Efficiencies of Super-Plasticizer on Rheology Properties of Fly Ash-Based Alkali-Activated Materials with Different Ms Waterglass Activators
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.1.1. Aluminosilicates Precursors
2.1.2. Alkali Activators
2.1.3. Superplasticizers
2.2. Mixing Methods of FA-AAM Fresh Pastes
2.3. Testing Methods
2.3.1. Rheology Properties of FA-AAMs
Dispersing Effectiveness of SPs
Viscoelasticity Properties of FA-AAM Fresh Pastes with SPs
2.3.2. Mechanism between SPs and FA-AAMs Fresh Pastes
Stability of SP on the AAs
Zeta Potential of FA-AAM Fresh Pastes
Adsorption of SPs on FA-AAM Fresh Pastes
3. Results and Discussing
3.1. Rheology Properties of FA-AAM with Different SPs
3.1.1. Dispersing Effectiveness of SPs
3.1.2. Viscoelasticity of FA-AAM Fresh Pastes
3.2. Size of Inter-Structure of FA-AAM Fresh Pastes
3.3. Mechanism between SPs and Fresh Pastes
3.4. Stability of SPs
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Shi, C.; Qu, B.; Provis, J.L. Recent progress in low-carbon binders. Cem. Concr. Res. 2019, 122, 227–250. [Google Scholar] [CrossRef]
- Provis, J.L. Alkali-activated materials. Cem. Concr. Res. 2017, 114, 40–48. [Google Scholar] [CrossRef]
- Provis, J.L.; Palomo, A.; Shi, C. Advances in understanding alkali-activated materials. Cem. Concr. Res. 2015, 78, 110–125. [Google Scholar] [CrossRef]
- Zhang, D.-W.; Zhao, K.-F.; Li, H.; Wang, D.-M.; Wang, L.-L.; Zhang, G.-F. Dispersion properties of fly ash–slag powders under the different environment. Constr. Build. Mater. 2021, 296, 123649. [Google Scholar] [CrossRef]
- Zhang, D.W.; Zhao, K.F.; Wang, D.M.; Li, H. Relationship of amorphous gel-microstructure-elastoviscosity properties of alka-li-activated materials fresh pastes with different Ms waterglass. Constr. Build. Mater. 2021, 287, 123023. [Google Scholar] [CrossRef]
- Zhang, D.W.; Wang, D.M.; Xie, F.Z. Microrheology of fresh geopolymer pastes with different NaOH amounts at room tem-perature. Constr. Build. Mater. 2019, 207, 284–290. [Google Scholar] [CrossRef]
- Zhang, D.-W.; Wang, D.-M.; Liu, Z.; Xie, F.-Z. Rheology, agglomerate structure, and particle shape of fresh geopolymer pastes with different NaOH activators content. Constr. Build. Mater. 2018, 187, 674–680. [Google Scholar] [CrossRef]
- Kaze, C.R.; Lecomte-Nana, G.L.; Adesina, A.; Nemaleu, J.G.D.; Kamseu, E.; Melo, U.C. Influence of mineralogy and activator type on the rheology behaviour and setting time of laterite based geopolymer paste. Cem. Concr. Compos. 2021, 126, 104345. [Google Scholar] [CrossRef]
- Kupwade-Patil, K.; Allouche, E.N. Impact of Alkali Silica Reaction on Fly Ash-Based Geopolymer Concrete. J. Mater. Civ. Eng. 2013, 25, 131–139. [Google Scholar] [CrossRef]
- Pasupathy, K.; Berndt, M.; Castel, A.; Sanjayan, J.; Pathmanathan, R. Carbonation of a blended slag-fly ash geopolymer concrete in field conditions after 8 years. Constr. Build. Mater. 2016, 125, 661–669. [Google Scholar] [CrossRef]
- Kim, S.Y.; Jun, Y.; Jeon, D.; Oh, J.E. Synthesis of structural binder for red brick production based on red mud and fly ash activated using Ca(OH)2 and Na2CO3. Constr. Build. Mater. 2017, 147, 101–116. [Google Scholar] [CrossRef]
- Palacios, M.; Puertas, F. Effect of superplasticizer and shrinkage-reducing admixtures on alkali-activated slag pastes and mor-tars. Cem. Concr. Res. 2005, 35, 1358–1367. [Google Scholar] [CrossRef]
- Luukkonen, T.; Abdollahnejad, Z.; Ohenoja, K.; Kinnunen, P.; Illikainen, M. Suitability of commercial superplasticizers for one-part alkali-activated blast-furnace slag mortar. J. Sustain. Cem. Mater. 2019, 8, 244–257. [Google Scholar] [CrossRef]
- Ren, J. Superplasticiser for NaOH-Activated Slag: Competition and Instability between Superplasticiser and Alkali-Activator; University College London: London, UK, 2016. [Google Scholar]
