Synthesis, Curing and Thermal Behavior of Amine Hardeners from Potentially Renewable Sources
Abstract
:1. Introduction
2. Materials and Methods
2.1. General
2.2. Synthesis of 4-Amino-3-methoxy benzaldehyde (1)
2.3. Synthesis of 4-Amino-3,5-dimethoxy benzaldehyde (2)
2.4. Synthesis of 4-Amino-3-methoxy benzaldehyde oxime (3)
2.5. Synthesis of 4-Amino-3,5-dimethoxy benzaldehyde oxime (4)
2.6. Synthesis of 4-Amino-3-methoxy benzylamine (5)
2.7. Synthesis of 4-Amino-3,5-dimethoxy benzylamine (6)
2.8. Thermal Analyses
3. Results and Discussion
3.1. Synthesis of the Amines
3.2. DSC Analyses
3.3. TG-MS Investigations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rahman, M.M.; Akhtarul Islam, M. Application of epoxy resins in building materials: Progress and prospects. Polym. Bull. 2022, 79, 1949–1975. [Google Scholar] [CrossRef]
- Lu, Q.; Bors, J. Alternate uses of epoxy asphalt on bridge decks and roadways. Constr. Build. Mater. 2015, 78, 18–25. [Google Scholar] [CrossRef]
- Wiegand, T.; Osburg, A. Lightweight Filled Epoxy Resins for Timber Restoration. In Proceedings of the International Congress on Polymers in Concrete (ICPIC 2018), Washington, DC, USA, 29 April–1 May 2018. [Google Scholar] [CrossRef]
- Jouyandeh, M.; Akbari, V.; Paran, S.M.R.; Livi, S.; Lins, L.; Vahabi, H.; Saeb, M.R. Epoxy/Ionic Liquid-Modified Mica Nanocomposites: Network Formation–Network Degradation Correlation. Nanomaterials 2021, 11, 1990. [Google Scholar] [CrossRef] [PubMed]
- Ng, F.; Couture, G.; Philippe, C.; Boutevin, B.; Caillol, S. Bio-Based Aromatic Epoxy Monomers for Thermoset Materials. Molecules 2017, 22, 149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zevallos Torres, L.A.; Lorenci Woiciechowski, A.; de Andrade Tanobe, V.O.; Karp, S.G.; Guimarães Lorenci, L.C.; Faulds, C.; Soccol, C.R. Lignin as a potential source of high-added value compounds: A review. J. Clean. Prod. 2020, 263, 121499. [Google Scholar] [CrossRef]
- Creighton, R.H.J.; McCarthy, J.L.; Hibbert, H. Aromatic Aldehydes from Spruce and Maple Woods. J. Am. Chem. Soc. 1941, 63, 312. [Google Scholar] [CrossRef]
- Kleinert, M.; Barth, T. Phenols from Lignin. Chem. Eng. Technol. 2008, 31, 736–745. [Google Scholar] [CrossRef]
- Peng, C.; Zhang, G.; Han, J.; Li, X. Hydrothermal conversion of lignin and black liquor for phenolics with the aids of alkali and hydrogen donor. Carbon Resour. Convers. 2019, 2, 141–150. [Google Scholar] [CrossRef]
- Schutyser, W.; Renders, T.; Van den Bosch, S.; Koelewijn, S.F.; Beckham, G.T.; Sels, B.F. Chemicals from lignin: An interplay of lignocellulose fractionation, depolymerisation, and upgrading. Chem. Soc. Rev. 2018, 47, 852–908. [Google Scholar] [CrossRef]
- Auvergne, R.; Caillol, S.; David, G.; Boutevin, B.; Pascault, J.-P. Biobased Thermosetting Epoxy: Present and Future. Chem. Rev. 2014, 114, 1082–1115. [Google Scholar] [CrossRef]
