Effect of the Simultaneous Addition of Polycaprolactone and Carbon Nanotubes on the Mechanical, Electrical, and Adhesive Properties of Epoxy Resins Cured with Ionic Liquids
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Samples
2.3. Characterization
2.3.1. Phase Behaviour
2.3.2. Microstructure
2.3.3. Nanostructure
2.3.4. Electrical Properties
2.3.5. Mechanical Properties
2.3.6. Adhesive Properties
3. Results
3.1. Phase Structure
3.2. Microstructure and Nanostructure
3.3. Electrical Properties
3.4. Mechanical Properties
3.5. Adhesive Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ratna, D.; Banthia, A.K. Rubber toughened epoxy. Macromol. Res. 2004, 12, 11–21. [Google Scholar] [CrossRef]
- Ratna, D.; Banthia, A.K. Toughened epoxy adhesive modified with acrylate based liquid rubber. Polym. Int. 2000, 49, 281–287. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, L.T.; Wu, J.H.; Ma, L.J.; Finlow, D.E.; Lin, S.Q.; Song, K.M. Thermal and mechanical properties of epoxy resin toughened with epoxidized soybean oil. J. Therm. Anal. Calorim. 2013, 113, 939–945. [Google Scholar] [CrossRef]
- Ratna, D. Mechanical properties and morphology of epoxidized soyabean-oil-modified epoxy resin. Polym. Int. 2001, 50, 179–184. [Google Scholar] [CrossRef]
- Park, S.J.; Jin, F.L.; Lee, J.R. Thermal and mechanical properties of tetrafunctional epoxy resin toughened with epoxidized soybean oil. Mater. Sci. Eng. A 2004, 374, 109–114. [Google Scholar] [CrossRef]
- Raghava, R.S. Role of matrix-particle interface adhesion on fracture-toughness of dual phase epoxy-polyethersulfone blend. J. Polym. Sci. B Polym. Phys. 1987, 25, 1017–1031. [Google Scholar] [CrossRef]
- Bucknall, C.B.; Partridge, I.K. Phase-separation in cross-linked resins containing polymeric modifiers. Polym. Eng. Sci. 1986, 26, 54–62. [Google Scholar] [CrossRef]
- Guo, Q.P.; Peng, X.S.; Wang, Z.J. The miscibility and morphology of epoxy resin poly(ethylene oxide) blends. Polymer 1991, 32, 53–57. [Google Scholar] [CrossRef]
- Chen, M.C.; Hourston, D.J.; Sun, W.B. Miscibility and fracture-behavior of an epoxy-resin bisphenol-A polycarbonate blend. Eur. Polym. J. 1992, 28, 1471–1475. [Google Scholar] [CrossRef]
- Luo, X.; Liu, X.-F.; Ding, X.-M.; Chen, L.; Chen, S.-C.; Wang, Y.-Z. Effects of curing temperature on the structure and properties of epoxy resin-poly(ε-caprolactam) blends. Polymer 2021, 228, 123940. [Google Scholar] [CrossRef]
- Barone, L.; Carciotto, S.; Cicala, G.; Recca, A. Thermomechanical properties of epoxy/poly(ε-caprolactone) blends. Polym. Eng. Sci. 2006, 46, 1576–1582. [Google Scholar] [CrossRef]
- Cohades, A.; Manfredi, E.; Plummer, C.J.G.; Michaud, V. Thermal mending in immiscible poly(ε-caprolactone)/epoxy blends. Eur. Polym. J. 2016, 81, 114–128. [Google Scholar] [CrossRef] [Green Version]
- Ni, Y.; Zheng, S.X. Influence of intramolecular specific interactions on phase behavior of epoxy resin and poly(ε-caprolactone) blends cured with aromatic amines. Polymer 2005, 46, 5828–5839. [Google Scholar] [CrossRef]
- Bucknall, C.B.; Gilbert, A.H. Toughening tetrafunctional epoxy-resins using polyetherimide. Polymer 1989, 30, 213–217. [Google Scholar] [CrossRef]
- Mousavi, S.R.; Estaji, S.; Paydayesh, A.; Arjmand, M.; Jafari, S.H.; Nouranian, S.; Khonakdar, H.A. A review of recent progress in improving the fracture toughness of epoxy-based composites using carbonaceous nanofillers. Polym. Compos. 2022, 43, 1871–1886. [Google Scholar] [CrossRef]
