Zn II /Hg II Complexes Based on Flexible, Semi-Rigid and Rigid Polydentate Schiff Bases from Blue to Green to Red: Structural, Photophysics, Electrochemistry and Theoretical Calculations Studies. Dalton Trans. 2015, 44, 8107–8125. [Google Scholar] [CrossRef]
- Green, A.P.; Buckley, A.R. Solid State Concentration Quenching of Organic Fluorophores in PMMA. Phys. Chem. Chem. Phys. 2015, 17, 1435–1440. [Google Scholar] [CrossRef]
- Zhu, H.; Han, C.; Li, Y.-H.; Cui, G.-H. Two New Coordination Polymers Containing Long Flexible Bis(Benzimidazole) Ligand as Luminescent Chemosensors for Acetylacetone and Hg(II) Ions Detection. J. Solid State Chem. 2020, 282, 121132. [Google Scholar] [CrossRef]
- Bruker AXS INC. APEX3 Package. In APEX3, SAINT and SADABS; Bruker AXS Inc.: Madison, WI, USA, 2016. [Google Scholar]
- Sheldrick, G.M. Crystal Structure Refinement with SHELXL. Acta Crystallogr. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A Complete Structure Solution, Refinement and Analysis Program. J. Appl. Crystallogr. 2009, 42, 339–341. [Google Scholar] [CrossRef]
Compound | λmax (exc/nm) * | λmax (em/nm) * | ϕ (int/%) | ϕ (ext/%) |
---|---|---|---|---|
NaL1 | 357 | 443 | 0.125 | 0.053 |
NaL2 | 316 | 425 | 0.647 | 0.289 |
1 | 367 | 450 | 1.440 | 0.511 |
2 | 366 | 445 | 0.114 | 0.041 |
Compound | P1 | P2 | 1D-[Zn(L1)]n (1) | 1D-[Zn(L2)⋅4H2O]n (2) |
---|---|---|---|---|
Empirical Formula | C12H14N4O2 | C12H14N4O2 | C20H18N8O4Zn | C20H26N8O8Zn |
Formula mass, g mol−1 | 246.27 | 246.27 | 499.79 | 571.86 |
Collection T, K | 296.15 | 295.59 | 296.29 | 295.68 |
crystal system | monoclinic | orthorhombic | monoclinic | monoclinic |
space group | P21/c | P212121 | C2/c | C2/c |
a (Å) | 11.762(3) | 4.8453(4) | 15.1822(10) | 19.4229(8) |
b (Å) | 12.989(4) | 10.7088(7) | 9.0877(6) | 9.3153(3) |
c (Å) | 8.171(2) | 24.2892(17) | 15.1810(10) | 14.5061(6) |
β (°) | 91.736(18) | 90 | 107.249(2) | 104.285(3) |
V (Å3) | 1247.8(6) | 1260.30(16) | 2000.3(2) | 2543.44(17) |
Z | 4 | 4 | 4 | 4 |
ρcalcd (gcm−3) | 1311 | 1298 | 1.660 | 1.493 |
Crystal size (mm) | 0.485 × 0.15 × 0.12 | 0.558 × 0.321 × 0.295 | 0.21 × 0.17 × 0.09 | 0.147 × 0.112 × 0.058 |
Radiation type | CuKα | CuKα | MoKα | CuKα |
F(000) | 520.0 | 520.0 | 1024.0 | 1184.0 |
abs coeff (mm−1) | 0.766 | 0.758 | 1.277 | 1.875 |
2θ range (°) | 7.52–130.394 | 7.278–30.966 | 5.586–58.298 | 9.396–130.302 |
range h,k,l | −13/13, −15/15, −8/9 | −4 / 5, −11/12, −27 / 25 | −20 / 20, −12/ 12, −20 / 20 | −22 / 22, −10 /10, −16 / 17 |
No. total refl. | 13201 | 10636 | 34975 | 20229 |
No. unique refl. | 2121 [Rint = 0.0671, Rsigma = 0.0485] | 2130 [Rint = 0.0363, Rsigma = 0.0278] | 3956 [Rint = 0.0817, Rsigma = 0.0444] | 2156 [Rint = 0.1433, Rsigma = 0.0824] |
Comp. θmax (%) | 99/ 65.197 | 98/ 65.483 | 100/29.149 | 99/65.151 |
Max/min transmission | 0.753/0.607 | 0.753/0.635 | 0.665/0.514 | 0.753/0.622 |
Data/Restraints/Parameters | 2121/0/165 | 2130/0/165 | 3956/0/153 | 2156/0/176 |
Final R [I > 2σ(I)] | R1 = 0.0553, wR2 = 0.1238 | R1 = 0.0436, wR2 = 0.1008 | R1 = 0.0457, wR2 = 0.0765 | R1 = 0.0506, wR2 = 0.0972 |
R indices (all data) | R1 = 0.0805, wR2 = 0.1388 | R1 = 0.0516, wR2 = 0.1058 | R1 = 0.0878, wR2 = 0.0867 | R1 = 0.1012, wR2 = 0.1129 |
Goodness of fit / F2 | 1049 | 1097 | 1.116 | 1.025 |
Largest diff. Peak/hole (eÅ−3) | 0.16/−0.41 | 0.16/−0.25 | 0.33/−0.39 | 0.29/−0.43 |
Flack Parameter | --- | 0.11(13) | --- | --- |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Narea, P.; Hernández, B.; Cisterna, J.; Cárdenas, A.; Amo-Ochoa, P.; Zamora, F.; Delgado, G.E.; Llanos, J.; Brito, I. The Methylene Spacer Matters: The Structural and Luminescent Effects of Positional Isomerism of n-Methylpyridyltriazole Carboxylate Semi-Rigid Ligands in the Structure of Zn(II) Based Coordination Polymers. Polymers 2023, 15, 888. https://doi.org/10.3390/polym15040888
Narea P, Hernández B, Cisterna J, Cárdenas A, Amo-Ochoa P, Zamora F, Delgado GE, Llanos J, Brito I. The Methylene Spacer Matters: The Structural and Luminescent Effects of Positional Isomerism of n-Methylpyridyltriazole Carboxylate Semi-Rigid Ligands in the Structure of Zn(II) Based Coordination Polymers. Polymers. 2023; 15(4):888. https://doi.org/10.3390/polym15040888
Chicago/Turabian StyleNarea, Pilar, Benjamín Hernández, Jonathan Cisterna, Alejandro Cárdenas, Pilar Amo-Ochoa, Félix Zamora, Gerzon E. Delgado, Jaime Llanos, and Iván Brito. 2023. "The Methylene Spacer Matters: The Structural and Luminescent Effects of Positional Isomerism of n-Methylpyridyltriazole Carboxylate Semi-Rigid Ligands in the Structure of Zn(II) Based Coordination Polymers" Polymers 15, no. 4: 888. https://doi.org/10.3390/polym15040888
APA StyleNarea, P., Hernández, B., Cisterna, J., Cárdenas, A., Amo-Ochoa, P., Zamora, F., Delgado, G. E., Llanos, J., & Brito, I. (2023). The Methylene Spacer Matters: The Structural and Luminescent Effects of Positional Isomerism of n-Methylpyridyltriazole Carboxylate Semi-Rigid Ligands in the Structure of Zn(II) Based Coordination Polymers. Polymers, 15(4), 888. https://doi.org/10.3390/polym15040888