Structural Characterization of the Milled-Wood Lignin Isolated from Sweet Orange Tree (Citrus sinensis) Pruning Residue
Abstract
1. Introduction
2. Materials and Methods
2.1. Samples and Analysis of the Main Constituents
2.2. Isolation of the Milled-Wood Lignin from OTPs
2.3. Gel Permeation Chromatography (GPC)
2.4. Py-GC/MS Analysis of OTP-MWL
2.5. 2D-NMR Analysis of OTP-MWL
3. Results and Discussion
3.1. Main Constituents of OTPs
3.2. Molecular Weight of the OTP-MWL Determined by GPC
3.3. Lignin Composition of the OTP-MWL by Py-GC/MS
3.4. Lignin Units and Lignin Inter-Unit Linkages of the OTP-MWL by 2D-NMR
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAOSTAT. Food and Agriculture Organization of the United Nations. Available online: https://fao.org/faostat/ (accessed on 23 January 2023).
- de Azevedo, F.A.; Lanza, N.B.; Sales, C.R.G.; Silva, K.I.; Barros, A.L.; De Negri, J.D. Pruning in citrus culture. Citrus Res. Technol. 2013, 34, 17–30. [Google Scholar] [CrossRef]
- Aliaño-González, M.J.; Gabaston, J.; Ortiz-Somovilla, V.; Cantos-Villar, E. Wood waste from fruit trees: Biomolecules and their applications in agri-food industry. Biomolecules 2022, 12, 238. [Google Scholar] [CrossRef] [PubMed]
- Velázquez-Martí, B.; Fernández-González, E.; López-Cortés, I.; Callejón-Ferre, A.J. Prediction and evaluation of biomass obtained from citrus trees pruning. J. Food Agric. Environ. 2013, 11, 1485–1491. [Google Scholar]
- González, Z.; Vargas, F.; Jiménez, L.; Rodríguez, A. Orange tree prunings as raw material for cellulose production by the kraft process. Cellul. Chem. Technol. 2013, 47, 603–611. [Google Scholar]
- González, Z.; Vega, A.; Ligero, P.; Rodríguez, A. Valorization of the orange tree pruning by ethanol process. Am. J. Environ. Eng. Sci. 2015, 2, 1–8. [Google Scholar]
- Espinach, F.X.; Espinosa, E.; Reixach, R.; Rodríguez, A.; Mutjé, P.; Tarrés, Q. Study on the macro and micromechanics tensile strength properties of orange tree pruning fiber as sustainable reinforcement on bio-polyethylene compared to oil-derived polymers and its composites. Polymers 2020, 12, 2206. [Google Scholar] [CrossRef]
- Espinosa, E.; Arrebola, R.I.; Bascón-Villegas, I.; Sánchez-Gutiérrez, M.; Domínguez-Robles, J.; Rodríguez, A. Industrial application of orange tree nanocellulose as papermaking reinforcement agent. Cellulose 2020, 27, 10781–10797. [Google Scholar] [CrossRef]
- Porto, D.S.; Forim, M.R.; Costa, E.C.; Fernandes, J.B.; da Silva, M.F.G.F. Evaluation of lignins of trunk and roots from Citrus sinensis L. Osbeck: A large available Brazilian biomass. J. Braz. Chem. Soc. 2021, 32, 29–39. [Google Scholar] [CrossRef]
- Moral, A.; Aguado, R.; Mutjé, P.; Tijero, A. Papermaking potential of Citrus sinensis prunings using organosolv pulping, chlorine-free bleaching and refining. J. Clean. Prod. 2016, 112, 980–986. [Google Scholar] [CrossRef]
- Eugenio, M.E.; Martín-Sampedro, R.; Santos, J.I.; Wicklein, B.; Ibarra, D. Chemical, thermal and antioxidant properties of lignins solubilized during Soda/AQ pulping of orange and olive tree pruning residues. Molecules 2021, 26, 3819. [Google Scholar] [CrossRef]
- Ragauskas, A.J.; Williams, C.K.; Davison, B.H.; Britovsek, G.; Cairney, J.; Eckert, C.A.; Frederick, W.J.; Hallett, J.P.; Leak, D.J.; Liotta, C.L.; et al. The path forward for biofuels and biomaterials. Science 2006, 311, 484–489. [Google Scholar] [CrossRef]