- Raghava, R.S. Development and characterization of thermosetting thermoplastic polymer blends for applications in damage-tolerant composites. J. Polym. Sci. B Polym. Phys. 1988, 26, 65–81. [Google Scholar] [CrossRef]
- Cui, J.; Yu, Y.F.; Chen, W.J.; Li, S.J. Studies on the phase separation of polyetherimide-modified epoxy resin.2. Effect of molecular weight of PEI on the structure formation. Macromol. Chem. Phys. 1997, 198, 3267–3276. [Google Scholar] [CrossRef]
- Parameswaranpillai, J.; Sidhardhan, S.K.; Jose, S.; Hameed, N.; Salim, N.V.; Siengchin, S.; Pionteck, J.; Magueresse, A.; Grohens, Y. Miscibility, phase morphology, thermomechanical, viscoelastic and surface properties of poly(ε-caprolactone) modified epoxy systems: Effect of curing agents. Ind. Eng. Chem. Res. 2016, 55, 10055–10064. [Google Scholar] [CrossRef]
- Chen, J.L.; Chang, F.C. Temperature-dependent phase behavior in poly(ε-caprolactone)-epoxy blends. Polymer 2001, 42, 2193–2199. [Google Scholar] [CrossRef]
- Remiro, P.M.; Marieta, C.; Riccardi, C.; Mondragon, I. Influence of curing conditions on the morphologies of a PMMA-modified epoxy matrix. Polymer 2001, 42, 9909–9914. [Google Scholar] [CrossRef]
- Peng, L.Q.; Cui, J.; Li, S.J. Studies on the phase separation of a polyetherimide-modified epoxy resin, 4. Kinetic effect on the phase separation mechanism of a blend at different cure rates. Macromol. Chem. Phys. 2000, 201, 699–704. [Google Scholar] [CrossRef]
- Clark, J.N.; Daly, J.H.; Garton, A. Hydrogen-bonding in epoxy-resin poly(ε-caprolactone) blends. J. Appl. Polym. Sci. 1984, 29, 3381–3390. [Google Scholar] [CrossRef]
- Noshay, A.; Robeson, L.M. Epoxy/modifier block copolymers. J. Polym. Sci. A Polym. Chem. 1974, 12, 689–705. [Google Scholar] [CrossRef]
- Guo, Q.; Harrats, C.; Groeninckx, G.; Reynaers, H.; Koch, M.H.J. Miscibility, crystallization and real-time small-angle X-ray scattering investigation of the semicrystalline morphology in thermosetting polymer blends. Polymer 2001, 42, 6031–6041. [Google Scholar] [CrossRef]
- Siddhamalli, S.K. Toughening of epoxy/polycaprolactone composites via reaction induced phase separation. Polym. Compos. 2000, 21, 846–855. [Google Scholar] [CrossRef]
- Hirsch, A. Functionalization of Single-Walled Carbon Nanotubes. Angew. Chem. Int. Ed. 2002, 41, 1853–1859. [Google Scholar] [CrossRef]
- Abd El-Mageed, A.I.A.; Handayani, M.; Chen, Z.; Inose, T.; Ogawa, T. Assignment of the Absolute-Handedness Chirality of Single-Walled Carbon Nanotubes by Using Organic Molecule Supramolecular Structures. Chem. Eur. J. 2019, 25, 1941–1948. [Google Scholar] [CrossRef]
- Abd El-Mageed, A.I.A.; Ogawa, T. Single-walled carbon nanotube absolute-handedness chirality assignment confirmation using metalized porphyrin’s supramolecular structures via STM imaging technique. Chirality 2020, 32, 345–352. [Google Scholar] [CrossRef] [PubMed]
- Cividanes, L.D.S.; Simonetti, E.A.N.; de Oliveira, J.I.S.; Serra, A.A.; Carlos de Souza Barboza, J.; Thim, G.P. The sonication effect on CNT-epoxy composites finally clarified. Polym. Compos. 2017, 38, 1964–1973. [Google Scholar] [CrossRef]
- Saeb, M.R.; Najafi, F.; Bakhshandeh, E.; Khonakdar, H.A.; Mostafaiyan, M.; Simon, F.; Scheffler, C.; Mader, E. Highly curable epoxy/MWCNTs nanocomposites: An effective approach to functionalization of carbon nanotubes. Chem. Eng. J. 2015, 259, 117–125. [Google Scholar] [CrossRef]
