Crosslinked Polynorbornene-Based Anion Exchange Membranes with Perfluorinated Branch Chains
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Random Norbornene Copolymer (FnB)
2.3. Preparation of Crosslinked AEMs with Perfluorinated Branch Chains (CFnB)
2.4. Characterization and Measurement
3. Results and Discussion
3.1. Polymer Synthesis and Characterization
3.2. Ion Exchange Capacity, Water Uptake, and Swelling Ratio
3.3. Thermal and Tensile Properties
3.4. Microstructure Characterization
3.5. Ion Conductivity
3.6. Alkaline Stability
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhao, Y.; Wang, T.; Setzler, B.P.; Abbasi, R.; Wang, J.; Yan, Y. A high-performance gas-fed direct ammonia hydroxide exchange membrane fuel cell. ACS Energy Lett. 2021, 6, 1996–2002. [Google Scholar] [CrossRef]
- An, L.; Zhao, T.S. Transport phenomena in alkaline direct ethanol fuel cells for sustainable energy production. J. Power Sources 2017, 341, 199–211. [Google Scholar] [CrossRef]
- Mustain, W.E.; Chatenet, M.; Page, M.; Kim, Y.S. Durability challenges of anion exchange membrane fuel cells. Energy Environ. Sci. 2020, 13, 2805–2838. [Google Scholar] [CrossRef]
- Park, E.J.; Kim, Y.S. Quaternized aryl ether-free polyaromatics for alkaline membrane fuel cells: Synthesis, properties, and performance-A topical review. J. Mater. Chem. A 2018, 6, 15456–15477. [Google Scholar] [CrossRef]
- Firouzjaie, H.A.; Mustain, W.E. Catalytic advantages, challenges, and priorities in alkaline membrane fuel cells. ACS Catal. 2019, 10, 225–234. [Google Scholar] [CrossRef] [Green Version]
- Olsson, J.S.; Pham, T.H.; Jannasch, P. Poly(arylene piperidinium) hydroxide ion exchange membranes: Synthesis, alkaline stability, and conductivity. Adv. Funct. Mater. 2018, 28, 1702758. [Google Scholar] [CrossRef]
- Cao, H.; Pan, J.; Zhu, H.; Sun, Z.; Wang, B.; Zhao, J.; Yan, F. Interaction regulation between ionomer binder and catalyst: Active triple-phase boundary and high performance catalyst layer for anion exchange membrane fuel cells. Adv. Sci. 2021, 8, 2101744. [Google Scholar] [CrossRef] [PubMed]
- Zion, N.; Douglin, J.C.; Cullen, D.A.; Zelenay, P.; Dekel, D.R.; Elbaz, L. Porphyrin aerogel catalysts for oxygen reduction reaction in anion-exchange membrane fuel cells. Adv. Funct. Mater. 2021, 31, 2100963. [Google Scholar] [CrossRef]
- Pan, Z.; An, L.; Zhao, T.; Tang, Z. Advances and challenges in alkaline anion exchange membrane fuel cells. Prog. Energy Combust. Sci. 2018, 66, 141–175. [Google Scholar] [CrossRef]
- You, W.; Noonan, K.J.T.; Coates, G.W. Alkaline-stable anion exchange membranes: A review of synthetic approaches. Prog. Polym. Sci. 2019, 100, 101177. [Google Scholar] [CrossRef]
- Chae, J.E.; Lee, S.Y.; Yoo, S.J.; Kim, J.Y.; Jang, J.H.; Park, H.Y.; Park, H.S.; Seo, B.; Henkensmeier, D.; Song, K.H.; et al. Polystyrene-Based Hydroxide-Ion-Conducting Ionomer: Binder Characteristics and Performance in Anion-Exchange Membrane Fuel Cells. Polymers 2021, 13, 690. [Google Scholar] [CrossRef]
- Chu, X.; Liu, J.; Miao, S.; Liu, L.; Huang, Y.; Tang, E.; Liu, S.; Xing, X.; Li, N. Crucial role of side-chain functionality in anion exchange membranes: Properties and alkaline fuel cell performance. J. Membr. Sci. 2021, 625, 119172. [Google Scholar] [CrossRef]
