Copolymerization of Parylene C and Parylene F to Enhance Adhesion and Thermal Stability without Coating Performance Degradation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Copolymerization of Parylene C and Parylene F
2.2. Traditional Parylene Adhesion Enhancement Methods
2.3. Scratch Test
2.4. Fourier-Transform Infrared Spectroscopy
2.5. Contact Angle Measurements and Surface Energy Calculations
2.6. Thermal Stability
2.7. Cell Culture
3. Results and Discussions
3.1. Adhesion Enhancement
3.2. Adhesion Enhancement of Parylene Copolymerization Compared with Traditional Methods
3.3. Thermal Stability of the Parylene Copolymer Films
3.4. Properties of Electronic Device Coating
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stieglitz, T.; Schuettler, M.; Koch, K.P. Implantable Biomedical Microsystems for Neural Prostheses. IEEE Eng. Med. Biol. Mag. 2005, 24, 58–65. [Google Scholar] [CrossRef] [PubMed]
- Hassler, C.; Von Metzen, R.P.; Ruther, P.; Stieglitz, T. Characterization of Parylene C as an Encapsulation Material for Implanted Neural Prostheses. J. Biomed. Mater. Res.-Part B Appl. Biomater. 2010, 93, 266–274. [Google Scholar] [CrossRef] [PubMed]
- Hsu, J.M.; Rieth, L.; Normann, R.A.; Tathireddy, P.; Solzbacher, F. Encapsulation of an Integrated Neural Interface Device with Parylene C. IEEE Trans. Biomed. Eng. 2009, 56, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.J.; Meng, E. Micromachining of Parylene C for BioMEMS. Polym. Adv. Technol. 2016, 27, 564–576. [Google Scholar] [CrossRef]
- Ortigoza-Diaz, J.; Scholten, K.; Larson, C.; Cobo, A.; Hudson, T.; Yoo, J.; Baldwin, A.; Weltman Hirschberg, A.; Meng, E. Techniques and Considerations in the Microfabrication of Parylene C Microelectromechanical Systems. Micromachines 2018, 9, 422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, R.; Tai, Y.C. Parylene to Silicon Adhesion Enhancement. In Proceedings of the TRANSDUCERS 2009—15th International Conference on Solid-State Sensors, Actuators and Microsystems, Denver, CO, USA, 21–25 June 2009; pp. 1027–1030. [Google Scholar] [CrossRef]
- Chang, J.H.; Lu, B.; Tai, Y.C. Adhesion-Enhancing Surface Treatments For Parylene Deposition. In Proceedings of the 2011 16th International Solid-State Sensors, Actuators and Microsystems Conference, Beijing, China, 5–9 June 2011; pp. 390–393. [Google Scholar]
- Liger, M.; Rodger, D.C.; Tai, Y.C. Robust Parylene-to-Silicon Mechanical Anchoring. In Proceedings of the The Sixteenth Annual International Conference on Micro Electro Mechanical Systems, Kyoto, Japan, 19–23 January 2003; pp. 602–605. [Google Scholar] [CrossRef] [Green Version]
- Hsu, J.M.; Kammer, S.; Jung, E.; Rieth, L.; Normann, R.A.; Solzbacher, F. Characterization of Parylene-C Film as an Encapsulation Material for Neural Interface Devices. In Proceedings of the Conference on Multi-Material Micro Manufacture, Madrid, Spain, 27 September 2007; pp. 355–358. [Google Scholar]
- Beshchasna, N.; Adolphi, B.; Granovsky, S.; Braunschweig, M.; Schneider, W.; Uhlemann, J.; Wolter, K.J. Influence of Artificial Body Fluids and Medical Sterilization Procedures on Chemical Stability of Parylene C. In Proceedings of the 2010 60th Electronic Components and Technology Conference (ECTC), Las Vegas, VA, USA, 1–4 June 2010; pp. 1846–1852. [Google Scholar] [CrossRef]
- Ong, X.C.; Fedder, G.K.; Gilgunn, P.J. Modulation of Parylene-C to Silicon Adhesion Using HMDS Priming. J. Micromechanics Microengineering 2014, 24, 105001. [Google Scholar] [CrossRef]
- Charmet, J.; Bitterli, J.; Sereda, O.; Liley, M.; Renaud, P.; Keppner, H. Optimizing Parylene C Adhesion for MEMS Processes: Potassium Hydroxide Wet Etching. J. Microelectromechanical Syst. 2013, 22, 855–864. [Google Scholar] [CrossRef]
- Specialty Coating Systems Parylene Conformal Coating Services; SCS: Indianapolis, IN, USA, 2020; pp. 1–7.