- Hameed, A.; Islam, M.; Ahmad, I.; Mahmood, N.; Saeed, S.; Javed, H. Thermal and mechanical properties of carbon nanotube/epoxy nanocomposites reinforced with pristine and functionalized multiwalled carbon nanotubes. Polym. Compos. 2015, 36, 1891–1898. [Google Scholar] [CrossRef]
- Konnola, R.; Joseph, K. Effect of side-wall functionalisation of multi-walled carbon nanotubes on the thermo-mechanical properties of epoxy composites. RSC Adv. 2016, 6, 23887–23899. [Google Scholar] [CrossRef]
- Garg, P.; Singh, B.P.; Kumar, G.; Gupta, T.; Pandey, I.; Seth, R.K.; Tandon, R.P.; Mathur, R.B. Effect of dispersion conditions on the mechanical properties of multi-walled carbon nanotubes based epoxy resin composites. J. Polym. Res. 2011, 18, 1397–1407. [Google Scholar] [CrossRef]
- Chen, J.J.; Han, J.C.; Xu, D.G. Thermal and electrical properties of the epoxy nanocomposites reinforced with purified carbon nanotubes. Mater. Lett. 2019, 246, 20–23. [Google Scholar] [CrossRef]
- Meeuw, H.; Korbelin, J.; Wisniewski, V.K.; Nia, A.S.; Vazquez, A.R.; Lohe, M.R.; Feng, X.L.; Fiedler, B. Carbon nanoparticles’ impact on processability and physical properties of epoxy resins-A comprehensive study covering rheological, electrical, thermo-mechanical, and fracture properties (Mode I and II). Polymers 2019, 11, 231. [Google Scholar] [CrossRef] [Green Version]
- Krause, B.; Villmow, T.; Boldt, R.; Mende, M.; Petzold, G.; Potschke, P. Influence of dry grinding in a ball mill on the length of multiwalled carbon nanotubes and their dispersion and percolation behaviour in melt mixed polycarbonate composites. Compos. Sci. Technol. 2011, 71, 1145–1153. [Google Scholar] [CrossRef] [Green Version]
- Vaganov, G.; Yudin, V.; Vuorinen, J.; Molchanov, E. Influence of multiwalled carbon nanotubes on the processing behavior of epoxy powder compositions and on the mechanical properties of their fiber reinforced composites. Polym. Compos. 2016, 37, 2377–2383. [Google Scholar] [CrossRef]
- Khalid, H.R.; Choudhry, I.; Jang, D.; Abbas, N.; Haider, M.S.; Lee, H.K. Facile Synthesis of Sprayed CNTs Layer-Embedded Stretchable Sensors with Controllable Sensitivity. Polymers 2021, 13, 311. [Google Scholar] [CrossRef]
- Sánchez-Romate, X.F.; Alvarado, A.; Jiménez-Suárez, A.; Prolongo, S.G. Carbon nanotube reinforced poly(ε-caprolactone)/epoxy blends for superior mechanical and self-sensing performance in multiscale glass fiber composites. Polymers 2021, 13, 3159. [Google Scholar] [CrossRef]
- Jiménez-Suárez, A.; Martín-González, J.; Sánchez-Romate, X.F.; Prolongo, S.G. Carbon nanotubes to enable autonomous and volumetric self-heating in epoxy/polycaprolactone blends. Compos. Sci. Technol. 2020, 199, 108321. [Google Scholar] [CrossRef]
- Yin, Y.; Liu, M.H.; Wei, W.; Zheng, C.M.; Gao, J.; Zhang, W.X.; Zheng, C.B.; Deng, P.Y.; Xing, Y. DGEBA/imidazolium ionic liquid systems: The influence of anions on the reactivity and properties of epoxy systems. J. Adhes. Sci. Technol. 2018, 32, 1114–1127. [Google Scholar] [CrossRef]
- Maka, H.; Spychaj, T.; Zenker, M. High performance epoxy composites cured with ionic liquids. J. Ind. Eng. Chem. 2015, 31, 192–198. [Google Scholar] [CrossRef]
- da Silva, L.C.O.; Soares, B.G. New all solid-state polymer electrolyte based on epoxy resin and ionic liquid for high temperature applications. J. Appl. Polym. Sci. 2018, 135, 45838. [Google Scholar] [CrossRef]
