Capability of Copper Hydroxy Nitrate (Cu2(OH)3NO3) as an Additive to Develop Antibacterial Polymer Contact Surfaces: Potential for Food Packaging Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. CuHS Synthesis
2.2.2. Preparation of LDPE/CuHS Composite Films
2.2.3. Preparation of PLA/CuHS Composite Films
2.2.4. Characterization
2.2.5. Antibacterial Assay of CuHS
2.2.6. Antibacterial Assay of Composite Films
2.2.7. Migration Assay
2.2.8. Cytotoxicity Assay
2.2.9. Statistical Analysis
3. Results and Discussion
3.1. Characterization of the CuHS Filler
3.2. Characterization of the Composite Films
3.3. Bactericidal Performance of the Composite Films
3.4. Migration
3.5. Cytotoxicity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. The State of Food and Agriculture 2019. Moving forward on Food Loss and Waste Reduction; FAO: Rome, Italy, 2019. [Google Scholar]
- United Nations Environment Programme. Food Waste Index Report 2021; United Nations Environment Programme: Nairobi, Kenya, 2021. [Google Scholar]
- World Health Organization. WHO Estimates of the Global Burden of Foodborne Diseases: Foodborne Disease Burden Epidemiology Reference Group 2007–2015; World Health Organization: Geneva, Switzerland, 2015. [Google Scholar]
- Llorens, A.; Lloret, E.; Picouet, P.A.; Trbojevich, R.; Fernandez, A. Metallic-based micro and nanocomposites in food contact materials and active food packaging. Trends Food Sci. Technol. 2012, 24, 19–29. [Google Scholar] [CrossRef]
- Scattareggia Marchese, A.; Destro, E.; Boselli, C.; Barbero, F.; Malandrino, M.; Cardeti, G.; Fenoglio, I.; Luigi Lanni, L. Inhibitory Effect against Listeria monocytogenes of Carbon Nanoparticles Loaded with Copper as Precursors of Food Active Packaging. Foods 2022, 11, 2941. [Google Scholar] [CrossRef] [PubMed]
- Santos, X.; Álvarez, M.; Videira-Quintela, D.; Mediero, A.; Rodríguez, J.; Guillén, F.; Pozuelo, J.; Martín, O. Antibacterial Capability of MXene (Ti3C2Tx) to Produce PLA Active Contact Surfaces for Food Packaging Applications. Membranes 2022, 12, 1146. [Google Scholar] [CrossRef] [PubMed]
- Domínguez, C.; Gómez, I.; Zumalacárregui, J. Prevalence of Salmonella and Campylobacter in retail chicken meat in Spain. Int. J. Food Microbiol. 2002, 72, 165–168. [Google Scholar] [CrossRef]
- Herrador, Z.; Gherasim, A.; López-Vélez, R.; Benito, A. Listeriosis in Spain based on hospitalisation records, 1997 to 2015: Need for greater awareness. Eurosurveillance 2019, 24, 1800271. [Google Scholar] [CrossRef] [Green Version]
- Cortés, V.; Sevilla-Navarro, S.; García, C.; Marín, C.; Catalá-Gregori, P. Monitoring antimicrobial resistance trends in Salmonella spp. from poultry in Eastern Spain. Poult. Sci. 2022, 101, 101832. [Google Scholar] [PubMed]
- Steven, J.; Henson, S.; Unnevehr, L.; Grace, D.; Cassou, E. The Safe Food Imperative: Accelerating Progress in Lowand Middle-Income Countries; Agriculture and Food Series; World Bank: Washington, DC, USA, 2019. [Google Scholar]
- Videira-Quintela, D.; Martin, O.; Montalvo, G. Recent advances in polymer-metallic composites for food packaging applications. Trends Food Sci. Technol. 2021, 109, 230–244. [Google Scholar] [CrossRef]
- Salmas, C.E.; Giannakas, A.E.; Baikousi, M.; Kollia, E.; Tsigkou, V.; Proestos, C. Effect of copper and titanium-exchanged montmorillonite nanostructures on the packaging performance of chitosan/poly-vinyl-alcohol-based active packaging nanocomposite films. Foods 2021, 10, 3038. [Google Scholar] [CrossRef] [PubMed]