- Pan, Q.; Shi, C.L.; Zhu, B. Effect of Aminosulphonate Based Superplasticizer on the Properties of Slag Pastes. Adv. Mater. Res. 2013, 864, 755–758. [Google Scholar] [CrossRef]
- Yang, C.H.; Pan, Q.; Zhou, H. Adsorption of Calcium Lignosulphonate Water Reducer on Alkali-Activated Slag Cement Pastes. Adv. Mater. Res. 2013, 681, 7–10. [Google Scholar] [CrossRef]
- Laskar, S.M.; Talukdar, S. Preparation and Tests for Workability, Compressive and Bond Strength of Ultra-Fine Slag Based Geopolymer as Concrete Repairing Agent. Constr. Build. Mater. 2017, 154, 176–190. [Google Scholar] [CrossRef]
- Lei, L.; Chan, H.K. Investigation into the molecular design and plasticizing effectiveness of HPEG-based polycarboxylate su-perplasticizers in alkali-activated slag. Cem. Concr. Res. 2020, 136, 106150. [Google Scholar] [CrossRef]
- Collins, F.; Sanjayan, J. Early Age Strength and Workability of Slag Pastes Activated by NaOH and Na2CO3. Cem. Concr. Res. 1998, 28, 655–664. [Google Scholar] [CrossRef]
- Bakharev, T.; Sanjayan, J.; Cheng, Y.-B. Effect of admixtures on properties of alkali-activated slag concrete. Cem. Concr. Res. 2000, 30, 1367–1374. [Google Scholar] [CrossRef]
- Li, H.; Wang, Z.; Zhang, Y.; Zhang, G.; Zhu, H. Composite application of naphthalene and melamine-based superplasticizers in alkali activated fly ash (AAFA). Constr. Build. Mater. 2021, 297, 123651. [Google Scholar] [CrossRef]
- Zhang, D.-W.; Sun, X.-M.; Xu, Z.-Y.; Xia, C.-L.; Li, H. Stability of superplasticizer on NaOH activators and influence on the rheology of alka-li-activated fly ash fresh pastes. Constr. Build. Mater. 2022, 341, 127864. [Google Scholar] [CrossRef]
- Vance, K.; Dakhane, A.; Sant, G.; Neithalath, N. Observations on the rheological response of alkali activated fly ash suspensions: The role of activator type and concentration. Rheol. Acta 2014, 53, 843–855. [Google Scholar] [CrossRef]
- Puertas, F.; Varga, C.; Alonso, M.M. Rheology of alkali-activated slag pastes. Effect of the nature and concentration of the acti-vating solution. Cem. Concr. Compos. 2014, 53, 279–288. [Google Scholar] [CrossRef]
- Palacios, M.; Alonso, M.; Varga, C.; Puertas, F. Influence of the alkaline solution and temperature on the rheology and reactivity of alkali-activated fly ash pastes. Cem. Concr. Compos. 2018, 95, 277–284. [Google Scholar] [CrossRef]
- Douglas, E.; Brandstetr, J. A preliminary study on the alkali activation of ground granulated blast-furnace slag. Cem. Concr. Res. 1990, 20, 746–756. [Google Scholar] [CrossRef]
- Yang, C.H.; Pan, Q.; Zhu, J. Adsorption of Naphthalene-Based Water Reducer on Alkali-Activated Slag Cement. Appl. Mech. Mater. 2012, 226, 1747–1750. [Google Scholar] [CrossRef]
- Zhang, Y.; Kong, X.; Gao, L.; Lu, Z.; Zhou, S.; Dong, B.; Xing, F. In-situ measurement of viscoelastic properties of fresh cement paste by a microrheology ana-lyzer. Cem. Concr. Res. 2016, 79, 291–300. [Google Scholar] [CrossRef]
- Yim, H.J.; Kim, J.H.; Shah, S.P. Cement particle flocculation and breakage monitoring under Couette flow. Cem. Concr. Res. 2013, 53, 36–43. [Google Scholar] [CrossRef]
- Liu, S.G.; Fall, M. Fresh and hardened properties of cemented paste backfill: Links to mixing time. Constr. Build. Mater. 2022, 324, 126688. [Google Scholar] [CrossRef]
- Lu, Z.; Kong, X.; Zhang, C.; Feng, X. Effect of colloidal polymers with different surface properties on the rheological property of fresh cement pastes. Colloids Surf. A Physicochem. Eng. Asp. 2017, 520, 154–165. [Google Scholar] [CrossRef]
- Su, T.; Zhou, Y.; Wang, Q. Recent advances in chemical admixtures for improving the workability of alkali-activated slag-based material systems. Constr. Build. Mater. 2020, 272, 9. [Google Scholar]