- Binks, F.C.; Cavalli, G.; Henningsen, M.; Howlin, B.J.; Hamerton, I. Examining the nature of network formation during epoxy polymerisation initiated with ionic liquids. Polymer 2018, 150, 318–325. [Google Scholar] [CrossRef] [Green Version]
- Orduna, L.; Razquin, I.; Otaegi, I.; Aranburu, N.; Guerrica-Echevarría, G. Ionic liquid-cured epoxy/PCL blends with improved toughness and adhesive properties. Polymers 2022, 14, 2679. [Google Scholar] [CrossRef]
- Livi, S.; Baudoux, J.; Gérard, J.-F.; Duchet-Rumeau, J. Ionic Liquids: A Versatile Platform for the Design of a Multifunctional Epoxy Networks 2.0 Generation. Prog. Polym. Sci. 2022, 132, 101581. [Google Scholar] [CrossRef]
- Silva, A.A.; Livi, S.; Netto, D.B.; Soares, B.G.; Duchet, J.; Gerard, J.F. New epoxy systems based on ionic liquid. Polymer 2013, 54, 2123–2129. [Google Scholar] [CrossRef]
- Maka, H.; Spychaj, T.; Pilawka, R. Epoxy resin/phosphonium ionic liquid/carbon nanofiller systems: Chemorheology and properties. Express Polym. Lett. 2014, 8, 723–732. [Google Scholar] [CrossRef] [Green Version]
- Soares, B.G.; Silva, A.A.; Pereira, J.; Livi, S. Preparation of epoxy/Jeffamine networks modified with phosphonium based ionic liquids. Macromol. Mater. Eng. 2015, 300, 312–319. [Google Scholar] [CrossRef]
- Nguyen, T.K.L.; Soares, B.G.; Duchet-Rumeau, J.; Livi, S. Dual functions of ILs in the core-shell particle reinforced epoxy networks: Curing agent vs dispersion aids. Compos. Sci. Technol. 2017, 140, 30–38. [Google Scholar] [CrossRef]
- Soares, B.G.; Riany, N.; Silva, A.A.; Barra, G.M.O.; Livi, S. Dual-role of phosphonium-based ionic liquid in epoxy/MWCNT systems: Electric, rheological behavior and electromagnetic interference shielding effectiveness. Eur. Polym. J. 2016, 84, 77–88. [Google Scholar] [CrossRef]
- Leclere, M.; Livi, S.; Marechal, M.; Picard, L.; Duchet-Rumeau, J. The properties of new epoxy networks swollen with ionic liquids. RSC Adv. 2016, 6, 56193–56204. [Google Scholar] [CrossRef]
- Nguyen, T.K.L.; Livi, S.; Soares, B.G.; Benes, H.; Geerard, J.F.; Duchet-Rumeau, J. Toughening of epoxy/ionic liquid networks with thermoplastics pased on Poly(2,6-dimethy1-1,4-phenylene ether) (PPE). ACS Sustain. Chem. Eng. 2017, 5, 1153–1164. [Google Scholar] [CrossRef]
- Halawani, N.; Donato, R.; Benes, H.; Brus, J.; Kobera, L.; Pruvost, S.; Duchet-Rumeau, J.; Gerard, J.-F.; Livi, S. Thermoset-thermoplastic-ionic liquid ternary hybrids as novel functional polymer materials. Polymer 2021, 218, 123507. [Google Scholar] [CrossRef]
- Zhao, L.; Li, Y.; Cao, X.; You, J.; Dong, W. Multifunctional role of an ionic liquid in melt-blended poly(methyl methacrylate)/multi-walled carbon nanotube nanocomposites. Nanotechnology 2012, 23, 255702. [Google Scholar] [CrossRef]
- Carrion, F.J.; Espejo, C.; Sanes, J.; Bermudez, M.D. Single-walled carbon nanotubes modified by ionic liquid as antiwear additives of thermoplastics. Compos. Sci. Technol. 2010, 70, 2160–2167. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, A.; Mahmood, H.; Mansor, N.; Iqbal, T.; Moniruzzaman, M. Ionic liquid assisted polyetheretherketone-multiwalled carbon nanotubes nanocomposites: An environmentally friendly approach. J. Appl. Polym. Sci. 2021, 138, 50159. [Google Scholar] [CrossRef]
- Santos, D.F.; Carvalho, A.P.A.; Soares, B.G. Phosphonium-based ionic liquid as crosslinker/dispersing agent for epoxy/carbon nanotube nanocomposites: Electrical and dynamic mechanical properties. J. Mater. Sci. 2020, 55, 2077–2089. [Google Scholar] [CrossRef]