- Ragauskas, A.J.; Beckham, G.T.; Biddy, M.J.; Chandra, R.; Chen, F.; Davis, M.F.; Davison, B.H.; Dixon, R.A.; Gilna, P.; Keller, M.; et al. Lignin valorization: Improving lignin processing in the biorefinery. Science 2014, 344, 1246843. [Google Scholar] [CrossRef] [PubMed]
- Rinaldi, R.; Jastrzebshi, R.; Clough, M.T.; Ralph, J.; Kennema, M.; Bruijnincx, P.C.A.; Weckhuysen, B.M. Paving the way for lignin valorisation: Recent advances in bioengineering, biorefining and catalysis. Angew. Chem. Int. Ed. 2016, 55, 8164–8215. [Google Scholar] [CrossRef] [PubMed]
- Schutyser, W.; Renders, T.; Van den Bosch, S.; Koelewijn, S.F.; Beckham, G.T.; Sels, B.F. Chemicals from lignin: An interplay of lignocellulose fractionation, depolymerisation, and upgrading. Chem. Soc. Rev. 2018, 47, 852–908. [Google Scholar] [CrossRef]
- Galbe, M.; Wallberg, O. Pretreatment for biorefineries: A review of common methods for efficient utilisation of lignocellulosic materials. Biotechnol. Biofuels 2019, 12, 294. [Google Scholar] [CrossRef] [PubMed]
- Mankar, A.R.; Pandey, A.; Modak, A.; Pant, K.K. Pretreatment of lignocellulosic biomass: A review on recent advances. Bioresour. Technol. 2021, 334, 125235. [Google Scholar] [CrossRef] [PubMed]
- Abu-Omar, M.M.; Barta, K.; Beckham, G.T.; Luterbacher, J.S.; Ralph, J.; Rinaldi, R.; Román-Leshkov, Y.; Samec, J.S.M.; Sels, B.F.; Wang, F. Guidelines for performing lignin-first biorefining. Energy Environ. Sci. 2021, 14, 262–292. [Google Scholar] [CrossRef]
- Nguyen, L.T.; Phan, D.P.; Sarwar, A.; Tran, M.H.; Lee, O.K.; Lee, E.Y. Valorization of industrial lignin to value-added chemicals by chemical depolymerization and biological conversion. Ind. Crop. Prod. 2021, 161, 113219. [Google Scholar] [CrossRef]
- Björkman, A. Studies on finely divided wood. Part I. Extraction of lignin with neutral solvents. Sven. Papperstidn. 1956, 59, 477–485. [Google Scholar]
- Rencoret, J.; Marques, G.; Gutiérrez, A.; Nieto, L.; Santos, J.I.; Jiménez-Barbero, J.; Martínez, Á.T.; del Río, J.C. HSQC-NMR analysis of lignin in woody (Eucalyptus globulus and Picea abies) and non-woody (Agave sisalana) ball-milled plant materials at the gel state. Holzforschung 2009, 63, 691–698. [Google Scholar] [CrossRef]
- Tappi. Tappi Test Methods 2004-2005; Tappi Press: Norcoss, GA, USA, 2004. [Google Scholar]
- Browning, B.L. Methods of Wood Chemistry; Wiley-Interscience: New York, NY, USA, 1967. [Google Scholar] [CrossRef]
- Darvill, A.; McNeil, M.; Albersheim, P.; Delmer, D. The primary cell walls of flowering plants. In The Biochemistry of Plants; Tolbert, N., Ed.; Academic Press: New York, NY, USA, 1980; pp. 91–162. [Google Scholar]
- del Río, J.C.; Prinsen, P.; Rencoret, J.; Nieto, L.; Jiménez-Barbero, J.; Ralph, J.; Martínez, A.T.; Gutiérrez, A. Structural characterization of the lignin in the cortex and pith of elephant grass (Pennisetum purpureum) stems. J. Agric. Food Chem. 2012, 60, 3619–3634. [Google Scholar] [CrossRef] [PubMed]
- Faix, O.; Meier, D.; Fortman, I. Thermal degradation products of wood: A collection of electron impact (EI) mass spectra of monomeric lignin derived products. Holz Roh Werkst. 1990, 48, 351–354. [Google Scholar] [CrossRef]
- Ralph, J.; Hatfield, R.D. Pyrolysis-GC-MS characterization of forage materials. J. Agric. Food Chem. 1991, 39, 1426–1437. [Google Scholar] [CrossRef]
- Ralph, S.A.; Landucci, L.L.; Ralph, J. NMR Database of Lignin and Cell Wall Model Compounds. 2009. Available online: https://www.glbrc.org/databases_and_software/nmrdatabase (accessed on 29 April 2022).