- Smernos, S. Low Temperature Soldering. Circuit World 1984, 10, 23–25. [Google Scholar] [CrossRef]
- Kim, H.; Najafi, K. Characterization of Low-Temperature Wafer Bonding Using Thin-Film Parylene. J. Microelectromechanical Syst. 2005, 14, 1347–1355. [Google Scholar] [CrossRef]
- Tung, B.T.; Cheng, X.; Watanabe, N.; Kato, F.; Kikuchi, K.; Aoyagi, M. Fabrication and Electrical Characterization of Parylene-HT Liner Bottom-up Copper Filled through Silicon via (TSV). In Proceedings of the IEEE CPMT Symposium Japan 2014—The Leading International Components, Packaging, and Manufacturing Technology Symposium: “Packaging for Future Optoelectronics, RF/High-Speed Electronics and Bioelectronics”, Kyoto, Japan, 4–6 November 2014; pp. 154–157. [Google Scholar] [CrossRef]
- Dolbier, W.R.; Beach, W.F. Parylene-AF4: A Polymer with Exceptional Dielectric and Thermal Properties. J. Fluor. Chem. 2003, 122, 97–104. [Google Scholar] [CrossRef]
- Dumas, P.; Corset, J.; Carvalho, W.; Levy, Y.; Neuman, Y. Fluorine Doped Vitreous Silica Analysis of Fiber Optic Preforms by Vibrationnal Spectroscopy. J. Non-Cryst. Solids 1982, 47, 239–241. [Google Scholar] [CrossRef]
- Thomas Young, B.; For Sec, M.D. III. An Essay on the Cohesion of Fluids. Philos. Trans. R. Soc. Lond. 1805, 95, 65–87. [Google Scholar] [CrossRef]
- Owens, D.K.; Wendt, R.C. Estimation of the Surface Free Energy of Polymers. J. Appl. Polym. Sci. 1969, 13, 1741–1747. [Google Scholar] [CrossRef]
- Xu, H.; Hua, Y.C.; Cao, B.Y.; Wang, W. Microfabrication and Characterization of Parylene AF4. In Proceedings of the 2018 14th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT), Qingdao, China, 31 October–3 November 2018; pp. 18–20. [Google Scholar] [CrossRef]
- Basin, V.E. Advances in Understanding the Adhesion between Solid Substrates and Organic Coatings. Prog. Org. Coat. 1984, 12, 213–250. [Google Scholar] [CrossRef]
- Hamdi, M.; Saleh, M.N.; Poulis, J.A. Improving the Adhesion Strength of Polymers: Effect of Surface Treatments. J. Adhes. Sci. Technol. 2020, 34, 1853–1870. [Google Scholar] [CrossRef]
- Radun, V.; von Metzen, R.P.; Stieglitz, T.; Bucher, V.; Stett, A. Evaluation of Adhesion Promoters for Parylene C on Gold Metallization. Curr. Dir. Biomed. Eng. 2015, 1, 493–497. [Google Scholar] [CrossRef]
- Kachroudi, A.; Lagomarsini, C.; Mareau, V.H.; Sylvestre, A. Annealing for the Improvement of the Capabilities of Parylene C as Electret. J. Appl. Polym. Sci. 2019, 136, 46908. [Google Scholar] [CrossRef]
- Chang, T.Y.; Yadav, V.G.; de Leo, S.; Mohedas, A.; Rajalingam, B.; Chen, C.L.; Selvarasah, S.; Dokmeci, M.R.; Khademhosseini, A. Cell and Protein Compatibility of Parylene-C Surfaces. Langmuir 2007, 23, 11718–11725. [Google Scholar] [CrossRef] [PubMed]