- Zhu, Y.; Ding, L.; Liang, X.; Shehzad, M.A.; Wang, L.; Ge, X.; He, Y.; Wu, L.; Varcoe, J.R.; Xu, T. Beneficial use of rotatable-spacer side-chains in alkaline anion exchange membranes for fuel cells. Energy Environ. Sci. 2018, 11, 3472–3479. [Google Scholar] [CrossRef]
- Han, J.; Zhu, L.; Pan, J.; Zimudzi, T.J.; Wang, Y.; Peng, Y.; Hickner, M.A.; Zhuang, L. Elastic long-chain multication cross-linked anion exchange membranes. Macromolecules 2017, 50, 3323–3332. [Google Scholar] [CrossRef]
- Kim, Y.; Wang, Y.; France-Lanord, A.; Wang, Y.; Wu, Y.M.; Lin, S.; Li, Y.; Grossman, J.C.; Swager, T.M. Ionic highways from covalent assembly in highly conducting and stable anion exchange membrane fuel cells. J. Am. Chem. Soc. 2019, 141, 18152–18159. [Google Scholar] [CrossRef]
- Lee, K.H.; Cho, D.H.; Kim, Y.M.; Moon, S.J.; Seong, J.G.; Shin, D.W.; Sohn, J.-Y.; Kim, J.F.; Lee, Y.M. Highly conductive and durable poly(arylene ether sulfone) anion exchange membrane with end-group cross-linking. Energy Environ. Sci. 2017, 10, 275–285. [Google Scholar] [CrossRef]
- Lin, C.; Liu, X.; Yang, Q.; Wu, H.; Liu, F.; Zhang, Q.; Zhu, A.; Liu, Q. Hydrophobic side chains to enhance hydroxide conductivity and physicochemical stabilities of side-chain-type polymer AEMs. J. Membr. Sci. 2019, 585, 90–98. [Google Scholar] [CrossRef]
- Xu, Z.; Tang, H.; Li, N. Enhanced proton/iron permselectivity of sulfonated poly (ether ether ketone) membrane functionalized with basic pendant groups during electrodialysis. J. Membr. Sci. 2020, 610, 118227. [Google Scholar] [CrossRef]
- Zhang, Z.; Xiao, X.; Yan, X.; Liang, X.; Wu, L. Highly conductive anion exchange membranes based on one-step benzylation modification of poly(ether ether ketone). J. Membr. Sci. 2019, 574, 205–211. [Google Scholar] [CrossRef]
- Liu, D.; Lin, L.; Xie, Y.; Pang, J.; Jiang, Z. Anion exchange membrane based on poly(arylene ether ketone) containing long alkyl densely quaternized carbazole derivative pendant. J. Membr. Sci. 2021, 623, 119079. [Google Scholar] [CrossRef]
- Wang, Y.; Qiao, X.; Liu, M.; Liu, L.; Li, N. The effect of -NH- on quaternized polybenzimidazole anion exchange membranes for alkaline fuel cells. J. Membr. Sci. 2021, 626, 119178. [Google Scholar] [CrossRef]
- Wright, A.G.; Fan, J.; Britton, B.; Weissbach, T.; Lee, H.F.; Kitching, E.A.; Peckham, T.J.; Holdcroft, S. Hexamethyl-p-terphenyl poly(benzimidazolium): A universal hydroxide-conducting polymer for energy conversion devices. Energy Environ. Sci. 2016, 9, 2130–2142. [Google Scholar] [CrossRef]
- Jheng, L.C.; Cheng, C.W.; Ho, K.S.; Hsu, S.L.; Hsu, C.Y.; Lin, B.Y.; Ho, T.H. Dimethylimidazolium-Functionalized Polybenzimidazole and Its Organic-Inorganic Hybrid Membranes for Anion Exchange Membrane Fuel Cells. Polymers 2021, 13, 2864. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Hu, X.; Hu, B.; Liu, L.; Li, N. Soluble poly(aryl piperidinium) with extended aromatic segments as anion exchange membranes for alkaline fuel cells and water electrolysis. J. Membr. Sci. 2022, 642, 119966. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, Y.; Setzler, B.P.; Rojas-Carbonell, S.; Ben Yehuda, C.; Amel, A.; Page, M.; Wang, L.; Hu, K.; Shi, L.; et al. Poly(aryl piperidinium) membranes and ionomers for hydroxide exchange membrane fuel cells. Nat. Energy 2019, 4, 392–398. [Google Scholar] [CrossRef]