- Alves, F.F.; Silva, A.A.; Soares, B.G. Epoxy-MWCNT composites prepared from master batch and powder dilution: Effect of ionic liquid on dispersion and multifunctional properties. Polym. Eng. Sci. 2018, 58, 1689–1697. [Google Scholar] [CrossRef]
- Sanes, J.; Saurin, N.; Carrion, F.J.; Ojados, G.; Bermudez, M.D. Synergy between single-walled carbon nanotubes and ionic liquid in epoxy resin nanocomposites. Compos. Part B Eng. 2016, 105, 149–159. [Google Scholar] [CrossRef]
- Kerche, E.F.; Fonseca, E.; Schrekker, H.S.; Amico, S.C. Ionic liquid-functionalized reinforcements in epoxy-based composites: A systematic review. Polym. Compos. 2022, 43, 5783–5801. [Google Scholar] [CrossRef]
- Orduna, L.; Otaegi, I.; Aramburu, N.; Guerrica-Echevarria, G. Ionic liquids as alternative curing agents for conductive epoxy/CNT nanocomposites with improved adhesive properties. Nanomaterials 2023, 13, 725. [Google Scholar] [CrossRef]
- Nguyen, T.K.L.; Livi, S.; Soares, B.G.; Pruvost, S.; Duchet-Rumeau, J.; Gerard, J.-F. Ionic liquids: A new route for the design of epoxy networks. ACS Sustain. Chem. Eng. 2016, 4, 481–490. [Google Scholar] [CrossRef]
- White, K.L.; Sue, H.J. Electrical conductivity and fracture behavior of epoxy/polyamide-12/multiwalled carbon nanotube composites. Polym. Eng. Sci. 2011, 51, 2245–2253. [Google Scholar] [CrossRef]
- Ma, H.; Aravand, M.A.; Falzon, B.G. Synergistic enhancement of fracture toughness in multiphase epoxy matrices modified by thermoplastic and carbon nanotubes. Compos. Sci. Technol. 2021, 201, 108523. [Google Scholar] [CrossRef]
- Tangthana-umrung, K.; Zhang, X.; Gresil, M. Synergistic toughening on hybrid epoxy nanocomposites by introducing engineering thermoplastic and carbon-based nanomaterials. Polymer 2022, 245, 124703. [Google Scholar] [CrossRef]
- Sanchez-Romate, X.F.; Martin, J.; Jimenez-Suarez, A.; Prolongo, S.G.; Urena, A. Mechanical and strain sensing properties of carbon nanotube reinforced epoxy/poly(caprolactone) blends. Polymer 2020, 190, 122236. [Google Scholar] [CrossRef]
- Gholami, H.; Arab, H.; Mokhtarifar, M.; Maghrebi, M.; Baniadam, M. The effect of choline-based ionic liquid on CNTs’ arrangement in epoxy resin matrix. Mater. Des. 2016, 91, 180–185. [Google Scholar] [CrossRef]
- Zhou, Y.X.; Wu, P.X.; Cheng, Z.-Y.; Ingram, J.; Jeelani, S. Improvement in electrical, thermal and mechanical properties of epoxy by filling carbon nanotube. Express Polym. Lett. 2008, 2, 40–48. [Google Scholar] [CrossRef]
- Mohan, L.; Kumar, P.N.; Karakkad, S.; Krishnan, S.T. Determination of electrical percolation threshold of carbon nanotube-based epoxy nanocomposites and its experimental validation. IET Sci. Meas. Technol. 2019, 13, 1299–1304. [Google Scholar] [CrossRef]
- Diez-Pascual, A.; Shuttleworth, P.; Gonzalez-Castillo, E.; Marco, C.; Gomez-Fatou, M.; Ellis, G. Influence of carbon nanotubes on the properties of epoxy based composites reinforced with a semicrystalline thermoplastic. In Proceedings of the 2nd International Conference on Structural Nano Composites (NANOSTRUC), Madrid, Spain, 20–21 May 2014; IOP Publishing: Bristol, UK, 2014; Volume 64, p. 012006. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Heng, Z.; Zhou, J.; Shi, Y.; Chen, Y.; Zou, H.; Liang, M. In-situ co-continuous conductive network induced by carbon nanotubes in epoxy composites with enhanced electromagnetic interference shielding performance. Chem. Eng. J. 2020, 398, 125559. [Google Scholar] [CrossRef]
