Microscopic Mechanism of Electrical Aging of PVDF Cable Insulation Material
Abstract
:1. Introduction
2. Density Functional Theory and Basic Model Calculations
2.1. Density Functional Theory
2.2. Basic Model
2.3. Molecular Model Computation
3. Simulation Results and Discussion
3.1. Effect of Applied Electric Field on Molecular Structure
3.2. Effect of External Electric Field on Total Molecular Energy, Dipole Moment, and Polarizability
3.3. Effect of External Electric Field on the Molecular Front Orbitals
3.4. Effect of External Electric Field on Infrared Spectra
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sarkar, L.; Singh, S.G.; Vanjari, S.R.K. Preparation and optimization of PVDF thin films for miniaturized sensor and actuator applications. Smart Mater. Struct. 2021, 30, 075013. [Google Scholar] [CrossRef]
- Wang, A.; Liu, Z.; Hu, M.; Wang, C.; Zhang, X.; Shi, B.; Fan, Y.; Cui, Y.; Li, Z.; Ren, K. Piezoelectric nanofibrous scaffolds as in vivo energy harvesters for modifying fibroblast alignment and proliferation in wound healing. Nano Energy 2018, 43, 63–71. [Google Scholar] [CrossRef]
- Sobola, D.; Kaspar, P.; Částková, K.; Dallaev, R.; Papež, N.; Sedlák, P.; Trčka, T.; Orudzhev, F.; Kaštyl, J.; Weiser, A.; et al. PVDF Fibers Modification by Nitrate Salts Doping. Polymers 2021, 13, 2439. [Google Scholar] [CrossRef] [PubMed]
- Niu, X.; Tian, B.; Zhu, Q.; Dkhil, B.; Duan, C. Ferroelectric polymers for neuromorphic computing. Appl. Phys. Rev. 2022, 9, 021309. [Google Scholar] [CrossRef]
- Saxena, P.; Shukla, P. A comprehensive review on fundamental properties and applications of poly (vinylidene fluoride)(PVDF). Adv. Compos. Hybrid Mater. 2021, 4, 8–26. [Google Scholar] [CrossRef]
- Su, J.; Du, B.; Li, J.; Li, Z. Electrical tree degradation in high-voltage cable insulation: Progress and challenges. High Volt. 2020, 5, 353–364. [Google Scholar] [CrossRef]
- Li, J.; Zhao, X.; Yin, G.; Li, S.; Zhao, J.; Ouyang, B. The effect of accelerated water tree ageing on the properties of XLPE cable insulation. IEEE Trans. Dielectr. Electr. Insul. 2011, 18, 1562–1569. [Google Scholar] [CrossRef]
- Dallaev, R.; Pisarenko, T.; Sobola, D.; Orudzhev, F.; Ramazanov, S.; Trčka, T. Brief Review of PVDF Properties and Applications Potential. Polym. Basel 2022, 14, 4793. [Google Scholar] [CrossRef]
- Cao, L.; Grzybowski, S. Accelerated aging study on 15 kV XLPE and EPR cables insulation caused by switching impulses. IEEE Trans. Dielectr. Electr. Insul. 2015, 22, 2809–2817. [Google Scholar] [CrossRef]
- Boggs, S.; Damon, D.H.; Hjerrild, J.; Holboll, J.T.; Henriksen, M. Effect of insulation properties on the field grading of solid dielectric DC cable. IEEE Trans. Power Deliv. 2001, 16, 456–461. [Google Scholar] [CrossRef]
- Fu, M.; Dissado, L.A.; Chen, G.; Fothergill, J.C. Space charge formation and its modified electric field under applied voltage reversal and temperature gradient in XLPE cable. IEEE Trans. Dielectr. Electr. Insul. 2008, 15, 851–860. [Google Scholar] [CrossRef]
- Tseng, J.-K.; Tang, S.; Zhou, Z.; Mackey, M.; Carr, J.M.; Mu, R.; Flandin, L.; Schuele, D.E.; Baer, E.; Zhu, L. Interfacial polarization and layer thickness effect on electrical insulation in multilayered polysulfone/poly (vinylidene fluoride) films. Polymer 2014, 55, 8–14. [Google Scholar] [CrossRef]