- Marco, P.; Carballo, M.; Llorens, J. Stabilization of raw porcelain gres suspensions with sodium naphthalene sulfonate formal-dehyde condensates. Appl. Clay Sci. 2009, 42, 473–477. [Google Scholar] [CrossRef]
- Alrefaei, Y.; Wang, Y.-S.; Dai, J.-G. The effectiveness of different superplasticizers in ambient cured one-part alkali activated pastes. Cem. Concr. Compos. 2019, 97, 166–174. [Google Scholar] [CrossRef]
- Palacios, M.; Puertas, F. Stability of superplasticizer and shrinkage-reducing admixtures in high basic media. Mater. De Construcción 2004, 54, 65–86. [Google Scholar]
- Nichol, G.S.; Clegg, W. Classical hydrogen bonding and weaker C–H⋯O interactions in complexes of uracil-5-carboxylic acid with the alkali metals Na–Cs. Polyhedron 2006, 25, 1043–1056. [Google Scholar] [CrossRef]
CaO | SiO2 | Al2O3 | MgO | Fe2O3 | SO3 | Na2O | K2O | LOI | |
---|---|---|---|---|---|---|---|---|---|
FA | 4.23 | 49.76 | 24.58 | 0.857 | 1.82 | 2.25 | 0.317 | 4.607 | 11.57 |
SP | Chemical Base | Color | Commercial Name | Company |
---|---|---|---|---|
M | Melamine sulfonate | White | SM | Jinan Qingtian Chemical Technology Co., Ltd., Beijing, China |
N | Naphthalene sulfonate | Light brown | FDN | Shanghai Yunzhe New Material Technology Co., Ltd., Shanghai, China |
L | Sodium lignin sulfonate | Dark brown | CMN | Shangdong Yueqi Chemical Co., Ltd., Shandong, China |
P-I | Polyether-type SP | Brown | PC-52 | Tangshan Longyi Technology Development Company, Tangshan, China |
P-II | Polyester-type SP | White | PC-14 | Tangshan Longyi Technology Development Company, Tangshan, China |
SP | FA | Water | SP/FA/% | WG AAs | Mix | |||
---|---|---|---|---|---|---|---|---|
2.25 | 2.0 | 1.5 | 1.0 | |||||
M | 100 | 35 | 0.8 | 12 | M-2.25 | |||
12 | M-2.0 | |||||||
12 | M-1.5 | |||||||
12 | M-1.0 | |||||||
N | 100 | 35 | 0.8 | 12 | N-2.25 | |||
12 | N-2.0 | |||||||
12 | N-1.5 | |||||||
12 | N-1.0 | |||||||
L | 100 | 35 | 0.3 | 12 | L-2.25 | |||
12 | L-2.0 | |||||||
12 | L-1.5 | |||||||
12 | L-1.0 | |||||||
P-I | 100 | 35 | 0.3 | 12 | P-I-2.25 | |||
12 | P-I-2.0 | |||||||
12 | P-I-1.5 | |||||||
12 | P-I-1.0 | |||||||
P-II | 100 | 35 | 0.3 | 12 | P-II-2.25 | |||
12 | P-II-2.0 | |||||||
12 | P-II-1.5 | |||||||
12 | P-II-1.0 |
Mix | C0/(g/L) | C/(g/L) | q/(g/g) |
---|---|---|---|
L-1.0 | 0.2 | 0.0556 | 0.1444 |
M-1.0 | 0.0578 | 0.1422 | |
N-1.0 | 0.0528 | 0.1472 | |
P-I-1.0 | 0.0318 | 0.1682 | |
P-I-1.5 | 0.0354 | 0.1646 | |
P-I-2.0 | 0.0398 | 0.1602 | |
P-I-2.25 | 0.0484 | 0.1516 | |
P-II-1.0 | 0.0524 | 0.1476 |
Group | Positions of Peak |
---|---|
OH | 3420 cm−1 |
-C=C of Ar, | 1600 and 1440 cm−1 |
Ar-SO2-O−M+ | 1356, 1180, and 1120 cm−1 |
–C-H of Ar | 880 cm−1 |
C-H | 3020 cm−1, |
CH3-O | 1420 cm−1 |
R-SO2-OR’ | 645 cm−1, 1020 cm−1, and 1348 cm−1 |
C=N bonds | 1544 and 1476 cm−1 |
C-N bond | 1171 and 1032 cm−1 |
C=O of the carboxylic | 1727 cm−1 |
vas and vs. of COOR | 1660 and 1465 cm−1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, D.; Sun, X. Efficiencies of Super-Plasticizer on Rheology Properties of Fly Ash-Based Alkali-Activated Materials with Different Ms Waterglass Activators. Polymers 2023, 15, 2054. https://doi.org/10.3390/polym15092054
Zhang D, Sun X. Efficiencies of Super-Plasticizer on Rheology Properties of Fly Ash-Based Alkali-Activated Materials with Different Ms Waterglass Activators. Polymers. 2023; 15(9):2054. https://doi.org/10.3390/polym15092054
Chicago/Turabian StyleZhang, Dawang, and Xuemei Sun. 2023. "Efficiencies of Super-Plasticizer on Rheology Properties of Fly Ash-Based Alkali-Activated Materials with Different Ms Waterglass Activators" Polymers 15, no. 9: 2054. https://doi.org/10.3390/polym15092054
APA StyleZhang, D., & Sun, X. (2023). Efficiencies of Super-Plasticizer on Rheology Properties of Fly Ash-Based Alkali-Activated Materials with Different Ms Waterglass Activators. Polymers, 15(9), 2054. https://doi.org/10.3390/polym15092054