Polyhydroxyalkanoates (PHAs) from Endophytic Bacterial Strains as Potential Biocontrol Agents against Postharvest Diseases of Apples
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. PHA Production Assay
2.2.2. Fourier-Transform Infrared (FTIR) Characterization of PHAs
2.2.3. Thermogravimetric Analysis of PHAs
2.2.4. In Vitro Antifungal Activity Tests
2.2.5. In Vivo Antagonistic Assay
2.2.6. Statistical Analysis
3. Results
3.1. Selection of Low-Cost Substrate for PHA Synthesis by Endophytic Bacterial Strains
3.2. Characterization of Physicochemical Properties of PHAs
3.2.1. FTIR Characterization of PHAs
3.2.2. Thermal Properties
3.3. Antagonistic Activity of PHAs In Vitro against Penicillium expansum
3.4. Evaluation of the Possibility of Using PHAs As Biocontrol Agents against Postharvest Diseases of Apples
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Behera, S.; Priyadarshanee, M.; Vandana, D.S. Polyhydroxyalkanoates, the bioplastics of microbial origin: Properties. biochemical synthesis and their applications. Chemosphere 2022, 294, 133723. [Google Scholar] [CrossRef] [PubMed]
- Tan, D.; Wang, Y.; Tong, Y.; Chen, G.-Q. Grand Challenges for Industrializing Polyhydroxyalkanoates (PHAs). Trends Biotechnol. 2021, 39, 953–963. [Google Scholar] [CrossRef] [PubMed]
- Dutt Tripathi, A.; Paul, V.; Agarwal, A.; Sharma, R.; Hashempour-Baltork, F.; Rashidi, L.; Khosravi Darani, K. Production of polyhydroxyalkanoates using dairy processing waste. Bioresour. Technol. 2021, 326, 124735. [Google Scholar] [CrossRef]
- Sathya, A.B.; Sivasubramanian, V.; Santhiagu, A.; Sebastian, C.; Sivashankar, R. Production of Polyhydroxyalkanoates from Renewable Sources Using Bacteria. J. Polym. Environ. 2018, 26, 3995–4012. [Google Scholar] [CrossRef]
- Egamberdieva, D.; Alaylar, B.; Kistaubayeva, A.; Wirth, S.; Bellingrath-Kimura, S.D. Biochar for Improving Soil Biological Properties and Mitigating Salt Stress in Plants on Salt-affected Soils. Commun. Soil Sci. Plant Anal. 2022, 53, 140–152. [Google Scholar] [CrossRef]
- Quaglia, M.; Ederli, L.; Pasqualini, S.; Zazzerini, A. Biological control agents and chemical inducers of resistance for postharvest control of Penicillium expansum Link. on apple fruit. Postharvest Biol. Technol. 2011, 59, 307–315. [Google Scholar] [CrossRef]
- Romero, J.; Albertos, I.; Díez-Méndez, A.; Poveda, J. Control of postharvest diseases in berries through edible coatings and bacterial probiotics. Sci. Hortic. 2022, 304, 1–16. [Google Scholar] [CrossRef]
- Spadaro, D.; Gullino, M.L. State of the art and future prospects of the biological control of postharvest fruit diseases. Int. J. Food Microbiol. 2004, 91, 185–194. [Google Scholar] [CrossRef]
- Pekmezovic, M.; Kalagasidis Krusic, M.; Malagurski, I.; Milovanovic, J.; Stepien, K.; Guzik, M.; Charifou, R.; Babu, R.; O’Connor, K.; Nikodinovic-Runic, J. Polyhydroxyalkanoate/Antifungal Polyene Formulations with Monomeric Hydroxyalkanoic Acids for Improved Antifungal Efficiency. Antibiotics 2021, 10, 737. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, J.; Ma, L.; Yang, X.; Fei, B.; Leung, P.H.M.; Tao, X. Mechanistic Study of Synergistic Antimicrobial Effects between Poly (3-hydroxybutyrate) Oligomer and Polyethylene Glycol. Polymers 2020, 12, 2735. [Google Scholar] [CrossRef]
