Promising Energetic Polymers from Nanostructured Bacterial Cellulose
Abstract
:1. Introduction
2. Materials and Methods
2.1. Substrate for Study
2.1.1. Preparation of NBC for Nitration
2.1.2. NBC Quality Measures
2.1.3. Structural Analysis and Coupled TGA/DTA of NBC
2.2. Nitration of NBC
2.2.1. Nitration of NBC with Mixed Sulphuric–Nitric Acids (MA) and Stabilization
2.2.2. Nitration of NBC with Concentrated Nitric Acid in Methylene Chloride (NA+MC) and Stabilization
2.2.3. Calculation of NBCN Yield
2.2.4. Analysis of NBCN
2.2.5. Structural Analysis of NBCN
3. Results and Discussion
4. Conclusions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sabatini, J.J.; Johnson, E.C. A short review of nitric esters and their role in energetic materials. ACS Omega 2021, 6, 11813–11821. [Google Scholar] [CrossRef] [PubMed]
- Misenan, M.S.M.; Norrrahim, M.N.F.; Saad, M.M.; Shaffie, A.H.; Zulkipli, N.A.; Farabi, M.A. Recent advances in nitrocellulose-based composites. In Synthetic and Natural Nanofillers in Polymer Composites; Elsevier: Amsterdam, The Netherlands, 2023; pp. 399–415. [Google Scholar] [CrossRef]
- Tang, R.; Alam, N.; Li, M.; Xie, M.; Ni, Y. Dissolvable sugar barriers to enhance the sensitivity of nitrocellulose membrane lateral flow assay for COVID-19 nucleic acid. Carbohydr. Polym. 2021, 268, 118259. [Google Scholar] [CrossRef] [PubMed]
- Tang, R.; Xie, M.Y.; Li, M.; Cao, L.; Feng, S.; Li, Z.; Xu, F. Nitrocellulose membrane for paper-based biosensor. Appl. Mater. Today 2022, 26, 101305. [Google Scholar] [CrossRef]
- Duan, X.; Li, Z.; Wu, B.; Shen, J.; Pei, C. Preparation of nitrocellulose by homogeneous esterification of cellulose based on ionic liquids. Propellants Explos. Pyrotech. 2023, 48, e202200186. [Google Scholar] [CrossRef]
- Trache, D.; Khimeche, K.; Mezroua, A.; Benziane, M. Physicochemical properties of microcrystalline nitro-cellulose from alfa grass fibres and its thermal stability. J. Therm. Anal. Calorim. 2016, 124, 1485–1496. [Google Scholar] [CrossRef]
- Gismatulina, Y.A.; Budaeva, V.V.; Sakovich, G.V. Cellulose nitrates from intermediate flax straw. Russ. Chem. Bull. 2016, 65, 2920–2924. [Google Scholar] [CrossRef]
- Yolhamid, M.N.A.G.; Ibrahim, F.; Zarim, M.A.U.A.A.; Ibrahim, R.; Adnan, S.; Yahya, M.Z.A. The processing of nitrocellulose from rhizophora, palm oil bunches (EFB) and kenaf fibres as a propellant grade. Int. J. Eng. Technol. 2018, 7, 59–65. [Google Scholar]
- Gismatulina, Y.A.; Budaeva, V.V.; Sakovich, G.V. Nitrocellulose synthesis from miscanthus cellulose. Propellants Explos. Pyrotech. 2018, 43, 96–100. [Google Scholar] [CrossRef]
- Tarchoun, A.F.; Trache, D.; Klapötke, T.M.; Chelouche, S.; Derradji, M.; Bessa, W.; Mezroua, A. A promising energetic polymer from Posidonia oceanica brown algae: Synthesis, characterization, and kinetic modeling. Macromol. Chem. Phys. 2019, 220, 1900358. [Google Scholar] [CrossRef]
- Korchagina, A.A.; Gismatulina, Y.A.; Budaeva, V.V.; Zolotukhin, V.N.; Bychin, N.V.; Sakovich, G.V. Miscanthus × giganteus var. KAMIS as a new feedstock for cellulose nitrates. J. Sib. Fed. Univ. Chem. 2020, 13, 565–577. [Google Scholar] [CrossRef]
