Multi-Material Metamaterial Topology Optimization to Minimize the Compliance and the Constraint of Weight: Application of Non-Pneumatic Tire Additive-Manufactured with PLA/TPU Polymers
Abstract
:1. Introduction
- the optimization of the metamaterial cell with three materials and its possible application in non-pneumatic tires,
- the production and the examination of how to connect materials and the quality of 3D printing.
2. Materials and Methods
2.1. Samples
2.2. Materials Specifications
2.3. Optimization Procedures
2.4. Printing Quality
3. Results and Discussion
3.1. Outputs for Square Plane
3.2. Outputs for Rectangular Plane
3.3. Entire Circumference of Tire
3.4. Outputs for The Quality of 3D Printing
4. Conclusions
- In the optimization of the square plane, the sample with the remaining weight constraint equal to 40% was selected as the optimal sample;
- In the optimization of the rectangular plane, the sample with the remaining weight constraint equal to 60% was selected as the optimal sample;
- In the optimization of the entire circumference of the tire, the sample with a remaining weight of less than 60% was selected as the optimal sample;
- The objective function for all three problems in the optimal distribution of materials was convergent and acceptable;
- PLA and TPU materials had complete mechanical adhesion, based on FE-SEM images. In future research, a pull-off test could be carried out to check this adhesion more accurately.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Askari, M.; Hutchins, D.A.; Thomas, P.J.; Astolfi, L.; Watson, R.L.; Abdi, M.; Ricci, M.; Laureti, S.; Nie, L.; Freear, S.; et al. Additive manufacturing of metamaterials: A review. Addit. Manuf. 2020, 36, 101562. [Google Scholar] [CrossRef]
- Refai, K.; Brugger, C.; Montemurro, M.; Saintier, N. An experimental and numerical study of the high cycle multiaxial fatigue strength of titanium lattice structures produced by Selective Laser Melting. Int. J. Fatigue 2020, 138, 105623. [Google Scholar] [CrossRef]
- Benedetti, M.; du Plessis, A.; Ritchie, R.O.; Dallago, M.; Razavi, S.M.J.; Berto, F. Architected cellular materials: A review on their mechanical properties towards fatigue-tolerant design and fabrication. Mater. Sci. Eng. R Rep. 2021, 144, 100606. [Google Scholar] [CrossRef]
- Jia, Z.; Liu, F.; Jiang, X.; Wang, L. Engineering lattice metamaterials for extreme property, programmability, and multifunctionality. J. Appl. Phys. 2020, 127, 150901. [Google Scholar] [CrossRef]
- Frenzel, T.; Kadic, M.; Wegener, M. Three-dimensional mechanical metamaterials with a twist. Science 2017, 358, 1072–1074. [Google Scholar] [CrossRef]
- Deptula, A.; Osinski, P. The Optimization of Three-Involute Tooth Outline with Taking into Consideration Multi-valued Logic Trees. In Proceedings of the 13th International Scientific Conference: Computer Aided Engineering, Wroclaw, Poland, 22–24 June 2016. [Google Scholar]
- Jafferson, J.M.; Sharma, H. Design of 3D printable airless tyres using NTopology. Mater. Today: Proc. 2021, 46, 1147–1160. [Google Scholar] [CrossRef]
- Sandberg, U. The airless tire: Will this revolutionary concept be the tire of the future? Mod. Concepts Mater. Sci. 2020, 3, 000563. [Google Scholar] [CrossRef]