- Ren, R.; Zhang, S.; Miller, H.A.; Vizza, F.; Varcoe, J.R.; He, Q. Facile preparation of novel cardo Poly(oxindolebiphenylylene) with pendent quaternary ammonium by superacid-catalysed polyhydroxyalkylation reaction for anion exchange membranes. J. Membr. Sci. 2019, 591, 117320. [Google Scholar] [CrossRef]
- Wang, F.; Wang, D.; Nagao, Y. OH- conductive properties and water uptake of anion exchange thin Films. ChemSusChem 2021, 14, 2694–2697. [Google Scholar] [CrossRef] [PubMed]
- Chen, N.; Wang, H.; Kim, S.P.; Kim, H.M.; Lee, W.H.; Hu, C.; Bae, J.Y.; Sim, E.S.; Chung, Y.C.; Jang, J.H.; et al. Poly(fluorenyl aryl piperidinium) membranes and ionomers for anion exchange membrane fuel cells. Nat. Commun. 2021, 12, 2367. [Google Scholar] [CrossRef]
- Allushi, A.; Pham, T.H.; Jannasch, P. Highly conductive hydroxide exchange membranes containing fluorene-units tethered with dual pairs of quaternary piperidinium cations. J. Membr. Sci. 2021, 632. [Google Scholar] [CrossRef]
- Cao, D.; Yang, F.; Sheng, W.; Zhou, Y.; Zhou, X.; Lu, Y.; Nie, F.; Li, N.; Pan, L.; Li, Y. Polynorbornene-based anion exchange membranes with hydrophobic large steric hindrance arylene substituent. J. Membr. Sci. 2022, 641, 119938. [Google Scholar] [CrossRef]
- Wang, L.; Peng, X.; Mustain, W.E.; Varcoe, J.R. Radiation-grafted anion-exchange membranes: The switch from low- to high-density polyethylene leads to remarkably enhanced fuel cell performance. Energy Environ. Sci. 2019, 12, 1575–1579. [Google Scholar] [CrossRef] [Green Version]
- Zhu, L.; Yu, X.; Peng, X.; Zimudzi, T.J.; Saikia, N.; Kwasny, M.T.; Song, S.; Kushner, D.I.; Fu, Z.; Tew, G.N.; et al. Poly(olefin)-based anion exchange membranes prepared using Ziegler-Natta polymerization. Macromolecules 2019, 52, 4030–4041. [Google Scholar] [CrossRef]
- Cao, D.; Nie, F.; Liu, M.; Sun, X.; Wang, B.; Wang, F.; Li, N.; Wang, B.; Ma, Z.; Pan, L.; et al. Crosslinked anion exchange membranes prepared from highly reactive polyethylene and polypropylene intermediates. J. Membr. Sci. 2022, 661, 120921. [Google Scholar] [CrossRef]
- Wang, J.; Mao, G.; Ober, C.K.; Kramer, E.J. Liquid crystalline, semifluorinated side group block copolymers with stable low energy surfaces: Synthesis, liquid crystalline structure, and critical surface tension. Macromolecules 1997, 30, 1906–1914. [Google Scholar] [CrossRef]
- Rutenberg, I.M.; Scherman, O.A.; Grubbs, R.H.; Jiang, W.; Garfunkel, E.; Bao, Z. Synthesis of polymer dielectric layers for organic thin film transistors via surface-Initiated ring-opening metathesis polymerization. J. Am. Chem. Soc. 2004, 126, 4062–4063. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tarnowski, D.J.; Bekos, E.J.; Korzeniewski, C. Oxygen transport characteristics of refunctionalized fluoropolymeric membranes and their application in the design of biosensors based upon the Clark-type oxygen probe. Anal. Chem. 1995, 67, 1546–1552. [Google Scholar] [CrossRef]