- Ignatova, L.; Usmanova, A.; Brazhnikova, Y.; Omirbekova, A.; Egamberdieva, D.; Mukasheva, T.; Kistaubayeva, A.; Savitskaya, I.; Karpenyuk, T.; Goncharova, A. Plant Probiotic Endophytic Pseudomonas flavescens D5 Strain for Protection of Barley Plants from Salt Stress. Sustainability 2022, 14, 15881. [Google Scholar] [CrossRef]
- He, W.; Tian, W.; Zhang, G.; Chen, G.Q.; Zhang, Z. Production of novel polyhydroxyalkanoates by Pseudomonas stutzeri 1317 from glucose and soybean oil. FEMS Microbiol. Lett. 1998, 169, 45–49. [Google Scholar] [CrossRef]
- Hahn, S.K.; Chang, Y.K.; Kim, B.S.; Chang, H.N. Optimization of microbial poly(3-hydroxybutyrate) recovery using dispersions of sodium hypochloride solution and chloroform. Biotechnol. Bioeng. 1994, 44, 256–261. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.; Kumar, A. Production and characterization of polyhydroxyalkanoates from industrial waste using soil bacterial isolates. Braz. J. Microbiol. 2021, 52, 715–726. [Google Scholar] [CrossRef]
- Rebocho, A.T.; Pereira, J.R.; Neves, L.A.; Alves, V.D.; Sevrin, C.; Grandfils, C.; Reis, M.A.M. Preparation and Characterization of Films Based on a Natural P(3HB)/mcl-PHA Blend Obtained through the Co-culture of Cupriavidus Necator and Pseudomonas Citronellolis in Apple Pulp Waste. Bioengineering 2020, 7, 34. [Google Scholar] [CrossRef]
- Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for in vitro evaluating antimicrobial activity. J. Pharm. Anal. 2016, 6, 71–79. [Google Scholar] [CrossRef]
- Madbouly, A.K.; Abo Elyousr, K.A.M.; Ismail, I.M. Biocontrol of Monilinia fructigena, causal agent of brown rot of apple fruit, by using endophytic yeasts. Biol. Control 2020, 144, 1049–9644. [Google Scholar] [CrossRef]
- Safari, Z.S.; Ding, P.; Juju Nakasha, J.; Yusoff, S.F. Combining Chitosan and Vanillin to Retain Postharvest Quality of Tomato Fruit during Ambient Temperature Storage. Coatings 2020, 10, 1222. [Google Scholar] [CrossRef]
- McAdam, B.; Brennan Fournet, M.; McDonald, P.; Mojicevic, M. Production of Polyhydroxybutyrate (PHB) and Factors Impacting Its Chemical and Mechanical Characteristics. Polymers 2020, 12, 2908. [Google Scholar] [CrossRef]
- Dutta, B.; Bandopadhyay, R. Biotechnological Potentials of Halophilic Microorganisms and Their Impact on Mankind. Beni-Suef Univ. J. Basic Appl. Sci. 2022, 11, 75. [Google Scholar] [CrossRef]
- Getachew, A.; Woldesenbet, F. Production of biodegradable plastic by polyhydroxybutyrate (PHB) accumulating bacteria using low cost agricultural waste material. BMC Res. Notes 2016, 9, 509. [Google Scholar] [CrossRef] [PubMed]
- Loan, T.T.; Trang, D.T.Q.; Huy, P.Q.; Ninh, P.X.; Van Thuoc, D. A fermentation process for the production of poly(3-hydroxybutyrate) using waste cooking oil or waste fish oil as inexpensive carbon substrate. Biotechnol. Rep. 2022, 33, e00700. [Google Scholar] [CrossRef] [PubMed]
- Verdini, F.; Tabasso, S.; Mariatti, F.; Bosco, F.; Mollea, C.; Calcio Gaudino, E.; Cirio, A.; Cravotto, G. From Agri-Food Wastes to Polyhydroxyalkanoates through a Sustainable Process. Fermentation 2022, 8, 556. [Google Scholar] [CrossRef]
- Li, Z.; Yang, J.; Loh, X.J. Polyhydroxyalkanoates: Opening doors for a sustainable future, Nature News. Nature Publishing Group. NPG Asia Mater. 2016, 8, e265. [Google Scholar] [CrossRef]
- Kiselev, E.G.; Demidenko, A.V.; Zhila, N.O.; Shishatskaya, E.I.; Volova, T.G. Sugar Beet Molasses as a Potential C-Substrate for PHA Production by Cupriavidus necator. Bioengineering 2022, 9, 154. [Google Scholar] [CrossRef]