- Bras, B.; Cobert, A. Life-cycle environmental impact of Michelin tweel® tire for passenger vehicles. SAE Int. J. Passeng. Cars Mech. Syst. 2011, 4, 32–43. [Google Scholar] [CrossRef]
- Sambucci, M.; Valente, M. Ground waste tire rubber as a total replacement of natural aggregates in concrete mixes: Application for lightweight paving blocks. Materials 2021, 14, 7493. [Google Scholar] [CrossRef]
- Shinichi, S.; Hideto, Y.; Yasuhiro, H.; Misuzu, A.; Hidetaka, T.; Shin, T.; Keijirou, T.; Maria Victoria, P.; Jakub, W.; Douvan, T.; et al. International comparative study of 3R and waste management policy developments. J. Mater. Cycles Waste Manag. 2011, 13, 86–102. [Google Scholar]
- Jin, X.; Hou, C.; Fan, X.; Sun, Y.; Lv, J.; Lu, C. Investigation on the static and dynamic behaviors of non-pneumatic tires with honeycomb spokes. Compos. Struct. 2018, 187, 27–35. [Google Scholar] [CrossRef]
- Mazur, V.V. Experiments to find the rolling resistance of non-pneumatic tires car wheels. In Proceedings of the 5th International Conference on Industrial Engineering, Sochi, Russia, 25–29 March 2019; pp. 641–648. [Google Scholar]
- Deziania, S.; Azadi, M. A review on metamaterial types, additive manufacturing technique and its application in automotive industry. Sci. J. Iran. Soc. Mech. Eng. 2021, 4, 70–80. [Google Scholar]
- Suvanjumrat, C.; Rugsaj, R. Study of 3D printing for forming spoke of non-pneumatic tire using finite element method. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1137, 012020. [Google Scholar] [CrossRef]
- Rugsaj, R.; Suvanjumrat, C. Dynamic finite element analysis of rolling non-pneumatic tire. Int. J. Automot. Technol. 2021, 22, 1022. [Google Scholar] [CrossRef]
- Rugsaj, R.; Suvanjumrat, C. Determination of material property for non-pneumatic tire spokes by inverse method. Key Eng. Mater. 2018, 777, 411–415. [Google Scholar] [CrossRef]
- Rugsaj, R.; Suvanjumrat, C. Proper radial spokes of non-pneumatic tire for vertical load supporting by finite element analysis. Int. J. Automot. Technol. 2019, 20, 801–812. [Google Scholar] [CrossRef]
- Ramachandran, M. Nonlinear Finite Element Analysis of Tweel Geometric Parameter Modifications on Spoke Dynamics During High-Speed Rolling. Master’s Thesis, Clemson University, Clemson, SC, USA, 2008. [Google Scholar]
- Manibaalan, C.; Keshore, B.S.; Haran, J.C. Static analysis of airless tyres. Int. J. Sci. Res. Publ. 2013, 3, 1–4. [Google Scholar]
- Zmuda, M.; Jackowski, J.; Hryciow, Z. Numerical research of selected features of the non-pneumatic tire. AIP Conf. Proc. 2019, 2078, 020027. [Google Scholar]
- Ma, J.; Summers, J.; Joseph, P. Dynamic impact simulation of interaction between non-pneumatic tire and sand with obstacle. In Proceedings of the SAE 2011 World Congress and Exhibition, Detroit, MI, USA, 12–14 April 2011; Volume 12. [Google Scholar]
- Ma, J.; Summers, J.D.; Joseph, P.F. Numerical simulation of tread effects on the interaction between cellular shear band based non-pneumatic tire and sand. In Proceedings of the ASME Design Engineering Technical Conference, Washington, DC, USA, 28–31 August 2011; Volume 8, pp. 769–779. [Google Scholar]
- Shankar, P.; Fazelpour, M.; Summers, J.D. An energy-based design approach for a meso-structure with high shear flexure. In Proceedings of the ASME Design Engineering Technical Conference, Portland, OR, USA, 4–7 August 2013; Volume 3. [Google Scholar]