- Videira-Quintela, D.; Guillén, F.; Martin, O.; Montalvo, G. Antibacterial LDPE films for food packaging application filled with metal-fumed silica dual-side fillers. Food Packag. Shelf Life 2022, 31, 100772. [Google Scholar] [CrossRef]
- Saravanakumar, K.; Sathiyaseelan, A.; Mariadoss, A.V.A.; Xiaowen, H.; Wang, M.H. Physical and bioactivities of biopolymeric films incorporated with cellulose, sodium alginate and copper oxide nanoparticles for food packaging application. Int. J. Biol. Macromol. 2020, 153, 207–214. [Google Scholar] [CrossRef]
- Shankar, S.; Rhim, J.W. Preparation and characterization of agar/lignin/silver nanoparticles composite films with ultraviolet light barrier and antibacterial properties. Food Hydrocoll. 2017, 71, 76–84. [Google Scholar] [CrossRef]
- Volova, T.G.; Shumilova, A.A.; Shidlovskiy, I.P.; Nikolaeva, E.D.; Sukovatiy, A.G.; Vasiliev, A.D.; Shishatskaya, E.I. Antibacterial properties of films of cellulose composites with silver nanoparticles and antibiotics. Polym. Test. 2018, 65, 54–68. [Google Scholar] [CrossRef] [Green Version]
- Longano, D.; Ditaranto, N.; Cioffi, N.; Di Niso, F.; Sibillano, T.; Ancona, A.; Conte, A.; Del Nobile, M.A.; Sabbatini, L.; Torsi, L. Analytical characterization of laser-generated copper nanoparticles for antibacterial composite food packaging. Anal. Bioanal. Chem. 2012, 403, 1179–1186. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.J.; Wrona, M.; Hu, C.Y.; Nerín, C. Copper release from nano-copper/polypropylene composite films to food and the forms of copper in food simulants. Innov. Food Sci. Emerg. Technol. 2021, 67, 102581. [Google Scholar] [CrossRef]
- Chang, B.P.; Akil, H.M.; Nasir, R.M.; Nurdijati, S. Mechanical and antibacterial properties of treated and untreated zinc oxide filled UHMWPE composites. J. Thermoplast. Compos. Mater. 2011, 24, 653–667. [Google Scholar] [CrossRef]
- Ahmad, A.A.; Sarbon, N.M. A comparative study: Physical, mechanical and antibacterial properties of bio-composite gelatin films as influenced by chitosan and zinc oxide nanoparticles incorporation. Food Biosci. 2021, 43, 101250. [Google Scholar] [CrossRef]
- Slepička, P.; Fajstavr, D.; Krejčová, M.; Rimpelová, S.; Kasálková, N.S.; Kolská, Z.; Švorčík, V. Biopolymer Composites with Ti/Au Nanostructures and Their Antibacterial Properties. Pharmaceutics 2021, 13, 826. [Google Scholar] [CrossRef]
- Li, B.; Xia, X.; Guo, M.; Jiang, Y.; Li, Y.; Zhang, Z.; Liu, S.; Li, H.; Liang, C.; Wang, H. Biological and antibacterial properties of the micro-nanostructured hydroxyapatite/chitosan coating on titanium. Sci. Rep. 2019, 9, 14052. [Google Scholar] [CrossRef] [Green Version]
- Jing, F.; Suo, H.; Cui, S.; Tang, X.; Zhang, M.; Shen, X.; Lin, B.; Jiang, G.; Wu, X. Facile synthesis of TiO2/Ag composite aerogel with excellent antibacterial properties. J. Sol-Gel Sci. Technol. 2018, 86, 590–598. [Google Scholar] [CrossRef]
- Omerović, N.; Djisalov, M.; Živojević, K.; Mladenović, M.; Vunduk, J.; Milenković, I.; Knežević, N.Ž.; Gadjanski, I.; Vidić, J. Antimicrobial nanoparticles and biodegradable polymer composites for active food packaging applications. Compr. Rev. Food Sci. Food Saf. 2021, 20, 2428–2454. [Google Scholar] [CrossRef]