- Rencoret, J.; Gutiérrez, A.; Castro, E.; del Río, J.C. Structural characteristics of lignin in pruning residues of olive tree (Olea europaea L.). Holzforschung 2019, 73, 25–34. [Google Scholar] [CrossRef]
- Zinovyev, G.; Sumerskii, I.; Rosenau, T.; Balakshin, M.; Potthast, A. Ball milling’s effect on pine milled wood lignin’s structure and molar mass. Molecules 2018, 23, 2223. [Google Scholar] [CrossRef] [PubMed]
- Tolbert, A.; Akinosho, H.; Khunsupat, R.; Naskar, A.K.; Ragauskas, A.J. Characterization and analysis of the molecular weight of lignin for biorefining studies. Biofuel. Bioprod. Biorefin. 2014, 8, 836–856. [Google Scholar] [CrossRef]
- Brosse, N.; El Hage, R.; Chaouch, M.; Pétrissans, M.; Dumarçay, S.; Gérardin, P. Investigation of the chemical modifications of beech wood lignin during heat treatment. Polym. Degrad. Stab. 2010, 95, 1721–1726. [Google Scholar] [CrossRef]
- Wang, H.M.; Wang, B.; Wen, J.L.; Yuan, T.Q.; Sun, R.C. Structural characteristics of lignin macromolecules from different Eucalyptus species. ACS Sustain. Chem. Eng. 2017, 5, 11618–11627. [Google Scholar] [CrossRef]
- del Río, J.C.; Gutiérrez, A.; Hernando, M.; Landín, P.; Romero, J.; Martínez, A.T. Determining the influence of eucalypt lignin composition in paper pulp yield using Py-GC/MS. J. Anal. Appl. Pyrol. 2005, 74, 110–115. [Google Scholar] [CrossRef]
- Rencoret, J.; Gutiérrez, A.; Nieto, L.; Jiménez-Barbero, J.; Faulds, C.B.; Kim, H.; Ralph, J.; Martínez, A.T.; del Río, J.C. Lignin composition and structure in young versus adult Eucalyptus globulus plants. Plant Physiol. 2011, 155, 667–682. [Google Scholar] [CrossRef]
- Tsutsumi, Y.; Kondo, R.; Sakai, K.; Imamura, H. The difference of reactivity between syringyl lignin and guaiacyl lignin in alkaline systems. Holzforschung 1995, 49, 423–428. [Google Scholar] [CrossRef]
- Prinsen, P.; Rencoret, J.; Gutiérrez, A.; Liitiä, T.; Tamminen, T.; Colodette, J.L.; Berbis, M.A.; Jiménez-Barbero, J.; Martínez, A.T.; del Río, J.C. Modification of the lignin structure during alkaline delignification of eucalyptus wood by kraft, soda-AQ and soda-O2 cooking. Ind. Eng. Chem. Res. 2013, 52, 15702–15712. [Google Scholar] [CrossRef]
- Karhunen, P.; Rummakko, P.; Sipilä, J.; Brunow, G.; Kilpeläinen, I. Dibenzodioxocins; a novel type of linkage in softwood lignins. Tetrahedron Lett. 1995, 36, 169–170. [Google Scholar] [CrossRef]
- Ralph, J.; Lapierre, C.; Boerjan, W. Lignin structure and its engineering. Curr. Opin. Biotechnol. 2019, 56, 240–249. [Google Scholar] [CrossRef]
Abundance a | |
---|---|
Acetone extractives | 3.0 ± 0.3 |
Methanol extractives | 0.6 ± 0.0 |
Water-soluble material | 0.3 ± 0.0 |
Klason lignin b | 19.0 ± 0.4 |
Acid-soluble lignin | 2.2 ± 0.3 |
Hemicelluloses | 29.3 ± 1.8 |
Cellulose | 40.5 ± 0.3 |
