Amidated Pectic Polysaccharides (Pectin) as Methane Hydrate Inhibitor at Constant Cooling and Isobaric Condition
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Kinetics Hydrate Inhibitor Performance Test
2.3. Analysis
3. Results and Discussion
3.1. Ramping Method Descriptive Statistics
3.2. Kinetic Hydrate Inhibitor Evaluations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kahlert, M.; Rühland, K.M.; Lavoie, I.; Keck, F.; Saulnier-Talbot, E.; Bogan, D.; Brua, R.B.; Campeau, S.; Christoffersen, K.S.; Culp, J.M.; et al. Biodiversity patterns of Arctic diatom assemblages in lakes and streams: Current reference conditions and historical context for biomonitoring. Freshw. Biol. 2022, 67, 116–140. [Google Scholar] [CrossRef]
- Gudmestad, O.T.; Markeset, T. Oil and gas operations under extreme conditions in the cold north. Int. J. Comput. Methods Exp. Meas. 2015, 3, 7–12. [Google Scholar] [CrossRef]
- Barabadi, A.; Naseri, M. Design for Performability Under Arctic Complex Operational Conditions. In Handbook of Advanced Performability Engineering; Springer: Cham, Switzerland, 2021; pp. 105–131. [Google Scholar]
- Effendi, A.D.; Jiaqi, L.; Sia, C.W.; Jasamai, M.; Sulaimon, A.A. Polysaccharides from Tamarindus indica L. as natural kinetic hydrates inhibitor at high subcooling environment. J. Pet. Explor. Prod. Technol. 2022, 12, 2711–2722. [Google Scholar] [CrossRef]
- Kelland, M.A. A review of kinetic hydrate inhibitors from an environmental perspective. Energy Fuels 2018, 32, 12001–12012. [Google Scholar] [CrossRef]
- Paz, P.; Netto, T.A. On the rheological properties of thermodynamic hydrate inhibitors used in offshore oil and gas production. J. Mar. Sci. Eng. 2020, 8, 878. [Google Scholar] [CrossRef]
- Effendi, A.D.; Sia, C.W.; Jasamai, M.; Hashmani, M.A. Investigation on esterified pectin as natural hydrate inhibitor on methane hydrate formation. J. Pet. Explor. Prod. Technol. 2022, 12, 3003–3019. [Google Scholar] [CrossRef]
- Waldvogel, J.; Li, Q.; Webber, P.; Gutierrez, A.; Sharma, P. Use of Anti-Agglomerants in High Gas To Oil Ratio Formations. U.S. Patent 9,988,568 B2, 5 June 2018. [Google Scholar]
- Fink, J. (Ed.) Chapter 13—Gas hydrate control. In Petroleum Engineer’s Guide to Oil Field Chemicals and Fluids, 2nd ed.; Gulf Professional Publishing: Boston, MA, USA, 2015; pp. 405–443. [Google Scholar] [CrossRef]
- Lavallie, O.; Al Ansari, A.; O’Neil, S.; Chazelas, O.; Tohidi, B. Successful Field Application of an Inhibitor Concentration Detection System in Optimising the Kinetic Hydrate Inhibitor (KHI) Injection Rates and Reducing the Risks Associated with Hydrate Blockage. In Proceedings of the IPTC 2009: International Petroleum Technology Conference, Doha, Qatar, 7–9 December 2009. [Google Scholar]
- Othman, E.A. Gas Hydrate Equilibrium Measurements for Multi-Component Gas Mixtures and Effect of Ionic Liquid Inhibitors. Master’s Thesis, Texas A & M University, College Station, TX, USA, 2014. [Google Scholar]
- Xu, Y.; Yang, M.; Yang, X. Chitosan as green kinetic inhibitors for gas hydrate formation. J. Nat. Gas Chem. 2010, 19, 431–435. [Google Scholar] [CrossRef]
- Xu, S.; Fan, S.; Fang, S.; Lang, X.; Wang, Y.; Chen, J. Pectin as an extraordinary natural kinetic hydrate inhibitor. Sci. Rep. 2016, 6, 23220. [Google Scholar] [CrossRef] [PubMed]
- Daraboina, N.; Malmos Perfeldt, C.; von Solms, N. Testing antifreeze protein from the longhorn beetle Rhagium mordax as a kinetic gas hydrate inhibitor using a high-pressure micro differential scanning calorimeter. Can. J. Chem. 2015, 93, 1025–1030. [Google Scholar] [CrossRef]
- Xu, P.; Lang, X.; Fan, S.; Wang, Y.; Chen, J. Molecular dynamics simulation of methane hydrate growth in the presence of the natural product pectin. J. Phys. Chem. C 2016, 120, 5392–5397. [Google Scholar] [CrossRef]