- Korchagina, A.A.; Gismatulina, Y.A.; Budaeva, V.V.; Kukhlenko, A.A.; Vdovina, N.P.; Ivanov, P.P. Autoclaving cellulose nitrates obtained from fruit shells of oats. ChemChemTech 2020, 63, 92–98. [Google Scholar] [CrossRef]
- Bahloul, A.; Kassab, Z.; El Bouchti, M.; Hannache, H.; Oumam, M.; El Achaby, M. Micro-and nano-structures of cellulose from eggplant plant (Solanum melongena L) agricultural residue. Carbohydr. Polym. 2021, 253, 117311. [Google Scholar] [CrossRef] [PubMed]
- Tarchoun, A.F.; Trache, D.; Klapötke, T.M.; Selmani, A.; Saada, M.; Chelouche, S.; Mezroua, A.; Abdelaziz, A. New insensitive high-energy dense biopolymers from giant reed cellulosic fibers: Their synthesis, characterization, and non-isothermal decomposition kinetics. New J. Chem. 2021, 45, 5099–5113. [Google Scholar] [CrossRef]
- Tarchoun, A.F.; Trache, D.; Klapotke, T.M.; Krumm, B.; Mezroua, A.; Derradji, M.; Bessa, W. Design and characterization of new advanced energetic biopolymers based on surface functionalized cellulosic materials. Cellulose 2021, 28, 6107–6123. [Google Scholar] [CrossRef]
- Tarchoun, A.F.; Trache, D.; Klapötke, T.M.; Abdelaziz, A.; Derradji, M.; Bekhouche, S. Chemical design and characterization of cellulosic derivatives containing high-nitrogen functional groups: Towards the next generation of energetic biopolymers. Def. Technol. 2022, 18, 537–546. [Google Scholar] [CrossRef]
- Garland, N.T.; McLamore, E.S.; Gomes, C.; Marrow, E.A.; Daniele, M.A.; Walper, S.; Medintz, I.L.; Claussen, J.C. Synthesis and applications of cellulose nanohybrid materials. In Hybrid Polymer Composite Material; Woodhead Publishing: Sawston, UK, 2017; pp. 289–320. [Google Scholar] [CrossRef]
- Urbina, L.; Corcuera, M.A.; Gabilondo, N.; Eceiza, A.; Retegi, A. A review of bacterial cellulose: Sustainable production from agricultural waste and applications in various fields. Cellulose 2021, 28, 8229–8253. [Google Scholar] [CrossRef]
- Pandit, A.; Kumar, R. A review on production, characterization and application of bacterial cellulose and its biocomposites. J. Polym. Environ. 2021, 29, 2738–2755. [Google Scholar] [CrossRef]
- Huang, J.; Zhao, M.; Hao, Y.; Wei, Q. Recent advances in functional bacterial cellulose for wearable physical sensing applications. Adv. Mater. Technol. 2021, 7, 2100617. [Google Scholar] [CrossRef]
- Choi, S.M.; Rao, K.M.; Zo, S.M.; Shin, E.J.; Han, S.S. Bacterial cellulose and its applications. Polymers 2022, 14, 1080. [Google Scholar] [CrossRef]
- Yamamoto, H.; Horii, F.; Hirai, A. Structural studies of bacterial cellulose through the solid-phase nitration and acetylation by CP/MAS 13C NMR spectroscopy. Cellulose 2006, 13, 327–342. [Google Scholar] [CrossRef]
- Sun, D.-P.; Ma, B.; Zhu, C.-L.; Liu, C.-S.; Yang, J.-Z. Novel nitrocellulose made from bacterial cellulose. J. Energ. Mater. 2010, 28, 85–97. [Google Scholar] [CrossRef]
- Luo, Q.; Zhu, J.; Li, Z.; Duan, X.; Pei, C.; Mao, C. The solution characteristics of nitrated bacterial cellulose in acetone. New J. Chem. 2018, 42, 18252–18258. [Google Scholar] [CrossRef]