Proteins | 2.7 ± 0.1 |
Ash | 2.4 ± 0.0 |
Label | Compound | Ret. Time (Min) | MS Fragments | Origin | % |
---|---|---|---|---|---|
1 | phenol | 7.15 | 65/66/94 | H | 0.1 |
2 | guaiacol | 7.21 | 81/109/124 | G | 9.5 |
3 | 3-methylphenol | 7.88 | 77/107/108 | H | 0.3 |
4 | 4-methylphenol | 8.60 | 77/107/108 | H | 0.5 |
5 | 4-methylguaiacol | 9.01 | 95/123/138 | G | 12.9 |
6 | 4-ethylphenol | 9.35 | 77/107/122 | H | 0.4 |
7 | 4-ethylguaiacol | 10.51 | 122/137/152 | G | 3.0 |
8 | 4-vinylguaiacol | 11.70 | 107/135/150 | G | 9.0 |
9 | eugenol | 12.11 | 131/149/164 | G | 3.4 |
10 | syringol | 12.90 | 111/139/154 | S | 8.6 |
11 | cis-isoeugenol | 13.20 | 131/149/164 | G | 2.5 |
12 | trans-isoeugenol | 14.29 | 131/149/164 | G | 7.1 |
13 | 4-methylsyringol | 14.65 | 125/153/168 | S | 9.0 |
14 | vanillin | 15.09 | 109/151/152 | G | 4.6 |
15 | 4-ethylsyringol | 15.93 | 107/167/182 | S | 3.8 |
16 | vanillic acid methyl ester | 16.32 | 123/151/182 | G | 0.6 |
17 | acetoguaiacone | 16.64 | 123/151/166 | G | 1.8 |
18 | 4-vinylsyringol | 17.12 | 137/165/180 | S | 4.2 |
19 | 4-allylsyringol | 17.37 | 167/179/194 | S | 1.2 |
20 | guaiacylacetone | 17.47 | 122/137/180 | G | 1.4 |
21 | propiovanillone | 18.10 | 123/151/180 | G | 0.3 |
22 | cis-4-propenylsyringol | 18.37 | 167/179/194 | S | 1.0 |
23 | trans-4-propenylsyringol | 19.45 | 167/179/194 | S | 4.2 |
24 | syringaldehyde | 20.29 | 167/181/182 | S | 4.7 |
25 | syringic acid methyl ester | 21.15 | 123/181/212 | S | 0.8 |
26 | acetosyringone | 21.40 | 153/181/196 | S | 2.0 |
27 | syringylacetone | 22.05 | 123/167/210 | S | 1.3 |
28 | trans-coniferaldehyde | 22.24 | 135/147/178 | G | 0.8 |
29 | propiosyringone | 22.56 | 151/181/210 | S | 1.0 |
%H= | 1.3 | ||||
%G= | 56.9 | ||||
%S= | 41.8 | ||||
S/G= | 0.73 |
Label | δC/δH | Assignment |
---|---|---|
Bβ | 53.0/3.45 | Cβ/Hβ in β–5′ phenylcoumarans (B) |
Cβ | 53.4/3.05 | Cβ/Hβ in β–β′ resinols (C) |
-OCH3 | 55.5/3.72 | C/H in methoxyls |
Aγ | 59.7/3.38 and 3.69 | Cγ/Hγ in β–O–4′ alkyl–aryl ethers (A) |
Fβ | 59.5/2.74 | Cβ/Hβ in β–1′ spirodienones (F) |
Iγ | 61.3/4.08 | Cγ/Hγ in cinnamyl alcohol end-groups (I) |
Bγ | 62.5/3.67 | Cγ/Hγ in β–5′ phenylcoumarans (B) |
Aα(G) | 70.9/4.73 | Cα/Hα in β–O–4′ alkyl–aryl ethers (A) linked to G-units |
Cγ | 70.9/3.81 and 4.18 | Cγ/Hγ in β–β′ resinols (C) |
Aα(S) | 71.8/4.83 | Cα/Hα in β–O–4′ alkyl–aryl ethers (A) linked to S-units |
Fβ′ | 79.2/4.11 | Cβ′/Hβ′ in β–1′ spirodienones (F) |
Fα | 81.0/5.04 | Cα/Hα in β–1′ spirodienones (F) |
Dα | 83.1/4.81 | Cα/Hα in 5-5′ dibenzodioxocins (D) |
Aβ(G) | 83.5/4.28 | Cβ/Hβ in β–O–4′ alkyl–aryl ethers (A) linked to G-units |
Fα′ | 83.5/4.71 | Cα′/Hα′ in β–1′ spirodienones (F) |
Cα | 84.8/4.65 | Cα/Hα in β–β′ resinols (C) |
Dβ | 85.2/3.84 | Cβ/Hβ in 5-5′ dibenzodioxocins (D) |