- Ma, J.; Louis, S.; Summers, J.D.; Joseph, P.F. Numerical Investigation of Effect of Membrane on Thickness on the Performance of Cellular Shear Band Based non- pneumatic Tire. In Proceedings of the International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Washington, DC, USA, 28–31 August 2011; pp. 1–11. [Google Scholar]
- Tavakoli, R. Multimaterial topology optimization by volume constrained Allen–Cahn system and regularized projected steepest descent method. Comput. Methods Appl. Mech. Eng. 2014, 276, 534–565. [Google Scholar] [CrossRef]
- Han, Z.; Gu, Z.; Ma, X.; Chen, W. Multi material layout optimization of truss structures via an improved particle swarm optimization algorithm. Comput. Struct. 2019, 222, 10–24. [Google Scholar]
- Chen, Y.; Ye, L.; Xu, C.; Zhang, Y.X. Multi-material topology optimization of micro-composites with reduced stress con-centration for optimal functional performance. Mater. Des. 2021, 210, 110098. [Google Scholar] [CrossRef]
- Chung, H.; Du, Z. Optimized design of multi-material cellular structures by a level-set method with Guyan reduction. J. Mech. Des. 2021, 143, 101702. [Google Scholar] [CrossRef]
- Mansouri, M.R.; Montazerian, H.; Schmauder, S. 3D-printed multi-material composites tailored for compliancy and strain recovery. Compos. Struct. 2018, 184, 11–17. [Google Scholar] [CrossRef]
- Gao, X.; Caivano, R.; Tridello, A.; Chiandussi, G.; Ma, H.; Paolino, D.; Berto, F. Innovative formulation for topological fatigue optimization based on material defects distribution and TopFat algorithm. Int. J. Fatigue 2021, 17, 106176. [Google Scholar] [CrossRef]
- Gao, J.; Wang, L.; Xiao, M.; Gao, L.; Li, P. An ISO geometric approach to topological optimization design of auxetic composites with tri-material micro-architectures. Compos. Struct. 2021, 271, 114163. [Google Scholar] [CrossRef]
- Huang, X.; Li, W. A new multi-material topology optimization algorithm and selection of candidate materials. Comput. Methods Appl. Mech. Eng. 2021, 386, 114114. [Google Scholar] [CrossRef]
- Li, H.; Luo, Z.; Gao, L.; Walker, P. Topology optimization for functionally graded cellular composites with metamaterials by level sets. Comput. Methods Appl. Mech. Eng. 2018, 328, 340–364. [Google Scholar] [CrossRef]
- Nguyen, C.; Zhuang, X.; Chamoin, L.; Zhao, X.; Nguyen-Xuan, H.; Rabczuk, T. Three-dimensional topology optimization of auxetic metamaterial using isogeometric analysis and model order reduction. Comput. Methods Appl. Mech. Eng. 2020, 371, 113306. [Google Scholar] [CrossRef]
- Vogiatzis, P.; Chen, S.; Wang, X.; Li, T.; Wang, L. Topology optimization of multi-material negative Poisson’s ratio metamaterials using a reconciled level set method. Comput. Aided Des. 2017, 83, 15–32. [Google Scholar] [CrossRef]
- Huikai, Z.; Yangjun, L.; Kang, Z. Bi-material microstructural design of chiral auxetic metamaterials using topology optimization. Compos. Struct. 2018, 195, 232–248. [Google Scholar]
- Zheng, Y.; Wang, Y.; Lu, X.; Zheng, J.; Qu, J. Topology optimization for isotropic mechanical metamaterials considering material uncertainties. Mech. Mater. 2021, 155, 103742. [Google Scholar] [CrossRef]