- Balachandra, A.M.; Baker, G.L.; Bruening, M.L. Preparation of composite membranes by atom transfer radical polymerization initiated from a porous support. J. Membr. Sci. 2003, 227, 1–14. [Google Scholar] [CrossRef]
- Iacono, S.T.; Budy, S.M.; Jin, J.; Smith, J.D.W. Science and technology of perfluorocyclobutyl aryl ether polymers. J. Polym. Sci. Part A Polym. Chem. 2007, 45, 5705–5721. [Google Scholar] [CrossRef]
- Ren, Y.; Lodge, T.P.; Hillmyer, M.A. A simple and mild route to highly fluorinated model polymers. Macromolecules 2001, 34, 4780–4787. [Google Scholar] [CrossRef]
- Zhang, M.; Russell, T.P. Graft copolymers from poly(vinylidene fluoride-co-chlorotrifluoroethylene) via atom transfer radical polymerization. Macromolecules 2006, 39, 3531–3539. [Google Scholar] [CrossRef]
- Varcoe, J.R.; Slade, R.C.T. An electron-beam-grafted ETFE alkaline anion-exchange membrane in metal-cation-free solid-state alkaline fuel cells. Electrochem. Commun. 2006, 8, 839–843. [Google Scholar] [CrossRef] [Green Version]
- Deavin, O.I.; Murphy, S.; Ong, A.L.; Poynton, S.D.; Zeng, R.; Herman, H.; Varcoe, J.R. Anion-exchange membranes for alkaline polymer electrolyte fuel cells: Comparison of pendent benzyltrimethylammonium- and benzylmethylimidazolium-head-groups. Energy Environ. Sci. 2012, 5, 8584–8597. [Google Scholar] [CrossRef] [Green Version]
- Ponce-González, J.; Whelligan, D.K.; Wang, L.; Bance-Soualhi, R.; Wang, Y.; Peng, Y.; Peng, H.; Apperley, D.C.; Sarode, H.N.; Pandey, T.P.; et al. High performance aliphatic-heterocyclic benzyl-quaternary ammonium radiation-grafted anion-exchange membranes. Energy Environ. Sci. 2016, 9, 3724–3735. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Magliocca, E.; Cunningham, E.L.; Mustain, W.E.; Poynton, S.D.; Escudero-Cid, R.; Nasef, M.M.; Ponce-Gonzalez, J.; Bance-Souahli, R.; Slade, R.C.T.; et al. An optimised synthesis of high performance radiation-grafted anion-exchange membranes. Green Chem. 2017, 19, 831–843. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Brink, J.J.; Varcoe, J.R. The first anion-exchange membrane fuel cell to exceed 1 W cm-2 at 70 ℃ with a non-Pt-group (O2) cathode. Chem. Commun. 2017, 53, 11771–11773. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Brink, J.J.; Liu, Y.; Herring, A.M.; Ponce-Gonzalez, J.; Whelligan, D.K.; Varcoe, J.R. Non-fluorinated pre-irradiation-grafted (peroxidated) LDPE-based anion-exchange membranes with high performance and stability. Energy Environ. Sci. 2017, 10, 2154–2167. [Google Scholar] [CrossRef] [Green Version]
- Pino-Ramos, V.H.; Ramos-Ballesteros, A.; Lopez-Saucedo, F.; Lopez-Barriguete, J.E.; Varca, G.H.C.; Bucio, E. Radiation grafting for the functionalization and development of smart polymeric materials. Top. Curr. Chem. 2016, 374, 63. [Google Scholar] [CrossRef]
- Xu, Z.; Wan, L.; Liao, Y.; Wang, P.; Liu, K.; Wang, B. Anisotropic anion exchange membranes with extremely high water uptake for water electrolysis and fuel cells. J. Mater. Chem. A 2021, 9, 23485–23496. [Google Scholar] [CrossRef]
- Shang, Z.; Hossain, M.M.; Wycisk, R.; Pintauro, P.N. Poly(phenylene sulfonic acid)-expanded polytetrafluoroethylene composite membrane for low relative humidity operation in hydrogen fuel cells. J. Power Sources 2022, 535, 231375. [Google Scholar] [CrossRef]