- Gordon, T.; Perlstein, B.; Houbara, O.; Felner, I.; Banin, E.; Margel, S. Synthesis and characterization of zinc/iron oxide composite nanoparticles and their antibacterial properties. Colloids Surf. A Physicochem. Eng. Asp. 2011, 374, 1–8. [Google Scholar] [CrossRef]
- Kaassis, A.Y.A.; Al-Jamal, W.T.; Strimaite, M.; Severic, M.; Williams, G.R. Biocompatible hydroxy double salts as delivery matrices for non-steroidal anti-inflammatory and anti-epileptic drugs. Appl. Clay Sci. 2022, 221, 106456. [Google Scholar] [CrossRef]
- Biswick, T.; Jones, W.; Pacuła, A.; Serwicka, E. Synthesis, characterisation and anion exchange properties of copper, magnesium, zinc and nickel hydroxy nitrates. J. Solid State Chem. 2006, 179, 49–55. [Google Scholar] [CrossRef]
- Shabestari, M.E.; Martín, O.; Díaz-García, D.; Gómez-Ruiz, S.; Gonzalez, V.J.; Baselga, J. Facile and rapid decoration of graphene oxide with copper double salt, oxides and metallic copper as catalysts in oxidation and coupling reactions. Carbon 2020, 161, 7–16. [Google Scholar] [CrossRef]
- Shirin, V.K.A.; Sankar, R.; Johnson, A.P.; Gangadharappa, H.V.; Pramod, K. Advanced drug delivery applications of layered double hydroxide. J. Control. Release 2021, 330, 398–426. [Google Scholar] [CrossRef] [PubMed]
- Awassa, J.; Cornu, D.; Soulé, S.; Carteret, C.; Ruby, C.; El-Kirat-Chatel, S. Divalent metal release and antimicrobial effects of layered double hydroxides. Appl. Clay Sci. 2022, 216, 106369. [Google Scholar] [CrossRef]
- Aqila, A.; Alim, A.; Salwa, S.; Shirajuddin, M.; Anuar, F.H. A Review of Nonbiodegradable and Biodegradable Composites for Food Packaging Application. J. Chem. 2022, 2022, 7670819. [Google Scholar]
- Papadopoulou, E.L.; Paul, U.C.; Tran, T.N.; Suarato, G.; Ceseracciu, L.; Marras, S.; d’Arcy, R.; Athanassiou, A. Sustainable Active Food Packaging from Poly(lactic acid) and Cocoa Bean Shells. ACS Appl. Mater. Interfaces 2019, 11, 31317–31327. [Google Scholar] [CrossRef]
- Videira-Quintela, D.; Guillén, F.; Montalvo, G.; Martin, O. Silver, copper, and copper hydroxy salt decorated fumed silica hybrid composites as antibacterial agents. Colloids Surf. B Biointerfaces 2020, 195, 111216. [Google Scholar] [CrossRef]
- European Commission. Commission Regulation (EU) No 10/2011 of 14 January 2011 on plastic materials and articles intended to come into contact with food. Off. J. Eur. Union 2011, 12, 1–89. [Google Scholar]
- Aguirre, J.M.; Gutiérrez, A.; Giraldo, O. Simple Route for the Synthesis of Copper Hydroxy Salts. J. Braz. Chem. Soc. 2011, 22, 546–551. [Google Scholar] [CrossRef]
- Ramesh, T.N.; Madhu, T.L. Thermal Decomposition Studies of Layered Metal Hydroxy ccnitrates (Metal: Cu, Zn, Cu/Co, and Zn/Co). Int. J. Inorg. Chem. 2015, 2015, 536470. [Google Scholar]
- Pereira, D.C.; Lúcia, D.; de Faria, A.; Constantino, V.R.L. Cu II Hydroxy Salts: Characterization of Layered Compounds by Vibrational Spectroscopy. J. Braz. Chem. Soc. 2006, 17, 1651–1657. [Google Scholar] [CrossRef]
- Gaska, K.; Xu, X.; Gubanski, S.; Kádár, R.; Huang, W.M. Electrical, Mechanical, and Thermal Properties of LDPE Graphene Nanoplatelets Composites Produced by Means of Melt Extrusion Process. Polymers 2017, 9, 11. [Google Scholar] [CrossRef] [Green Version]