- Kamal, M.S.; Hussein, I.A.; Sultan, A.S.; von Solms, N. Application of various water soluble polymers in gas hydrate inhibition. Renew. Sustain. Energy Rev. 2016, 60, 206–225. [Google Scholar] [CrossRef]
- Bavoh, C.B.; Lal, B.; Osei, H.; Sabil, K.M.; Mukhtar, H. A review on the role of amino acids in gas hydrate inhibition, CO2 capture and sequestration, and natural gas storage. J. Nat. Gas Sci. Eng. 2019, 64, 52–71. [Google Scholar] [CrossRef]
- Kirchner, M.T.; Boese, R.; Billups, W.E.; Norman, L.R. Gas hydrate single-crystal structure analyses. J. Am. Chem. Soc. 2004, 126, 9407–9412. [Google Scholar] [CrossRef]
- Guan, H. The Inhibition of Gas Hydrates and Synergy of the Inhibiting Molecules. In Proceedings of the International Oil and Gas Conference and Exhibition in China, Beijing, China, 8–10 June 2010. [Google Scholar]
- Ophardt, C. Polarity of Organic Compounds. In Virtual Chembook; Elmhurst College: Elmhurst, IL, USA, 2003. [Google Scholar]
- Sayah, M.Y.; Chabir, R.; Benyahia, H.; Rodi Kandri, Y.; Ouazzani Chahdi, F.; Touzani, H.; Errachidi, F. Yield, esterification degree and molecular weight evaluation of pectins isolated from orange and grapefruit peels under different conditions. PLoS ONE 2016, 11, e0161751. [Google Scholar] [CrossRef] [PubMed]
- Sriamornsak, P. Chemistry of pectin and its pharmaceutical uses: A review. Silpakorn Univ. Int. J. 2003, 3, 206–228. [Google Scholar]
- Kratchanov, C.; Denev, P.; Kratchanova, M. Reaction of apple pectin with ammonia. Int. J. Food Sci. Technol. 1989, 24, 261–267. [Google Scholar] [CrossRef]
- Yu, C.; Mosbach, K. Molecular imprinting utilizing an amide functional group for hydrogen bonding leading to highly efficient polymers. J. Org. Chem. 1997, 62, 4057–4064. [Google Scholar] [CrossRef]
- Turi, L. Ab initio molecular orbital analysis of dimers of cis-formic acid. Implications for condensed phases. J. Phys. Chem. 1996, 100, 11285–11291. [Google Scholar] [CrossRef]
- Watson, J.D. Molecular Biology of the Gene; WA Benjamin: New York, NY, USA; p. 1965.
- Grinberg, N.; Grushka, E. Advances in Chromatography; Crc Press-Taylor & Francis Group: Boca Raton, FL, USA, 2012; Volume 50. [Google Scholar]
- Soderberg, T. Organic Chemistry with a Biological Emphasis; University of Minnesota Morris Digital Well: Minneapolis, MN, USA, 2019; Volume I. [Google Scholar]
- Ke, W.; Kelland, M.A. Kinetic hydrate inhibitor studies for gas hydrate systems: A review of experimental equipment and test methods. Energy Fuels 2016, 30, 10015–10028. [Google Scholar] [CrossRef]
- Ajiro, H.; Takemoto, Y.; Akashi, M.; Chua, P.C.; Kelland, M.A. Study of the Kinetic Hydrate Inhibitor Performance of a Series of Poly(N-alkyl-N-vinylacetamide)s. Energy Fuels 2010, 24, 6400–6410. [Google Scholar] [CrossRef]
- Daraboina, N.; Malmos, C.; von Solms, N. Investigation of kinetic hydrate inhibition using a high pressure micro differential scanning calorimeter. Energy Fuels 2013, 27, 5779–5786. [Google Scholar] [CrossRef]
- Sloan, E.D., Jr.; Koh, C.A. Clathrate Hydrates of Natural Gases; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- McCain, W. The Properties of Petroeleum Fluids; PennWell Publishing Company: Tulsa, OK, USA, 1990. [Google Scholar]
- Maeda, N.; Kelland, M.A.; Wood, C.D. Ranking of kinetic hydrate inhibitors using a high pressure differential scanning calorimeter. Chem. Eng. Sci. 2018, 183, 30–36. [Google Scholar] [CrossRef]
- Yaqub, S.; Lal, B.; Partoon, B.; Mellon, N.B. Investigation of the task oriented dual function inhibitors in gas hydrate inhibition: A review. Fluid Phase Equilibria 2018, 477, 40–57. [Google Scholar] [CrossRef]
- Koh, C.A.; Westacott, R.E.; Zhang, W.; Hirachand, K.; Creek, J.L.; Soper, A.K. Mechanisms of gas hydrate formation and inhibition. Fluid Phase Equilibria 2002, 194–197, 143–151. [Google Scholar] [CrossRef]