- Zhou, H.Z.; Liu, H.Y.; Zhou, H.M.; Zhang, Y.; Gao, X.P.; Mai, Y.W. On adhesive properties of nano-silica/epoxy bonded single-lap joints. Mater. Des. 2016, 95, 212–218. [Google Scholar] [CrossRef]
- Quan, D.; Carolan, D.; Rouge, C.; Murphy, N.; Ivankovic, A. Mechanical and fracture properties of epoxy adhesives modified with graphene nanoplatelets and rubber particles. Int. J. Adhes. Adhes. 2018, 81, 21–29. [Google Scholar] [CrossRef]
- Karthikeyan, L.; Robert, T.M.; Mathew, D.; Suma, D.D.; Thomas, D. Novel epoxy resin adhesives toughened by functionalized poly (ether ether ketone) s. Int. J. Adhes. Adhes. 2021, 106, 102816. [Google Scholar] [CrossRef]
- Kumar, A.; Kumar, K.; Ghosh, P.K.; Rathi, A.; Yadav, K.L.; Raman. MWCNTs toward superior strength of epoxy adhesive joint on mild steel adherent. Compos. Part B Eng. 2018, 143, 207–216. [Google Scholar] [CrossRef]
- Han, S.S.; Meng, Q.S.; Arabya, S.; Liu, T.Q.; Demiral, M. Mechanical and electrical properties of graphene and carbon nanotube reinforced epoxy adhesives: Experimental and numerical analysis. Compos. Part A Appl. Sci. Manuf. 2019, 120, 116–126. [Google Scholar] [CrossRef]
- Panta, J.; Zhang, Y.X.; Rider, A.N.; Wang, J.; Prusty, B.G. Synergetic effects of carbon nanotubes and triblock copolymer on the lap shear strength of epoxy adhesive joints. Compos. Part B Eng. 2019, 178, 107457. [Google Scholar] [CrossRef]
Curing Agent | Curing Protocol |
---|---|
IL-P-TMPP | 2 h 80 °C/2 h 120 °C/1 h 150 °C/1 h 170 °C |
IL-P-DCA | 2 h 120 °C/2 h 140 °C/1 h 170 °C |
IL-I-DCA | 2 h 110 °C/1 h 140 °C/1 h 170 °C |
System | Tg (°C) | νe (mol/m3) |
---|---|---|
IL-P-TMPP | ||
Epoxy/IL | 168 | 11,509 |
Epoxy/PCL/IL | 112 | 4487 |
Epoxy/CNT/IL | 169 | 13,594 |
Epoxy/PCL/CNT/IL | 115 | 4012 |
IL-P-DCA | ||
Epoxy/IL | 172 | 12,616 |
Epoxy/PCL/IL | 113 | 3117 |
Epoxy/CNT/IL | 173 | 11,437 |
Epoxy/PCL/CNT/IL | 117 | 4079 |
IL-I-DCA | ||
Epoxy/IL | 160 | 4625 |
Epoxy/PCL/IL | 96 | 1197 |
Epoxy/CNT/IL | 155 | 3599 |
Epoxy/PCL/CNT/IL | 97 | 1116 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Orduna, L.; Otaegi, I.; Aranburu, N.; Guerrica-Echevarría, G. Effect of the Simultaneous Addition of Polycaprolactone and Carbon Nanotubes on the Mechanical, Electrical, and Adhesive Properties of Epoxy Resins Cured with Ionic Liquids. Polymers 2023, 15, 1607. https://doi.org/10.3390/polym15071607
Orduna L, Otaegi I, Aranburu N, Guerrica-Echevarría G. Effect of the Simultaneous Addition of Polycaprolactone and Carbon Nanotubes on the Mechanical, Electrical, and Adhesive Properties of Epoxy Resins Cured with Ionic Liquids. Polymers. 2023; 15(7):1607. https://doi.org/10.3390/polym15071607
Chicago/Turabian StyleOrduna, Lidia, Itziar Otaegi, Nora Aranburu, and Gonzalo Guerrica-Echevarría. 2023. "Effect of the Simultaneous Addition of Polycaprolactone and Carbon Nanotubes on the Mechanical, Electrical, and Adhesive Properties of Epoxy Resins Cured with Ionic Liquids" Polymers 15, no. 7: 1607. https://doi.org/10.3390/polym15071607
APA StyleOrduna, L., Otaegi, I., Aranburu, N., & Guerrica-Echevarría, G. (2023). Effect of the Simultaneous Addition of Polycaprolactone and Carbon Nanotubes on the Mechanical, Electrical, and Adhesive Properties of Epoxy Resins Cured with Ionic Liquids. Polymers, 15(7), 1607. https://doi.org/10.3390/polym15071607