- Gong, X.; Pan, L.; Tang, C.Y.; Chen, L.; Hao, Z.; Law, W.C.; Wang, X.; Tsui, C.P.; Wu, C. Preparation, optical and thermal properties of CdSe-ZnS/poly(lactic acid) (PLA) nanocomposites. Compos. B Eng. 2014, 66, 494–499. [Google Scholar] [CrossRef]
- Zamirian, S. Comparative Study of Mechanical Properties on LDPE/Clay and LDPE-g-MA/Clay Nancomposites for Film Packaging Applications. J. Mater. Environ. Sci. 2013, 4, 685–690. [Google Scholar]
- Al-Salem, S.M.; Abraham, G.; Al-Qabandi, O.A.; Dashti, A.M. Investigating the effect of accelerated weathering on the mechanical and physical properties of high content plastic solid waste (PSW) blends with virgin linear low density polyethylene (LLDPE). Polym. Test. 2015, 46, 116–121. [Google Scholar] [CrossRef]
- Zhang, G.; Jiang, L.; Shen, K.; Guan, Q. Self-Reinforcement of High-Density Polyethylene/Low-Density Polyethylene Prepared by Oscillanting Packing Injection Molding under Low Pressure. J. Appl. Polym. Sci. 1999, 71, 799–804. [Google Scholar] [CrossRef]
- Petersson, L.; Oksman, K. Biopolymer based nanocomposites: Comparing layered silicates and microcrystalline cellulose as nanoreinforcement. Compos. Sci. Technol. 2006, 66, 2187–2196. [Google Scholar] [CrossRef]
- Jonoobi, M.; Harun, J.; Mathew, A.P.; Oksman, K. Mechanical properties of cellulose nanofiber (CNF) reinforced polylactic acid (PLA) prepared by twin screw extrusion. Compos. Sci. Technol. 2010, 70, 1742–1747. [Google Scholar] [CrossRef]
- Busolo, M.A.; Lagaron, J.M. Antioxidant polyethylene films based on a resveratrol containing Clay of Interest in Food Packaging Applications. Food Packag. Shelf Life 2015, 6, 30–41. [Google Scholar] [CrossRef]
- He, Q.; Zhang, Y.; Cai, X.; Wang, S. Fabrication of gelatin-TiO2 nanocomposite film and its structural, antibacterial and physical properties. Int. J. Biol. Macromol. 2016, 84, 153–160. [Google Scholar] [CrossRef] [PubMed]
- Tamayo, L.A.; Zapata, P.A.; Vejar, N.D.; Azócar, M.I.; Gulppi, M.A.; Zhou, X.; Thompson, G.E.; Rabagliati, F.M.; Páe, M.A. Release of silver and copper nanoparticles from polyethylene nanocomposites and their penetration into Listeria monocytogenes. Mater. Sci. Eng. C 2014, 40, 24–31. [Google Scholar] [CrossRef] [PubMed]
- Mayorga, J.L.C.; Rovira, M.J.F.; Mas, L.C.; Moragas, G.S.; Cabello, J.M.L. Antimicrobial nanocomposites and electrospun coatings based on poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and copper oxide nanoparticles for active packaging and coating applications. J. Appl. Polym. Sci. 2018, 135, 45673. [Google Scholar] [CrossRef] [Green Version]
- Cao, G.; Lin, H.; Kannan, P.; Wang, C.; Zhong, Y.; Huang, Y.; Guo, Z. Enhanced Antibacterial and Food Simulant Activities of Silver Nanoparticles/Polypropylene Nanocomposite Films. Langmuir 2018, 34, 14537–14545. [Google Scholar] [CrossRef] [PubMed]
- Videira-Quintela, D.; Guillen, F.; Martin, O.; Cumbal, L.; Montalvo, G. Antibacterial and antioxidant triple-side filler composed of fumed silica, iron, and tea polyphenols for active food packaging. Food Control 2022, 138, 109036. [Google Scholar] [CrossRef]
- Ventanas, S.; Martín, D.; Estévez, M.; Ruiz, J. Nitritos y nitratos. Eurocarne 2004, 129, 1–15. [Google Scholar]
- Jastrzębska, A.M.; Szuplewska, A.; Wojciechowski, T.; Chudy, M.; Ziemkowska, W.; Chlubny, L.; Rozmysłowska, A.; Olszyna, A. In vitro studies on cytotoxicity of delaminated Ti3C2 MXene. J. Hazard. Mater. 2017, 339, 1–8. [Google Scholar] [CrossRef] [PubMed]