- Deng, Y.; Zhao, Y.; Lin, F.; Xiao, Z.; Zhu, M.; Li, H. Simulation of steady-state rolling non-pneumatic mechanical elastic wheel using finite element method. Simul. Model. Pract. Theory 2018, 85, 60–79. [Google Scholar] [CrossRef]
- Du, X.; Zhao, Y.; Wang, Q.; Fu, H.; Lin, F. Grounding characteristics of a non-pneumatic mechanical elastic tire in a rolling state with a camber angle. Stroj. Vestn. J. Mech. Eng. 2019, 65, 287–296. [Google Scholar] [CrossRef]
- Du, X.; Zhao, Y.; Lin, F.; Fu, H.; Wang, Q. Numerical and experimental investigation on the camber performance of a non-pneumatic mechanical elastic wheel. J. Braz. Soc. Mech. Sci. Eng. 2017, 39, 3315–3327. [Google Scholar] [CrossRef]
- Xiao, Z.; Zhao, Y.Q.; Lin, F.; Zhu, M.M.; Deng, Y.J. Studying the fatigue life of a non-pneumatic wheel by using finite-life design for life prediction. J. Mech. Eng. 2018, 64, 56–67. [Google Scholar]
- Zhao, Y.Q.; Xiao, Z.; Lin, F.; Zhu, M.M.; Deng, Y.J. Influence analysis of machining and installation errors on the radial stiffness of a non-pneumatic mechanical elastic wheel. Chin. J. Mech. Eng. 2018, 31, 1–9. [Google Scholar] [CrossRef]
- Mathew, N.J.; Sahoo, D.K.; Chakravarthy, E.M. Design and static analysis of airlesstyre to reduce deformation. IOP Con-Ference Ser. Mater. Sci. Eng. 2017, 197, 012042. [Google Scholar] [CrossRef]
- Zhang, Z.; Fu, H.; Zhao, Q.; Tan, D.; Yang, K. Pattern design and performance analysis of a flexible spoke bionic non-pneumatic tire. J. Braz. Soc. Mech. Sci. Eng. 2021, 43, 1–11. [Google Scholar] [CrossRef]
- Zhang, Z.; Fu, H.; Liang, X.; Chen, X.; Tan, D. Comparative analysis of static and dynamic performance of nonpneumatic tire with flexible spoke structure. Stroj. Vestn. J. Mech. Eng. 2020, 66, 458–466. [Google Scholar] [CrossRef]
- Wang, J.; Yang, B.; Lin, X.; Gao, L.; Liu, T.; Lu, Y.; Wang, R. Research of TPU materials for 3D printing aiming at non-pneumatic tires by FDM method. Polymers 2020, 12, 2492. [Google Scholar] [CrossRef]
- Ganniari-Papageorgiou, E.; Chatzistergos, P.; Wang, X. The Influence of the honeycomb design parameters on the mechanical behavior of non-pneumatic tires. Int. J. Appl. Mech. 2020, 12, 2050024. [Google Scholar] [CrossRef]
- Zheng, Z.; Rakheja, S.; Sedaghati, R. Multi-axis stiffness and road contact characteristics of honeycomb wheels: A parametric analysis using Taguchi method. Compos. Struct. 2022, 279, 114735. [Google Scholar] [CrossRef]
- Fu, H.; Chen, X.; Zhao, Q.; Xiao, Z.; Liang, X. Fatigue life prediction and influencing factors analysis of mesh flexible spoke non-pneumatic tire. Adv. Mech. Eng. 2021, 13, 1–10. [Google Scholar] [CrossRef]
- Gasmi, A.; Joseph, P.F.; Rhyne, T.B.; Cron, S.M. Development of a two-dimensional model of a compliant non-pneumatic tire. Int. J. Solids Struct. 2012, 49, 1723–1740. [Google Scholar] [CrossRef]
- Ju, J.; Kim, D.M.; Kim, K. Flexible cellular solid spokes of a non-pneumatic tire. Compos. Struct. 2012, 94, 2285–2295. [Google Scholar] [CrossRef]
- Maharaj, Y.; James, K.A. Metamaterial topology optimization of nonpneumatic tires with stress and buckling constraints. Int. J. Numer. Methods Eng. 2020, 121, 1410–1439. [Google Scholar] [CrossRef]
- Petrone, F.; Fichera, G.; Lacagnina, M. A numerical model to analyze the dynamic response of a vehicle to variations in torque transmitted by the drive-line. SAE Int. J. Passeng. Cars Mech. Syst. 2001, 2, 2544–2553. [Google Scholar]