- Yu, Q.; Peng, X.; Wang, Y.; Geng, H.; Xu, A.; Zhang, X.; Xu, W.; Ye, D. Vanillin-based degradable epoxy vitrimers: Reprocessability and mechanical properties study. Eur. Polym. J. 2019, 117, 55–63. [Google Scholar] [CrossRef]
- Froidevaux, V.; Negrell, C.; Caillol, S.; Pascault, J.-P.; Boutevin, B. Biobased Amines: From Synthesis to Polymers; Present and Future. Chem. Rev. 2016, 116, 14181–14224. [Google Scholar] [CrossRef] [PubMed]
- Janvier, M.; Hollande, L.; Jaufurally, A.S.; Pernes, M.; Ménard, R.; Grimaldi, M.; Beaugrand, J.; Balaguer, P.; Ducrot, P.-H.; Allais, F. Syringaresinol: A Renewable and Safer Alternative to Bisphenol A for Epoxy-Amine Resins. ChemSusChem 2017, 10, 738–746. [Google Scholar] [CrossRef] [PubMed]
- Nelson, E.K. The constitution of capsaicin, the pungent principle of capsicum. J. Am. Chem. Soc. 1919, 41, 1115–1121. [Google Scholar] [CrossRef] [Green Version]
- Fache, M.; Montérémal, C.; Boutevin, B.; Caillol, S. Amine hardeners and epoxy cross-linker from aromatic renewable resources. Eur. Polym. J. 2015, 73, 344–362. [Google Scholar] [CrossRef]
- Mora, A.-S.; Tayouo, R.; Boutevin, B.; David, G.; Caillol, S. Vanillin-derived amines for bio-based thermosets. Green Chem. 2018, 20, 4075–4084. [Google Scholar] [CrossRef]
- Savonnet, E.; Le Coz, C.; Grau, E.; Grelier, S.; Defoort, B.; Cramail, H. Divanillin-Based Aromatic Amines: Synthesis and Use as Curing Agents for Fully Vanillin-Based Epoxy Thermosets. Front. Chem. 2019, 7, 606. [Google Scholar] [CrossRef] [Green Version]
- Oleinik, E.F. Epoxy-Aromatic Amine Networks in the Glassy State Structure and Properties; Springer: Berlin/Heidelberg, Germany, 1986; pp. 49–99. [Google Scholar]
- Levy, A.A.; Rains, H.C.; Smiles, S. CCCCLII.—The rearrangement of hydroxy-sulphones. Part I. J. Chem. Soc. (Resumed) 1931, 3264–3269. [Google Scholar] [CrossRef]
- Mizuno, M.; Yamano, M. A New Practical One-Pot Conversion of Phenols to Anilines. Org. Lett. 2005, 7, 3629–3631. [Google Scholar] [CrossRef]
- Xie, Y.-S.; Vijaykumar, B.V.D.; Jang, K.; Shin, H.-H.; Zuo, H.; Shin, D.-S. One-pot conversion of phenols to anilines via Smiles rearrangement. Tetrahedron Lett. 2013, 54, 5151–5154. [Google Scholar] [CrossRef]
- Yu, J.; Wang, Y.; Zhang, P.; Wu, J. Direct Amination of Phenols under Metal-Free Conditions. Synlett 2013, 24, 1448–1454. [Google Scholar] [CrossRef]
- Roth, H.J.; Schwarz, M. Zur Kondensation von Chalkonoxyden mit Hydroxylamin. Arch. Pharm. 1961, 294, 769–774. [Google Scholar] [CrossRef] [PubMed]
- Itsuno, S.; Sakurai, Y.; Ito, K. Reduction of Some Functional Groups with Zirconium Tetrachloride/Sodium Borohydride. Synthesis 1988, 1988, 995–996. [Google Scholar] [CrossRef]
- Tsukinoki, T.; Mitoma, Y.; Nagashima, S.; Kawaji, T.; Hashimoto, I.; Tashiro, M. Organic reaction in water. Part 1. A convenient method for reduction of imines using zinc powder. Tetrahedron Lett. 1998, 39, 8873–8876. [Google Scholar] [CrossRef]