- O’Grady, B.J.; Geuy, M.D.; Kim, H.; Balotin, K.M.; Allchin, E.R.; Florian, D.C.; Bute, N.N.; Scott, T.E.; Lowen, G.B.; Fricker, C.M.; et al. Rapid Prototyping of Cell Culture Microdevices Using Parylene-Coated 3D Prints. Lab A Chip. 2021, 21, 4814–4822. [Google Scholar] [CrossRef] [PubMed]
- Kuo, W.C.; Wu, T.C.; Wu, C.F.; Wang, W.C. Bioperformance Analysis of Parylene C Coating for Implanted Nickel Titanium Alloy. Mater. Today Commun. 2021, 27, 102306. [Google Scholar] [CrossRef]
C1F10 | C1F5 | CF | C5F1 | C10F1 | |
---|---|---|---|---|---|
Dimer mass ratio | Parylene C 0.33 g | Parylene C 0.55 g | Parylene C 1.16 g | Parylene C 1.49 g | Parylene C 1.54 g |
Parylene F 3.3 g | Parylene F 2.75 g | Parylene F 1.16 g | Parylene F 0.30 g | Parylene F 0.15 g |
Total Surface Energy (mJ/m2) | Dispersive Surface Energy (mJ/m2) | Polar Surface Energy (mJ/m2) | |
---|---|---|---|
DI water | 72.4 | 21.1 | 51.3 |
Methanol | 22.3 | 17.4 | 4.9 |
Ref | Enhancement Method | Test Method | Enhancement Performance (Multiple Times) | Additional Adhesion Layer | Additional Processes/ Surface Treatment | Wet/ Heating Process |
---|---|---|---|---|---|---|
[6] | A174 | Peeling test | 14.83 | Yes | No | Yes |
XeF2 | 12.17 | No | Yes | No | ||
HF clean | 11.75 | No | Yes | Yes | ||
Anchoring | 13.50 | No | Yes | No | ||
Molten Parylene | 12.50 | Yes | Yes | Yes | ||
[7] | HF | Peeling test | 4.10 | No | Yes | Yes |
Hexane | 4.04 | No | Yes | Yes | ||
Toluene | 4.22 | No | Yes | Yes | ||
P.C. | 5.01 | No | Yes | Yes | ||
CF4 | 1.20 | No | Yes | No | ||
[11] | HDMS | Peeling test | ~3.20 | Yes | No | Yes |
This work | A174 | Scratch test | 11.6 | Yes | No | Yes |
FDTS | 10.4 | Yes | No | Yes | ||
CHF3 | 9.6 | No | Yes | No | ||
SF6 | 10.3 | No | Yes | No | ||
Parylene Copolymerization | 10.40 | No | No | No |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, H.; Yang, Z.; Guo, Y.; Xu, Q.; Dou, S.; Zhang, P.; Jin, Y.; Kang, J.; Wang, W. Copolymerization of Parylene C and Parylene F to Enhance Adhesion and Thermal Stability without Coating Performance Degradation. Polymers 2023, 15, 1249. https://doi.org/10.3390/polym15051249
Xu H, Yang Z, Guo Y, Xu Q, Dou S, Zhang P, Jin Y, Kang J, Wang W. Copolymerization of Parylene C and Parylene F to Enhance Adhesion and Thermal Stability without Coating Performance Degradation. Polymers. 2023; 15(5):1249. https://doi.org/10.3390/polym15051249
Chicago/Turabian StyleXu, Han, Zhou Yang, Yechang Guo, Qingmei Xu, Songtao Dou, Pan Zhang, Yufeng Jin, Jiajie Kang, and Wei Wang. 2023. "Copolymerization of Parylene C and Parylene F to Enhance Adhesion and Thermal Stability without Coating Performance Degradation" Polymers 15, no. 5: 1249. https://doi.org/10.3390/polym15051249
APA StyleXu, H., Yang, Z., Guo, Y., Xu, Q., Dou, S., Zhang, P., Jin, Y., Kang, J., & Wang, W. (2023). Copolymerization of Parylene C and Parylene F to Enhance Adhesion and Thermal Stability without Coating Performance Degradation. Polymers, 15(5), 1249. https://doi.org/10.3390/polym15051249