- Zhou, C.; Cao, Z.; Wei, G.; Wu, K. Research on Pyrolysis Characteristics of PE Outer Sheath of High-Voltage Cables Based on the Principle of Oxygen Consumption. J. Electr. Eng. Technol. 2023, 18, 679–685. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Y.; Zheng, H.; Zhu, M.; Liu, J.; Yang, T.; Zhang, C.; Li, Y. Microscopic reaction mechanism of the production of methanol during the thermal aging of cellulosic insulating paper. Cellulose 2020, 27, 2455–2467. [Google Scholar] [CrossRef]
- Peng, X.; Su, Z.; Li, C.; Tang, C. High mechanical and thermal performance of insulating paper cellulose modified with appropriate h-BN doping amount: A molecular simulation study. Adv. Eng. Mater. 2022, 25, 2200949. [Google Scholar] [CrossRef]
- Zuo, H.; Wang, F.; Huang, Z.; Wang, Q.; Li, J.; Rozga, P. Synergistic effect of electric field and temperature on POSS modified natural ester insulating oil: A molecular dynamics study. J. Mol. Liq. 2022, 355, 118923. [Google Scholar] [CrossRef]
- Zheng, H.; Lv, W.; Li, X.; Feng, Y.; Yang, E.; Liu, C.; Wang, Z. Electrical Properties of Insulating Liquids Based on Molecular Properties Calculated by Density Functional Theory. IEEE Trans. Dielectr. Electr. Insul. 2022, 29, 2274–2282. [Google Scholar]
- Zheng, H.; Li, X.; Feng, Y.; Yang, H.; Lv, W. Investigation on micro-mechanism of palm oil as natural ester insulating oil for overheating thermal fault analysis of transformers. High Volt. 2022, 7, 812–824. [Google Scholar] [CrossRef]
- Zheng, H.; Wang, Z.; Yang, T.; Yao, W.; Cai, S.; Li, X.; Liu, C.; Yang, E. Investigation on pyrolysis mechanism of palm olein and the effect of moisture on its pyrolysis. J. Mol. Liq. 2021, 339, 116824. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, T.; Wang, Y.; Zhang, L.; Zou, L. Microscopic Pyrolytic and Electric Decomposition Mechanism of Insulating Polyimide/Boron Nitride Nanosheet Composites based on ReaxFF. Polym. Basel 2022, 14, 1169. [Google Scholar] [CrossRef]
- Zheng, H.; Yang, E.; Wu, S.; Lv, W.; Yang, H.; Li, X.; Luo, X.; Hu, W. Investigation on Formation Mechanisms of Carbon Oxides During Thermal Aging of Cellulosic Insulating Paper. IEEE Trans. Dielectr. Electr. Insul. 2022, 29, 1226–1233. [Google Scholar] [CrossRef]
- Yang, L.; Qi, C.; Wu, G.; Liao, R.; Wang, Q.; Gong, C.; Gao, J. Molecular dynamics simulation of diffusion behaviour of gas moleculess within oil–paper insulation system. Mol. Simul. 2013, 39, 988–999. [Google Scholar] [CrossRef]
- Zheng, H.; Feng, Y.; Li, X.; Yang, H.; Lv, W.; Li, S. Investigation on molecular dynamics simulation for predicting kinematic viscosity of natural Ester insulating oil. IEEE Trans. Dielectr. Electr. Insul. 2022, 29, 1882–1888. [Google Scholar] [CrossRef]
- Su, H.; Strachan, A.; Goddard, W.A., III. Density functional theory and molecular dynamics studies of the energetics and kinetics of electroactive polymers: PVDF and P (VDF-TrFE). Phys. Rev. B 2004, 70, 064101. [Google Scholar] [CrossRef]
- Pei, Y.; Zeng, X.C. Elastic properties of poly (vinyldene fluoride)(PVDF) crystals: A density functional theory study. J. Appl. Phys. 2011, 109, 093514. [Google Scholar] [CrossRef]
- Sarkar, R.; Kundu, T.K. Density functional theory studies on PVDF/ionic liquid composite systems. J. Chem. Sci. 2018, 130, 115. [Google Scholar] [CrossRef]
- Torrejos, R.E.C.; Nisola, G.M.; Song, H.S.; Limjuco, L.A.; Lawagon, C.P.; Parohinog, K.J.; Koo, S.; Han, J.W.; Chung, W.-J. Design of lithium selective crown ethers: Synthesis, extraction and theoretical binding studies. Chem. Eng. J. 2017, 326, 921–933. [Google Scholar] [CrossRef]