- Hsiao, T.; Liu, N.; Chen, S. Robust estimation of the friction forces generated by each tire of a vehicle. In Proceedings of the 2011 American Control Conference, San Francisco, CA, USA, 29 June–1 July 2011; pp. 5261–5266. [Google Scholar]
- Wei, W.; Kai, Z.; Shaoyi, B.; Lanchun, Z.; Yongzhi, W. Vibration performance analysis of vehicle with the non-pneumatic new mechanical elastic wheel in the impulse issnput experiment. J. Vibroengineering 2016, 18, 3970–3980. [Google Scholar] [CrossRef]
- Zhao, Y.; Du, X.; Lin, F.; Wang, Q.; Fu, H. Static stiffness characteristics of a new non-pneumatic tire with different hinge structure and distribution. J. Mech. Sci. Technol. 2018, 32, 3057–3064. [Google Scholar] [CrossRef]
- Zhao, Y.Q.; Deng, Y.J.; Lin, F.; Zhu, M.M.; Xiao, Z. Transient dynamic characteristics of a non-pneumatic mechanical elastic wheel rolling over a ditch. Int. J. Automot. Technol. 2018, 19, 499–508. [Google Scholar] [CrossRef]
- Torres, J.; Cotelo, J.; Karl, J.; Gordon, A.P. Mechanical property optimization of FDM PLA in shear with multiple objectives. Miner. Met. Mater. Soc. Mech. 2015, 67, 1183–1193. [Google Scholar] [CrossRef]
- Dezianian, S. Topology Optimization of the Vehicle Non-Pneumatic Tire from Multi-Material Metamaterial with the Objective of Compressive Strength and Bending Fatigue Lifetime. Master’s Thesis, Semnan University, Semnan, Iran, 2022. [Google Scholar]
- Schollenberger, C.S.; Stewart, F.D. Thermoplastic Polyurethane Hydrolysis Stability. J. Elastomers Plast. 2016, 3, 28–56. [Google Scholar] [CrossRef]
- Pyrz, R.; Rauhe, J.C. IUTAM Symposium on Modelling Nanomaterials and Nanosystems. In Proceedings of the IUTAM Symposium, Aalborg, Denmark, 19–22 May 2008; Volume 13. [Google Scholar]
- Panesar, A. Review on design and structural optimization in additive manufacturing: Towards next-generation lightweight structures. Mater. Des. 2019, 183, 108164. [Google Scholar]
- Bendsue, M.P.; Sigmund, O. Material interpolation schemes in topology optimization. Arch. Appl. Mech. 1999, 69, 635–654. [Google Scholar] [CrossRef]
- Sigmund, O. Design of Multiphysics actuators using topology optimization, Part II: Two-material structures. Comput. Methods Appl. Mech. Eng. 2001, 190, 6605–6627. [Google Scholar] [CrossRef]
- Li, D.; Yong, I. Multi-material topology optimization for practical lightweight design. Struct. Multidiscip. Optimization 2018, 58, 1081–1094. [Google Scholar] [CrossRef]
- Liu, K.; Tovar, A. An efficient 3D topology optimization code written in Matlab. Computer Methods Appl. Mech. Eng. 2014, 340, 798–823. [Google Scholar] [CrossRef]
- Grinde, S.; Tech, M. Topology Optimization for Additive Manufacturing Using SIMP Method. Master’s Thesis, Montana Technological University, Butte, MT, USA, 2018. [Google Scholar]
- Zuo, W.; Saitou, K. Multi-material topology optimization using ordered SIMP interpolation. Struct. Multidiscip. Optim. 2017, 55, 477–491. [Google Scholar] [CrossRef]
- Jang, I.G.; Sung, Y.H.; Yoo, E.J.; Kwak, B.M. Pattern design of a non-pneumatic tyre for stiffness using topology optimization. Eng. Optim. 2012, 44, 119–131. [Google Scholar] [CrossRef]
- Sanders, E.D.; Aguiló, M.A.; Paulino, G.H. Multi-material continuum topology optimization with arbitrary volume and mass constraints. Comput. Methods Appl. Mech. Eng. 2018, 340, 798–823. [Google Scholar] [CrossRef]