- Roslan, N.J.; Jamal, S.H.; Ong, K.K.; Wan Yunus, W.M.Z. Preliminary study on the effect of sulphuric acid to nitric acid mixture composition, temperature and time on nitrocellulose synthesis based Nata de Coco. In Solid State Phenomena; Trans Tech Publications Ltd.: Seestrasse, Switzerland, 2021; Volume 317, pp. 312–319. [Google Scholar] [CrossRef]
- Jamal, S.H.; Roslan, N.J.; Ahmad Shah, N.A.; Mohd Noor, S.A.; Khim, O.K.; Yunus, W.M.Z.W. Conversion of bacterial cellulose to cellulose nitrate with high nitrogen content as propellant ingredient. In Solid State Phenomena; Trans Tech Publications Ltd.: Seestrasse, Switzerland, 2021; Volume 317, pp. 305–311. [Google Scholar] [CrossRef]
- Zhou, X.; Torabi, M.; Lu, J.; Shen, R.; Zhang, K. Nanostructured energetic composites: Synthesis, ignition/combustion modeling, and applications. ACS Appl. Mater. Interfaces 2014, 6, 3058–3074. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Luo, Q.; Zhu, J.; Li, Z.; Li, C.; Pei, C. The preparation and rheological properties of novel energetic composites TEGDN/NBC. Propellants Explos. Pyrotech. 2020, 45, 101–110. [Google Scholar] [CrossRef]
- Huang, X.; Luo, Q.; Zhu, J.; Li, Z.; Zhao, J.; Pei, C. Development rheological and thermal properties of a novel propellant RDX/TEGDN/NBC. SN Appl. Sci. 2020, 2, 2041. [Google Scholar] [CrossRef]
- Wang, Y.; Jiang, L.; Dong, J.; Li, B.; Shen, J.; Chen, L.; He, W. Three-dimensional network structure nitramine gun propellant with nitrated bacterial cellulose. J. Mater. Res. Technol. 2020, 9, 15094–15101. [Google Scholar] [CrossRef]
- Jamal, S.H.; Roslan, N.J.; Shah, N.A.A.; Noor, S.A.M.; Ong, K.K.; Yunus, W.M.Z.W. Preparation and characterization of nitrocellulose from bacterial cellulose for propellant uses. Mater. Today Proc. 2020, 29, 185–189. [Google Scholar] [CrossRef]
- Chen, L.; Cao, X.; Gao, J.; Wang, Y.; Zhang, Y.; Liu, J.; He, W. Synthesis of 3D porous network nanostructure of nitrated bacterial cellulose gel with eminent heat-release, thermal decomposition behaviour and mechanism. Propellants Explos. Pyrotech. 2021, 46, 1292–1303. [Google Scholar] [CrossRef]
- Chen, L.; Cao, X.; Gao, J.; He, W.; Liu, J.; Wang, Y.; Zhou, X.; Shen, J.; Wang, B.; He, Y.; et al. Nitrated bacterial cellulose-based energetic nanocomposites as propellants and explosives for military applications. ACS Appl. Nano Mater. 2021, 4, 1906–1915. [Google Scholar] [CrossRef]
- Chen, L.; Nan, F.; Li, Q.; Zhang, J.; Jin, G.; Wang, M.; Cao, X.; Liu, J.; He, W. Sol–gel synthesis of insensitive nitrated bacterial cellulose/cyclotrimethylenetrinitramine nano-energetic composites and its thermal decomposition property. Cellulose 2022, 29, 7331–7351. [Google Scholar] [CrossRef]
- Tarchoun, A.F.; Trache, D.; Abdelaziz, A.; Harrat, A.; Boukecha, W.O.; Hamouche, M.A.; Dourari, M. Elaboration, characterization and thermal decomposition kinetics of new nanoenergetic composite based on Hydrazine 3-Nitro-1, 2, 4-triazol-5-one and nanostructured cellulose nitrate. Molecules 2022, 27, 6945. [Google Scholar] [CrossRef]