- Zhu, M.; Su, Y.; Wu, Y.; Zhang, M.; Wang, Y.; Chen, Q.; Li, N. Synthesis and properties of quaternized polyolefins with bulky poly(4-phenyl-1-butene) moieties as anion exchange membranes. J. Membr. Sci. 2017, 541, 244–252. [Google Scholar] [CrossRef]
- Jiang, T.; Zhou, Y.; Yang, Y.; Wu, C.; Fang, H.; Yang, S.; Wei, H.; Ding, Y. Dimensionally and oxidatively stable anion exchange membranes based on bication cross-linked poly(meta-terphenylene alkylene)s. Polymer 2021, 216, 123433. [Google Scholar] [CrossRef]
- Ahmed Mahmoud, A.M.; Miyatake, K. Highly conductive and alkaline stable partially fluorinated anion exchange membranes for alkaline fuel cells: Effect of ammonium head groups. J. Membr. Sci. 2022, 643, 120072. [Google Scholar] [CrossRef]
- Zhang, X.; Chu, X.; Zhang, M.; Zhu, M.; Huang, Y.; Wang, Y.; Liu, L.; Li, N. Molecularly designed, solvent processable tetraalkylammonium-functionalized fluoropolyolefin for durable anion exchange membrane fuel cells. J. Membr. Sci. 2019, 574, 212–221. [Google Scholar] [CrossRef]
- Zhu, L.; Peng, X.; Shang, S.; Kwasny, M.T.; Zimudzi, T.J.; Yu, X.; Saikia, N.; Pan, J.; Liu, Z.K.; Tew, G.N.; et al. High performance anion exchange membrane fuel cells enabled by fluoropoly(olefin) membranes. Adv. Funct. Mater. 2019, 29, 1902059. [Google Scholar] [CrossRef]
- Guo, D.; Lin, C.; Hu, E.; Shi, L.; Soyekwo, F.; Zhang, Q.G.; Zhu, A.M.; Liu, Q.L. Clustered multi-imidazolium side chains functionalized alkaline anion exchange membranes for fuel cells. J. Membr. Sci. 2017, 541, 214–223. [Google Scholar] [CrossRef]
- Mandal, M.; Huang, G.; Kohl, P.A. Anionic multiblock copolymer membrane based on vinyl addition polymerization of norbornenes: Applications in anion-exchange membrane fuel cells. J. Membr. Sci. 2018, 570–571, 394–402. [Google Scholar] [CrossRef]
- Zhu, T.; Xu, S.; Rahman, A.; Dogdibegovic, E.; Yang, P.; Pageni, P.; Kabir, M.P.; Zhou, X.D.; Tang, C. Cationic metallo-polyelectrolytes for robust alkaline anion-exchange membranes. Angew. Chem. Int. Ed. Engl. 2018, 57, 2388–2392. [Google Scholar] [CrossRef]
- Ji, L.; Liu, J.; Wang, X.; Li, J.; Chen, Z.; Liao, S.; Sun, X.; Tang, Y. An efficient and mild route to highly fluorinated polyolefins via copolymerization of ethylene and 5-perfluoroalkylnorbornenes. Polym. Chem. 2019, 10, 3604–3609. [Google Scholar] [CrossRef]
- Faulkner, C.J.; Fischer, R.E.; Jennings, G.K. Surface-initiated polymerization of 5-(perfluoro-n-alkyl)norbornenes from gold substrates. Macromolecules 2010, 43, 1203–1209. [Google Scholar] [CrossRef]
- Park, H.Y.; Kloxin, C.J.; Abuelyaman, A.S.; Oxman, J.D.; Bowman, C.N. Stress relaxation via addition-fragmentation chain transfer in high Tg, high conversion methacrylate-based systems. Macromolecules 2012, 45, 5640–5646. [Google Scholar] [CrossRef] [Green Version]
- Bates, C.M.; Chang, A.B.; Momčilović, N.; Jones, S.C.; Grubbs, R.H. ABA triblock brush polymers: Synthesis, self-Assembly, conductivity, and rheological properties. Macromolecules 2015, 48, 4967–4973. [Google Scholar] [CrossRef] [Green Version]
- Al Munsur, A.Z.; Lee, J.; Chae, J.E.; Kim, H.J.; Park, C.H.; Nam, S.Y.; Kim, T.H. Hexyl quaternary ammonium- and fluorobenzoyl-grafted SEBS as hydrophilic–hydrophobic comb-type anion exchange membranes. J. Membr. Sci. 2022, 643, 120029. [Google Scholar] [CrossRef]