- Salamat, Y.; Moghadassi, A.; Illbeigi, M.; Ali, E.; Mohammadi, A.H. Experimental study of hydrogen sulfide hydrate formation: Induction time in the presence and absence of kinetic inhibitor. J. Energy Chem. 2013, 22, 114–118. [Google Scholar] [CrossRef]
- Kulkarni, S.A.; Kadam, S.S.; Meekes, H.; Stankiewicz, A.I.; ter Horst, J.H. Crystal Nucleation Kinetics from Induction Times and Metastable Zone Widths. Cryst. Growth Des. 2013, 13, 2435–2440. [Google Scholar] [CrossRef]
- Del Villano, L.; Kommedal, R.; Kelland, M.A. Class of kinetic hydrate inhibitors with good biodegradability. Energy Fuels 2008, 22, 3143–3149. [Google Scholar] [CrossRef]
Factors | Chemicals | ||
---|---|---|---|
KHI | AA | THI | |
CAPEX/OPEX | Low | Low | High |
Volume Required | Low (>1 wt.%) | Low (>1 wt.%) | High (5–60 wt.%)) |
Toxicity | Low | Low | High |
Application | All types of systems | Inapplicable for Gas | All types of systems |
Benefits | Tested in gas system | Wide range of subcooling | Predictable models Recoverable (MEG) |
Limitations |
|
|
|
Sample | Concentration (wt.%) | Nucleation Peak at Temperature (°C) | Average Nucleation Peak Temp. (°C) | RIP | |||||
---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | ||||
LMP | 0.10% | −13.599 | −16.534 | −11.877 | −12.516 | - | - | −13.630 | −0.12 |
1.00% | −9.460 | −13.005 | −9.975 | −12.294 | - | - | −11.184 | −0.28 | |
HMP | 0.10% | −9.049 | −9.565 | −15.167 | −16.007 | −17.085 | - | −13.370 | −0.14 |
1.00% | −7.243 | −10.058 | −14.199 | - | - | - | −10.500 | −0.33 | |
PVP | 0.10% | −13.206 | −13.911 | −16.574 | −17.815 | - | - | −15.380 | −0.01 |
1.00% | −12.432 | −20.994 | −10.299 | −14.919 | - | - | −14.660 | −0.06 | |
AMP | 0.10% | −15.447 | −16.75 | −17.247 | −17.319 | - | - | −16.691 | 0.07 |
1.00% | −13.502 | −18.998 | −19.335 | −22.423 | −11.183 | −17.251 | −17.120 | 0.10 | |
Water | - | −13.521 | −13.917 | −19.374 | - | - | - | −15.604 | - |
Variable (wt.%) | Samples Run | Mean (°C) | Standard Deviation | Minimum (°C) | Interquartile 1 (Q1) (°C) | Median (°C) | Interquartile 3 (Q3) (°C) | Maximum (°C) |
---|---|---|---|---|---|---|---|---|
0.10% LMP | 10 | −13.630 | 2.060 | −16.530 | −15.800 | −13.060 | −12.04 | −11.88 |
1.00% LMP | 15 | −11.184 | 1.730 | −13.005 | −12.827 | −11.134 | −9.589 | −9.460 |
0.10% HMP | 15 | −13.370 | 3.780 | −17.090 | −16.550 | −15.170 | −9.310 | −9.050 |
1.00% HMP | 10 | −10.500 | 3.500 | −14.200 | −14.200 | −10.060 | −7.240 | −7.240 |
0.10% PVP | 10 | −15.380 | 2.180 | −17.820 | −17.500 | −15.240 | −13.380 | −13.210 |
1.00% PVP | 15 | −14.660 | 4.620 | −20.990 | −19.480 | −13.680 | −10.830 | −10.300 |
0.10% AMP | 10 | −16.691 | 0.867 | −17.319 | −17.301 | −16.998 | −15.773 | −15.447 |
1.00% AMP | 10 | −17.120 | 4.120 | −22.420 | −20.110 | −18.120 | −12.920 | −11.180 |
Water | 10 | −15.600 | 3.270 | −19.370 | −19.370 | −13.920 | −13.520 | −13.520 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Effendi, A.D.; Md Yusof, M.A.; Abd Mutalib, N.F.; Sia, C.W. Amidated Pectic Polysaccharides (Pectin) as Methane Hydrate Inhibitor at Constant Cooling and Isobaric Condition. Polymers 2023, 15, 2080. https://doi.org/10.3390/polym15092080
Effendi AD, Md Yusof MA, Abd Mutalib NF, Sia CW. Amidated Pectic Polysaccharides (Pectin) as Methane Hydrate Inhibitor at Constant Cooling and Isobaric Condition. Polymers. 2023; 15(9):2080. https://doi.org/10.3390/polym15092080
Chicago/Turabian StyleEffendi, Adam Daniel, Muhammad Aslam Md Yusof, Nor Fariza Abd Mutalib, and Chee Wee Sia. 2023. "Amidated Pectic Polysaccharides (Pectin) as Methane Hydrate Inhibitor at Constant Cooling and Isobaric Condition" Polymers 15, no. 9: 2080. https://doi.org/10.3390/polym15092080
APA StyleEffendi, A. D., Md Yusof, M. A., Abd Mutalib, N. F., & Sia, C. W. (2023). Amidated Pectic Polysaccharides (Pectin) as Methane Hydrate Inhibitor at Constant Cooling and Isobaric Condition. Polymers, 15(9), 2080. https://doi.org/10.3390/polym15092080