- Karjalainen, M.M.; Wiegand, T.; Rautiainen, J.M.; Wagner, A.; Görls, H.; Weigand, W.; Oilunkaniemi, R.; Laitinen, R.S. Competitive Te-Te and C-Te bond cleavage in the oxidative addition of diaryl and dialkyl ditellurides to Pt(0) centers. J. Organomet. Chem. 2017, 836–837, 17–25. [Google Scholar] [CrossRef] [Green Version]
- Horie, K.; Hiura, H.; Sawada, M.; Mita, I.; Kambe, H. Calorimetric investigation of polymerization reactions. III. Curing reaction of epoxides with amines. J. Polym. Sci. Part A-1 Polym. Chem. 1970, 8, 1357–1372. [Google Scholar] [CrossRef]
- Mustata, F.; Tudorachi, N. Thermal behavior of epoxy resin cured with aromatic dicarboxylic acids. J. Therm. Anal. Calorim. 2016, 125, 97–110. [Google Scholar] [CrossRef]
- Bosshard, H.H.; Mory, R.; Schmid, M.; Zollinger, H. Eine Methode zur katalysierten Herstellung von Carbonsäure- und Sulfosäure-chloriden mit Thionylchlorid. Helv. Chim. Acta 1959, 42, 1653–1658. [Google Scholar] [CrossRef]
- Smith, I.T. The mechanism of the crosslinking of epoxide resins by amines. Polymer 1961, 2, 95–108. [Google Scholar] [CrossRef]
- Jouyandeh, M.; Paran, S.M.R.; Jannesari, A.; Saeb, M.R. ‘Cure Index’ for thermoset composites. Prog. Org. Coat. 2019, 127, 429–434. [Google Scholar] [CrossRef]
- Amarasekara, A.S.; Razzaq, A. Vanillin-Based Polymers—Part II: Synthesis of Schiff Base Polymers of Divanillin and Their Chelation with Metal Ions. ISRN Polym. Sci. 2012, 2012, 5. [Google Scholar] [CrossRef] [Green Version]
- Phatake, R.S.; Patel, P.; Ramana, C.V. Ir(III)-Catalyzed Synthesis of Isoquinoline N-Oxides from Aryloxime and α-Diazocarbonyl Compounds. Org. Lett. 2016, 18, 292–295. [Google Scholar] [CrossRef] [PubMed]
- Campbell, C.G.; Astorga, D.J.; Duemichen, E.; Celina, M. Thermoset materials characterization by thermal desorption or pyrolysis based gas chromatography-mass spectrometry methods. Polym. Degrad. Stab. 2020, 174, 109032. [Google Scholar] [CrossRef]
- Weissermel, K.; Arpe, H.-J. Industrielle Organische Chemie: Bedeutende Vor- und Zwischenprodukte, Vierte, überarbeitete und erweiterte Auflage ed.; VCH: Weinheim, Germany, 1994; p. 406f. [Google Scholar]
Amine Hardener | Tonset Curing | Tg |
---|---|---|
5 | 71 °C | 68 °C |
6 | 79 °C | 160 °C |
IPDA | 86 °C | 112 °C |
DDS | 175 °C | 181 °C |
ABA | 73 °C | 137 °C |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wiegand, T.; Osburg, A. Synthesis, Curing and Thermal Behavior of Amine Hardeners from Potentially Renewable Sources. Polymers 2023, 15, 990. https://doi.org/10.3390/polym15040990
Wiegand T, Osburg A. Synthesis, Curing and Thermal Behavior of Amine Hardeners from Potentially Renewable Sources. Polymers. 2023; 15(4):990. https://doi.org/10.3390/polym15040990
Chicago/Turabian StyleWiegand, Torben, and Andrea Osburg. 2023. "Synthesis, Curing and Thermal Behavior of Amine Hardeners from Potentially Renewable Sources" Polymers 15, no. 4: 990. https://doi.org/10.3390/polym15040990
APA StyleWiegand, T., & Osburg, A. (2023). Synthesis, Curing and Thermal Behavior of Amine Hardeners from Potentially Renewable Sources. Polymers, 15(4), 990. https://doi.org/10.3390/polym15040990