- Chen, W.; Mandal, M.; Huang, G.; Wu, X.; He, G.; Kohl, P.A. Highly conducting anion-exchange membranes based on cross-linked poly(norbornene): Ring opening metathesis polymerization. ACS Appl. Energy Mater. 2019, 2, 2458–2468. [Google Scholar] [CrossRef]
- Zhao, Y.; Feng, L.; Gao, J.; Zhao, Y.; Wang, S.; Ramani, V.; Zhang, Z.; Xie, X. Study on tunable crosslinking anion exchange membranes fabrication and degradation mechanism. Int. J. Hydrog. Energy 2016, 41, 16264–16274. [Google Scholar] [CrossRef]
- Wang, C.; Mo, B.; He, Z.; Shao, Q.; Pan, D.; Wujick, E.; Guo, J.; Xie, X.; Xie, X.; Guo, Z. Crosslinked norbornene copolymer anion exchange membrane for fuel cells. J. Membr. Sci. 2018, 556, 118–125. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; He, Z.; Xie, X.; Mai, X.; Li, Y.; Li, T.; Zhao, M.; Yan, C.; Liu, H.; Wujcik, E.K.; et al. Controllable cross-linking anion exchange membranes with excellent mechanical and thermal properties. Macromol. Mater. Eng. 2018, 303, 1700462. [Google Scholar] [CrossRef]
- Liu, L.; Chu, X.; Liao, J.; Huang, Y.; Li, Y.; Ge, Z.; Hickner, M.A.; Li, N. Tuning the properties of poly(2,6-dimethyl-1,4-phenylene oxide) anion exchange membranes and their performance in H2/O2 fuel cells. Energy Environ. Sci. 2018, 11, 435–446. [Google Scholar] [CrossRef]
- Hu, M.; Ding, L.; Shehzad, M.A.; Ge, Q.; Liu, Y.; Yang, Z.; Wu, L.; Xu, T. Comb-shaped anion exchange membrane with densely grafted short chains or loosely grafted long chains? J. Membr. Sci. 2019, 585, 150–156. [Google Scholar] [CrossRef]
- Liao, J.; Yu, X.; Chen, Q.; Gao, X.; Ruan, H.; Shen, J.; Gao, C. Monovalent anion selective anion-exchange membranes with imidazolium salt-terminated side-chains: Investigating the effect of hydrophobic alkyl spacer length. J. Membr. Sci. 2020, 599, 117818. [Google Scholar] [CrossRef]
- Lee, S.B.; Min, C.M.; Jang, J.; Lee, J.S. Enhanced conductivity and stability of anion exchange membranes depending on chain lengths with crosslinking based on poly(phenylene oxide). Polymer 2020, 192, 122331. [Google Scholar] [CrossRef]
- Chen, N.; Hu, C.; Wang, H.; Park, J.H.; Kim, H.M.; Lee, Y.M. Chemically & physically stable crosslinked poly(aryl-co-aryl piperidinium)s for anion exchange membrane fuel cells. J. Membr. Sci. 2021, 638, 119685. [Google Scholar] [CrossRef]
- Chen, N.; Lu, C.; Li, Y.; Long, C.; Li, Z.; Zhu, H. Tunable multi-cations-crosslinked poly(arylene piperidinium)-based alkaline membranes with high ion conductivity and durability. J. Membr. Sci. 2019, 588, 117120. [Google Scholar] [CrossRef]
- Dai, P.; Mo, Z.; Xu, R.; Zhang, S.; Wu, Y. Cross-linked quaternized poly(styrene-b-(ethylene-co-butylene)-b-styrene) for anion exchange membrane: Synthesis, characterization and properties. ACS Appl. Mater. Interfaces 2016, 8, 20329–20341. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; Chen, J.; Wei, B.; Liao, S.; Yu, Y.; Li, X. Series-connected hexacations cross-linked anion exchange membranes for diffusion dialysis in acid recovery. J. Membr. Sci. 2018, 570–571, 120–129. [Google Scholar] [CrossRef]