- Muneer, F.; Rasul, I.; Qasim, M. Optimization, Production and Characterization of Polyhydroxyalkanoate (PHA) from Indigenously Isolated Novel Bacteria. J. Polym. Environ. 2022, 30, 3523–3533. [Google Scholar] [CrossRef]
- Saravanan, K.; Umesh, M.; Kathirvel, P. Microbial Polyhydroxyalkanoates (PHAs): A Review on Biosynthesis, Properties, Fermentation Strategies and Its Prospective Applications for Sustainable Future. J. Polym. Environ. 2022, 30, 4903–4935. [Google Scholar] [CrossRef]
- Kingsly, J.S.; Chathalingath, T.; Parthiban, S.A.; Sivakumar, D.; Sabtharishi, S.; Senniyappan, V.; Duraisamy, V.S.; Jasmine, A.H.; Gunasekar, A. Utilization of sugarcane molasses as the main carbon source for the production of polyhydroxyalkanoates from Enterobacter cloacae. Energy Nexus 2022, 6, 100071. [Google Scholar] [CrossRef]
- Mostafa, Y.S.; Alrumman, S.A.; Alamri, S.A. Bioplastic (poly-3-hydroxybutyrate) production by the marine bacterium Pseudodonghicola Xiamenensis through date syrup valorization and structural assessment of the biopolymer. Sci. Rep. 2020, 10, 8815. [Google Scholar] [CrossRef]
- Bozorg, A.; Vossoughi, M.; Kazemi, A.; Alemzadeh, I. Optimal medium composition to enhance poly-βhydroxybutyrate production by Ralstonia eutropha using cane molasses as sole carbon source. Appl. Food Biotechnol. 2015, 2, 39–47. [Google Scholar]
- Rysbek, A.; Ramankulov, Y.; Kurmanbayev, A.; Richert, A.; Abeldenov, S. Comparative Characterization and Identification of Poly-3-hydroxybutyrate Producing Bacteria with Subsequent Optimization of Polymer Yield. Polymers 2022, 14, 335. [Google Scholar] [CrossRef] [PubMed]
- Nair, A.; Annamalai, K.; Kannan, S.K.; Kuppusamy, S. Utilization of sugarcane molasses for the production of polyhydroxyalkanoates using Bacillus subtilis. Malaya J. Biosci. 2014, 1, 24–36. [Google Scholar]
- Javers, J.; Karunanithy, C. Polyhydroxyalkanoate Production by Pseudomonas putida KT217 on a Condensed Corn Solubles Based Medium Fed with Glycerol Water or Sunflower Soapstock. Adv. Microbiol. 2012, 2, 241–251. [Google Scholar] [CrossRef]
- Mahato, R.P.; Kumar, S.; Singh, P. Optimization of Growth Conditions to Produce Sustainable Polyhydroxyalkanoate Bioplastic by Pseudomonas aeruginosa EO1. Front. Microbiol 2021, 12, 711588. [Google Scholar] [CrossRef] [PubMed]
- Gomaa, E.Z. Production of polyhydroxyalkanoates (PHAs) by Bacillus subtilis and Escherichia coli grown on cane molasses fortified with ethanol. Braz. Arch. Biol. Technol. 2014, 57, 145–154. [Google Scholar] [CrossRef]
- Bustamante-Torres, M.; Arcentales-Vera, B.; Estrella-Nuñez, J.; Yánez-Vega, H.; Bucio, E. Antimicrobial Activity of Composites-Based on Biopolymers. Macromol 2022, 2, 258–283. [Google Scholar] [CrossRef]
- Giourieva, V.S.; Papi, R.M.; Pantazaki, A.A. Polyhydroxyalkanoates Applications in Antimicrobial Agents Delivery and Wound Healing. In Biotechnological Applications of Polyhydroxyalkanoates; Kalia, V.C., Ed.; Springer: Singapore, 2019; pp. 49–76. [Google Scholar]
- Cheng, Z.; Gao, J.; Liu, Q.; Gu, Q. The effect of alkyl chain length of (R)-3-Hydroxybutyric alkyl ester on antibacterial activity and its antibacterial mechanism. J. Biomater. Appl. 2022, 37, 275–286. [Google Scholar] [CrossRef]
- Ma, L.; Zhang, Z.; Li, J.; Yang, X.; Fei, B.; Leung, P.H.M.; Tao, X.M. A new antimicrobial agent: Poly (3-hydroxybutyric acid) Oligomer. Macromol. Biosci. 2019, 19, e1800432. [Google Scholar] [CrossRef]