- Yuan, G.; Tian, Y.; Liu, J.; Tu, H.; Liao, J.; Yang, J.; Yang, Y.; Wang, D.; Liu, N. Schiff base anchored on metal-organic framework for Co (II) removal from aqueous solution. Chem. Eng. J. 2017, 326, 691–699. [Google Scholar] [CrossRef]
- Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef]
- Lu, T.; Chen, F. Quantitative analysis of molecular surface based on improved Marching Tetrahedra algorithm. J. Mol. Graph. Model. 2012, 38, 314–323. [Google Scholar] [CrossRef]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Lovinger, A.J. Annealing of poly (vinylidene fluoride) and formation of a fifth phase. Macromoleculess 1982, 15, 40–44. [Google Scholar] [CrossRef]
- Benz, M.; Euler, W.B. Determination of the crystalline phases of poly (vinylidene fluoride) under different preparation conditions using differential scanning calorimetry and infrared spectroscopy. J. Appl. Polym. Sci. 2003, 89, 1093–1100. [Google Scholar] [CrossRef]
- Tansel, T. High beta-phase processing of polyvinylidenefluoride for pyroelectric applications. J. Polym. Res. 2020, 27, 95. [Google Scholar] [CrossRef]
- Erdtman, E.; Satyanarayana, K.C.; Bolton, K. Simulation of α-and β-PVDF melting mechanisms. Polymer 2012, 53, 2919–2926. [Google Scholar] [CrossRef]
- Dutta, B.; Kar, E.; Bose, N.; Mukherjee, S. Significant enhancement of the electroactive β-phase of PVDF by incorporating hydrothermally synthesized copper oxide nanoparticles. RSC Adv. 2015, 5, 105422–105434. [Google Scholar] [CrossRef]
- Okazawa, K.; Tsuji, Y.; Yoshizawa, K. Understanding single-molecules parallel circuits on the basis of frontier orbital theory. J. Phys. Chem. C 2020, 124, 3322–3331. [Google Scholar] [CrossRef]
- Du, B.; Su, J.; Tian, M.; Han, T.; Li, J. Understanding trap effects on electrical treeing phenomena in EPDM/POSS composites. Sci. Rep. 2018, 8, 8481. [Google Scholar] [CrossRef]
- Zha, J.; Wu, Y.; Wang, S.; Wu, D.; Yan, H.; Dang, Z. Improvement of space charge suppression of polypropylene for potential application in HVDC cables. IEEE Trans. Dielectr. Electr. Insul. 2016, 23, 2337–2343. [Google Scholar] [CrossRef]
0 V/m | 6.1704 × 109 V/m | ||||||
---|---|---|---|---|---|---|---|
HOMO/% | LUMO/% | HOMO/% | LUMO/% | ||||
C9 | 9.12% | H2 | 14.24% | C1 | 26.22% | F50 | 38.39% |
C8 | 8.97% | H6 | 10.48% | H4 | 14.03% | C33 | 33.89% |
C10 | 6.26% | C5 | 10.05% | C5 | 13.34% | F49 | 6.70% |
F35 | 6.12% | C8 | 9.15% | H2 | 9.96% | F48 | 6.50% |
C5 | 5.87% | H7 | 6.43% | H6 | 9.17% | C32 | 4.82% |
F36 | 5.66% | C9 | 6.39% | C8 | 7.22% | F46 | 4.04% |
C16 | 5.39% | H3 | 5.53% | C9 | 4.37% | F47 | 3.41% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pang, Z.; Li, Y.; Zheng, H.; Qin, R. Microscopic Mechanism of Electrical Aging of PVDF Cable Insulation Material. Polymers 2023, 15, 1286. https://doi.org/10.3390/polym15051286
Pang Z, Li Y, Zheng H, Qin R. Microscopic Mechanism of Electrical Aging of PVDF Cable Insulation Material. Polymers. 2023; 15(5):1286. https://doi.org/10.3390/polym15051286
Chicago/Turabian StylePang, Zhiyi, Yi Li, Hanbo Zheng, and Rui Qin. 2023. "Microscopic Mechanism of Electrical Aging of PVDF Cable Insulation Material" Polymers 15, no. 5: 1286. https://doi.org/10.3390/polym15051286
APA StylePang, Z., Li, Y., Zheng, H., & Qin, R. (2023). Microscopic Mechanism of Electrical Aging of PVDF Cable Insulation Material. Polymers, 15(5), 1286. https://doi.org/10.3390/polym15051286