Sample | Td,onset [°C] | Tg [°C] | Tc,onset [°C] | Tm,onset [°C] |
---|---|---|---|---|
LDPE | 457 | - | - | 103 |
LDPE + 0.1% CuHS | 455 | - | - | 103 |
LDPE + 0.3% CuHS | 460 | - | - | 103 |
LDPE + 0.5% CuHS | 455 | - | - | 103 |
PLA | 356 | 57 | 105 | 143 |
PLA + 0.1% CuHS | 344 | 58 | 108 | 143 |
PLA + 0.3% CuHS | 349 | 57 | 106 | 143 |
PLA + 0.5% CuHS | 344 | 59 | 108 | 146 |
Sample | Thickness [mm] | Width [mm] | σmax [MPa] | εmax [%] | E [GPa] |
---|---|---|---|---|---|
LDPE | 0.430 ± 0.007 c | 1.9 ± 0.1 a | 10.6 ± 0.3 a | 151 ± 7 a | 0.064 ± 0.009 a |
LDPE + 0.1%CuHS | 0.438 ± 0.004 bc | 1.65 ± 0.08 a | 10.7 ± 0.5 a | 153 ± 48 a | 0.061 ± 0.008 a |
LDPE + 0.3%CuHS | 0.481 ± 0.007 a | 1.8 ± 0.1 a | 10.4 ± 0.2 a | 159 ± 31 a | 0.065 ± 0.007 a |
LDPE + 0.5%CuHS | 0.445 ± 0.005 b | 1.9 ± 0.2 a | 10.5 ± 0.3 a | 151 ± 34 a | 0.059 ± 0.007 a |
PLA | 0.053 ± 0.006 A | 2.0 ± 0.1 A | 40 ± 10 B | 15 ± 6 A | 2.5 ± 0.4 B |
PLA + 0.1%CuHS | 0.06 ± 0.02 A | 1.98 ± 0.05 A | 63 ± 12 A | 13 ± 6 AB | 3 ± 1 AB |
PLA + 0.3%CuHS | 0.045 ± 0.005 A | 2.1 ±0.1 A | 52 ± 7 AB | 6 ± 3 B | 3.6 ± 0.2 A |
PLA + 0.5%CuHS | 0.044 ± 0.003 A | 2.1 ± 0.1 A | 59 ± 6 A | 6 ± 2 B | 3.6 ± 0.2 A |
Filler | Polymer | Bacteria | Log Reduction | Ref. |
---|---|---|---|---|
Montmorillonite/Resveratrol | LDPE | S. aureus | ~5 | [45] |
TiO2NPs | Gelatin | S. aureus E. coli | ~2.2 ~1.8 | [46] |
CuNPs AgNPs | PE | L. monocytogenes | ~6 ~6 | [47] |
CuO | Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) | L. monocytogenes S. enterica | ~6 ~4 | [48] |
CuNPs | PLA | Pseudomonas spp | ~1.4 | [17] |
AgNPs | Polypropylene | S. aureus E. coli | ~1.6 ~6 | [49] |
MXene | PLA | L. monocytogenes S. enterica | ~6 ~5.2 | [6] |
SiO2/Fe/Tea polyphenols | PLA | S. aureus P. aeruginosa S. enterica | ~4 ~4 ~4 | [50] |
CuHS | LDPE PLA | L. monocytogenes S. enterica | ~8/9 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, X.; Rodríguez, J.; Guillén, F.; Pozuelo, J.; Molina-Guijarro, J.M.; Videira-Quintela, D.; Martín, O. Capability of Copper Hydroxy Nitrate (Cu2(OH)3NO3) as an Additive to Develop Antibacterial Polymer Contact Surfaces: Potential for Food Packaging Applications. Polymers 2023, 15, 1661. https://doi.org/10.3390/polym15071661
Santos X, Rodríguez J, Guillén F, Pozuelo J, Molina-Guijarro JM, Videira-Quintela D, Martín O. Capability of Copper Hydroxy Nitrate (Cu2(OH)3NO3) as an Additive to Develop Antibacterial Polymer Contact Surfaces: Potential for Food Packaging Applications. Polymers. 2023; 15(7):1661. https://doi.org/10.3390/polym15071661
Chicago/Turabian StyleSantos, Xiomara, Juana Rodríguez, Francisco Guillén, Javier Pozuelo, J. M. Molina-Guijarro, Diogo Videira-Quintela, and Olga Martín. 2023. "Capability of Copper Hydroxy Nitrate (Cu2(OH)3NO3) as an Additive to Develop Antibacterial Polymer Contact Surfaces: Potential for Food Packaging Applications" Polymers 15, no. 7: 1661. https://doi.org/10.3390/polym15071661
APA StyleSantos, X., Rodríguez, J., Guillén, F., Pozuelo, J., Molina-Guijarro, J. M., Videira-Quintela, D., & Martín, O. (2023). Capability of Copper Hydroxy Nitrate (Cu2(OH)3NO3) as an Additive to Develop Antibacterial Polymer Contact Surfaces: Potential for Food Packaging Applications. Polymers, 15(7), 1661. https://doi.org/10.3390/polym15071661