- Zhang, X.; Zong, Y.; Li, Z.; Yang, R.; Li, Z.; Bi, Y.; Prusky, D. Postharvest Pichia guilliermondii treatment promotes wound healing of apple fruits. Postharvest Biol. Technol. 2020, 167, 111228. [Google Scholar] [CrossRef]
Substrate | Pseudomonas flavescens D5 | Bacillus aerophilus A2 | ||||
---|---|---|---|---|---|---|
DCW, g L−1 | PHA Content, % | PHA Production, g L−1 | DCW, g L−1 | PHA Content, % | PHA Production, g L−1 | |
Glucose | 3.83 ± 0.19 a | 72.2 ± 3.2 c | 2.77 ± 0.1 a | 6.2 ± 0.25 a | 73.2 ± 3.1 c | 4.54 ± 0.2 b |
Olive oil | 10.2 ± 0.4 d | 37.6 ± 1.5 a | 3.83 ± 0.15 b | 6.13 ± 0.2 a | 54.3 ± 2.4 a | 3.33 ± 0.15 a |
Beet molasses | 7.23 ± 0.2 b | 60.8 ± 2.2 b | 4.4 ± 0.18 c | 6.17 ± 0.18 a | 75.1 ± 3.5 c | 4.63 ± 0.14 b |
Soapstock | 8.2 ± 0.3 c | 72 ± 2.5 c | 5.9 ± 0.15 d | 8.3 ± 0.34 b | 61 ± 3.2 b | 5.07 ± 0.22 c |
Substrate | Weight Loss at Final Degradation T 600 °C, mg/% | Td (5%), °C | Td (10%), °C | Tdmin, °C |
---|---|---|---|---|
Bacillus aerophilus A2 | ||||
Glucose | −5.8/59 | 118.1 | 155 | 82.7 |
Beet molasses | −4.64/38.2 | 74.0 | 100. 5 | 32.1 |
Soapstock | −5.40/40.9 | 160.5 | 173.5 | 103.0 |
Pseudomonas flavescens D5 | ||||
Glucose | −4.51/55.0 | 114.2 | 147.0 | 79.9 |
Beet molasses | −6.67/55.4 | 146.0 | 165.4 | 77.3 |
Soapstock | −8.49/60.2 | 155.0 | 174.6 | 85.5 |
Carbon Source | Antifungal Property, % | Zone of Inhibition, (cm) | ||
---|---|---|---|---|
Ps. flavescens D5 | B. aerophilus A2 | Ps. flavescens D5 | B. aerophilus A2 | |
Glucose | 69.27 ± 3 b | - | 1.06 ± 0.02 a | 0.36 ± 0.01 d |
Olive oil | 65.12 ± 2.5 a | - | 1.25 ± 0.05 b | 0.22 ± 0.01 a |
Beet molasses | 62.98 ± 2 a | - | 1.11 ± 0.01 a | 0.31 ± 0.01 c |
Soapstock | 73.08 ± 3.2 b | - | 1.18 ± 0.02 b | 0.28 ± 0.01 b |
Treatment | Weight Loss, % | Disease Severity, % | ||
---|---|---|---|---|
5 Days | 10 Days | 5 Days | 10 Days | |
Penicillium expansum | 1.92 ± 0.07 d | 4.18 ± 0.2 d | 36 ± 4 c | 64 ± 6 c |
PHA applied 24 before Penicillium expansum | 0.95 ± 0.03 a | 2.13 ± 0.08 a | 20 ± 2 a | 32 ± 2 a |
PHA and Penicillium expansum applied simultaneously | 1.31 ± 0.04 b | 3.08 ± 0.1 b | 28 ± 2 b | 44 ± 4 b |
PHA applied 24 after Penicillium expansum | 1.52 ± 0.05 c | 3.45 ± 0.12 c | 32 ± 2 c | 48 ± 4 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ignatova, L.; Brazhnikova, Y.; Omirbekova, A.; Usmanova, A. Polyhydroxyalkanoates (PHAs) from Endophytic Bacterial Strains as Potential Biocontrol Agents against Postharvest Diseases of Apples. Polymers 2023, 15, 2184. https://doi.org/10.3390/polym15092184
Ignatova L, Brazhnikova Y, Omirbekova A, Usmanova A. Polyhydroxyalkanoates (PHAs) from Endophytic Bacterial Strains as Potential Biocontrol Agents against Postharvest Diseases of Apples. Polymers. 2023; 15(9):2184. https://doi.org/10.3390/polym15092184
Chicago/Turabian StyleIgnatova, Lyudmila, Yelena Brazhnikova, Anel Omirbekova, and Aizhamal Usmanova. 2023. "Polyhydroxyalkanoates (PHAs) from Endophytic Bacterial Strains as Potential Biocontrol Agents against Postharvest Diseases of Apples" Polymers 15, no. 9: 2184. https://doi.org/10.3390/polym15092184
APA StyleIgnatova, L., Brazhnikova, Y., Omirbekova, A., & Usmanova, A. (2023). Polyhydroxyalkanoates (PHAs) from Endophytic Bacterial Strains as Potential Biocontrol Agents against Postharvest Diseases of Apples. Polymers, 15(9), 2184. https://doi.org/10.3390/polym15092184