Aβ(S) | 85.8/4.10 | Cβ/Hβ in β–O–4′ alkyl–aryl ethers (A) linked to S-units |
Bα | 86.7/5.45 | Cα/Hα in β–5′ phenylcoumarans (B) |
S2,6 | 103.9/6.69 | C2/H2 and C6/H6 in etherified syringyl units (S) |
J2,6(S) | 106.0/7.03 | C2/H2 and C6/H6 in sinapaldehyde end-groups (J) |
S′2.6 | 106.2/7.30 and 106.4/7.18 | C2/H2 and C6/H6 in Cα-oxidized syringyl units (S′) |
G2 | 110.9/6.97 | C2/H2 in guaiacyl units (G) |
J2(G) | 112.4/7.31 | C2/H2 in coniferaldehyde end-groups C5-linked (J) |
F2′(G) | 112.8/6.16 | C2′/H2′ in guaiacyl β–1′ spirodienones (F) |
F2′(S) | 113.4/6.25 | C2′/H2′ in syringyl β–1′ spirodienones (F) |
G5/G6 | 114.8/6.93 | C5/H5 in guaiacyl units + C6/H6 in C5-linked guaiacyl units (G) |
G6 | 118.8/6.77 | C6/H6 in guaiacyl units (G) |
J6(G) | 118.7/7.30 | C6/H6 in coniferaldehyde end-groups C5-linked (J) |
F6′(S) | 118.8/6.06 | C6′/H6′ in syringyl β–1′ spirodienones (F) |
J8 | 125.9/6.75 | C8/H8 in cinnamaldehyde end-groups (J) |
H2,6 | 127.7/7.20 | C2/H2 and C6/H6 in p-hydroxyphenyl units (H) |
F5′(G) | 127.8/6.05 | C5′/H5′ in guaiacyl β–1′ spirodienones (F) |
Iβ | 128.1/6.21 | Cβ/Hβ in cinnamyl alcohol end-groups (I) |
Iα | 128.3/6.44 | Cα/Hα in cinnamyl alcohol end-groups (I) |
F6′(G) | 151.0/7.08 | C6′/H6′ in guaiacyl β–1′ spirodienones (F) |
J7 | 153.5/7.62 | C7/H7 in cinnamaldehyde end-groups (J) |
Lignin Inter-Unit Linkages (%) | |
---|---|
β–O–4′ aryl ethers (A) | 70 |
β–5′ phenylcoumarans (B) | 15 |
β–β′ resinols (C) | 9 |
5–5′ dibenzodioxocins (D) | 3 |
β–1′ spirodienones (F) | 3 |
Lignin end-groups a | |
Cinnamyl alcohol end-groups (I) | 6 |
Cinnamaldehyde end-groups (J) | 6 |
Lignin aromatic units b | |
H (%) | 1 |
G (%) | 62 |
S (%) | 37 |
S/G ratio | 0.60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rosado, M.J.; Rencoret, J.; Gutiérrez, A.; del Río, J.C. Structural Characterization of the Milled-Wood Lignin Isolated from Sweet Orange Tree (Citrus sinensis) Pruning Residue. Polymers 2023, 15, 1840. https://doi.org/10.3390/polym15081840
Rosado MJ, Rencoret J, Gutiérrez A, del Río JC. Structural Characterization of the Milled-Wood Lignin Isolated from Sweet Orange Tree (Citrus sinensis) Pruning Residue. Polymers. 2023; 15(8):1840. https://doi.org/10.3390/polym15081840
Chicago/Turabian StyleRosado, Mario J., Jorge Rencoret, Ana Gutiérrez, and José C. del Río. 2023. "Structural Characterization of the Milled-Wood Lignin Isolated from Sweet Orange Tree (Citrus sinensis) Pruning Residue" Polymers 15, no. 8: 1840. https://doi.org/10.3390/polym15081840
APA StyleRosado, M. J., Rencoret, J., Gutiérrez, A., & del Río, J. C. (2023). Structural Characterization of the Milled-Wood Lignin Isolated from Sweet Orange Tree (Citrus sinensis) Pruning Residue. Polymers, 15(8), 1840. https://doi.org/10.3390/polym15081840