- Azadi, M.; Dadashi, A.; Dezianian, S.; Kianifar, M.; Torkaman, S.; Chiyani, M. High-cycle bending fatigue properties of additive-manufactured ABS and PLA polymers fabricated by fused deposition modeling 3D-printing. Forces Mech. 2021, 3, 100016. [Google Scholar] [CrossRef]
- Ning, F.; Cong, W.; Qiu, J.; Wei, J.; Wang, S. Additive manufacturing of carbon fiber reinforced thermoplastic composites using fused deposition modeling. Compos. Part B Eng. 2015, 80, 369–378. [Google Scholar] [CrossRef]
- Azadi, M.; Dadashi, A.; Aghareb Parast, M.S.; Dezianian, S. A comparative study for high-cycle bending fatigue lifetime and fracture behavior of extruded and additive-manufactured 3D-printed acrylonitrile butadiene styrene polymers. Int. J. Addit. Manuf. Struct. 2022, 1, 1. [Google Scholar]
- Ferretti, P.; Leon-Cardenas, C.; Santi, G.; Sali, M.; Ciotti, E.; Frizziero, L.; Donnici, G.; Liverani, A. Relationship between FDM 3D Printing Parameters Study: Parameter Optimization for Lower Defects. Polymers 2021, 13, 2190. [Google Scholar] [CrossRef]
- Yadav, D.; Chhabra, D.; Kumar Garg, R.; Ahlawat, A.; Phogat, A. Optimization of FDM 3D printing process parameters for multi-material using artificial neural network. Mater. Today Proc. 2020, 21, 1583–1591. [Google Scholar] [CrossRef]
- Yin, J.; Lu, C.; Fu, J.; Huang, Y.; Zheng, Y. Interfacial bonding during multi-material fused deposition modeling (FDM) process due to inter-molecular diffusion. Mater. Des. 2018, 150, 104–112. [Google Scholar] [CrossRef]
Material | Speed (mm/s) | Nozzle Temperature (°C) | Infill (%) | Layer Height (mm) | Nozzle Diameter (mm) | Bed Temperature (°C) |
---|---|---|---|---|---|---|
PLA | 20 | 180 | 100 | 0.2 | 0.2 | 25 |
TPU | 20 | 220 | 100 | 0.2 | 0.2 | 25 |
Material | Yield Stress (MPa) | Elastic Modulus (MPa) |
---|---|---|
PLA | 56.0 ± 2.5 | 3089.3 ± 100.7 |
TPU | 4.1 ± 1.6 | 12.0 ± 0.6 |
Objective | Constraint | R |
---|---|---|
Minimum Compliance | Remaining weight for 20, 40, and 60% of the total weight | 1.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dezianian, S.; Azadi, M. Multi-Material Metamaterial Topology Optimization to Minimize the Compliance and the Constraint of Weight: Application of Non-Pneumatic Tire Additive-Manufactured with PLA/TPU Polymers. Polymers 2023, 15, 1927. https://doi.org/10.3390/polym15081927
Dezianian S, Azadi M. Multi-Material Metamaterial Topology Optimization to Minimize the Compliance and the Constraint of Weight: Application of Non-Pneumatic Tire Additive-Manufactured with PLA/TPU Polymers. Polymers. 2023; 15(8):1927. https://doi.org/10.3390/polym15081927
Chicago/Turabian StyleDezianian, Shokouh, and Mohammad Azadi. 2023. "Multi-Material Metamaterial Topology Optimization to Minimize the Compliance and the Constraint of Weight: Application of Non-Pneumatic Tire Additive-Manufactured with PLA/TPU Polymers" Polymers 15, no. 8: 1927. https://doi.org/10.3390/polym15081927
APA StyleDezianian, S., & Azadi, M. (2023). Multi-Material Metamaterial Topology Optimization to Minimize the Compliance and the Constraint of Weight: Application of Non-Pneumatic Tire Additive-Manufactured with PLA/TPU Polymers. Polymers, 15(8), 1927. https://doi.org/10.3390/polym15081927