- Chen, Q.G.; Lee, M.T. Anion Exchange Membranes for Fuel Cells Based on Quaternized Polystyrene-b-poly(ethylene-co-butylene)-b-polystyrene Triblock Copolymers with Spacer-Sidechain Design. Polymers 2022, 14, 2860. [Google Scholar] [CrossRef]
- Chu, J.Y.; Lee, K.H.; Kim, A.R.; Yoo, D.J. Improved Physicochemical Stability and High Ion Transportation of Poly(Arylene Ether Sulfone) Blocks Containing a Fluorinated Hydrophobic Part for Anion Exchange Membrane Applications. Polymers 2018, 10, 1400. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.H.; Vinothkannan, M.; Kim, A.R.; Yoo, D.J. Anion Exchange Membranes Obtained from Poly(arylene ether sulfone) Block Copolymers Comprising Hydrophilic and Hydrophobic Segments. Polymers 2020, 12, 325. [Google Scholar] [CrossRef] [Green Version]
- Hu, E.; Lin, C.; Liu, F.; Yang, Q.; Li, L.; Zhang, Q.G.; Zhu, A.M.; Liu, Q.L. Cross-linked poly(vinylbenzyl chloride) anion exchange membranes with long flexible multihead for fuel cells. ACS Appl. Energy Mater. 2018, 1, 3479–3487. [Google Scholar] [CrossRef]
- Zhu, H.; Li, Y.; Chen, N.; Lu, C.; Long, C.; Li, Z.; Liu, Q. Controllable physical-crosslinking poly(arylene 6-azaspiro[5.5] undecanium) for long-lifetime anion exchange membrane applications. J. Membr. Sci. 2019, 590. [Google Scholar] [CrossRef]
- Li, H.; Yu, N.; Gellrich, F.; Reumert, A.K.; Kraglund, M.R.; Dong, J.; Aili, D.; Yang, J. Diamine crosslinked anion exchange membranes based on poly(vinyl benzyl methylpyrrolidinium) for alkaline water electrolysis. J. Membr. Sci. 2021, 633, 119418. [Google Scholar] [CrossRef]
Sample | IEC a meq/g | IEC b meq/g | Wu c % | SR c % | σ(Br−&I−) c mS/cm | σ(OH−) c mS/cm | Td,95d °C | Mne 104 | PDI e |
---|---|---|---|---|---|---|---|---|---|
CF4B | 1.52 | 2.08 | 112.9 | 38.3 | 13.1 | 58.3 | 233 | 4.6 | 1.8 |
CF6B | 1.41 | 1.82 | 89.8 | 32.4 | 10.1 | 56.2 | 236 | 7.2 | 1.8 |
CF8B | 1.20 | 1.63 | 76.1 | 27.4 | 9.0 | 50.5 | 230 | 12.9 | 2.7 |
Sample | First Stage % | Second Stage % | Total Weight Loss % |
---|---|---|---|
CF4B | 21.6 | 70.4 | 92.0 |
CF6B | 19.6 | 72.4 | 92.0 |
CF8B | 16.3 | 63.9 | 80.2 |
Sample | Young’s Modulus (MPa) | Tensile Stress (MPa) | Elongation at Break (%) |
---|---|---|---|
CF4B | 375 ± 12 | 14.1 ± 0.5 | 13.8 ± 1.5 |
CF6B | 497 ± 6 | 15.5 ± 0.4 | 57.7 ± 3.3 |
CF8B | 419 ± 11 | 14.6 ± 0.6 | 98.8 ± 9.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, D.; Sun, X.; Gao, H.; Pan, L.; Li, N.; Li, Y. Crosslinked Polynorbornene-Based Anion Exchange Membranes with Perfluorinated Branch Chains. Polymers 2023, 15, 1073. https://doi.org/10.3390/polym15051073
Cao D, Sun X, Gao H, Pan L, Li N, Li Y. Crosslinked Polynorbornene-Based Anion Exchange Membranes with Perfluorinated Branch Chains. Polymers. 2023; 15(5):1073. https://doi.org/10.3390/polym15051073
Chicago/Turabian StyleCao, Dafu, Xiaowei Sun, Huan Gao, Li Pan, Nanwen Li, and Yuesheng Li. 2023. "Crosslinked Polynorbornene-Based Anion Exchange Membranes with Perfluorinated Branch Chains" Polymers 15, no. 5: 1073. https://doi.org/10.3390/polym15051073
APA StyleCao, D., Sun, X., Gao, H., Pan, L., Li, N., & Li, Y. (2023). Crosslinked Polynorbornene-Based Anion Exchange Membranes with Perfluorinated Branch Chains. Polymers, 15(5), 1073. https://doi.org/10.3390/polym15051073