- Tarchoun, A.F.; Sayah, Z.B.D.; Trache, D.; Klapötke, T.M.; Belmerabt, M.; Abdelaziz, A.; Bekhouche, S. Towards investigating the characteristics and thermal kinetic behavior of emergent nanostructured nitrocellulose prepared using various sulfonitric media. J. Nanostructure Chem. 2022, 12, 963–977. [Google Scholar] [CrossRef]
- Mattar, H.; Baz, Z.; Saleh, A.; Shalaby, A.S.; Azzazy, A.E.; Salah, H.; Ismail, I. Nitrocellulose: Structure, synthesis, characterization, and applications. Water Energy Food Environ. J. 2020, 3, 1–15. [Google Scholar] [CrossRef]
- Liu, P.; Fu, L.; Song, Z.; Man, M.; Yuan, H.; Zheng, X.; Chen, L. Three dimensionally printed nitrocellulose-based microfluidic platform for investigating the effect of oxygen gradient on cells. Analyst 2021, 146, 5255–5263. [Google Scholar] [CrossRef] [PubMed]
- Gismatulina, Y.A.; Gladysheva, E.K.; Budaeva, V.V.; Sakovich, G.V. Synthesis of bacterial cellulose nitrates. Russ. Chem. Bull. 2019, 68, 2130–2133. [Google Scholar] [CrossRef]
- Budaeva, V.V.; Gismatulina, Y.A.; Mironova, G.F.; Skiba, E.A.; Gladysheva, E.K.; Kashcheyeva, E.I.; Baibakova, O.V.; Korchagina, A.A.; Shavyrkina, N.A.; Golubev, D.S.; et al. Bacterial nanocellulose nitrates. Nanomaterials 2019, 9, 1694. [Google Scholar] [CrossRef] [PubMed]
- Shavyrkina, N.A.; Budaeva, V.V.; Skiba, E.A.; Mironova, G.F.; Bychin, N.V.; Gismatulina, Y.A.; Kashcheyeva, E.I.; Sitnikova, A.E.; Shilov, A.I.; Kuznetsov, P.S.; et al. Scale-up of biosynthesis process of bacterial nanocellulose. Polymers 2021, 13, 1920. [Google Scholar] [CrossRef]
- Liu, J. Nitrate Esters Chemistry and Technology; Springer: Singapore, 2019; pp. 1–683. [Google Scholar]
- Gladysheva, E.K.; Skiba, E.A.; Zolotukhin, V.N.; Sakovich, G.V. Study of the conditions for the biosynthesis of bacterial cellulose by the producer Medusomyces gisevii Sa-12. Appl. Biochem. Microbiol. 2018, 54, 179–187. [Google Scholar] [CrossRef]
- TAPPI. Alpha-, Beta-, and Gamma-Cellulose in Pulp, Test Method T 203 cm-22; TAPPI Press: Atlanta, GA, USA, 1999. [Google Scholar]
- TAPPI. Acid-insoluble lignin in wood and pulp, Test method T. 222 om-83. In Test Methods, 1998–1999; TAPPI Press: Atlanta, GA, USA, 1999. [Google Scholar]
- Kashcheyeva, E.I.; Gismatulina, Y.A.; Budaeva, V.V. Pretreatments of non-woody cellulosic feedstocks for bacterial cellulose synthesis. Polymers 2019, 11, 1645. [Google Scholar] [CrossRef]
- TAPPI. Ash in Wood, Pulp, Paper and Paperboard: Combustion at 525 °C. Test Method T. 211 om-02; TAPPI: Peachtree Corners, GA, USA, 2002. [Google Scholar]
- Hallac, B.B.; Ragauskas, A.J. Analyzing cellulose degree of polymerization and its relevancy to cellulosic ethanol. Biofuel. Bioprod. Bior. 2011, 5, 215–225. [Google Scholar] [CrossRef]
- López-López, M.; Alegre, J.M.R.; García-Ruiz, C.; Torre, M. Determination of the nitrogen content of nitrocellulose from smokeless gunpowders and collodions by alkaline hydrolysis and ion chromatography. Anal. Chim. Acta 2011, 685, 196–203. [Google Scholar] [CrossRef]
- Liu, Y.; Shao, Z.; Wang, W.; Li, L.; Lv, Y.; Sun, J. System and method for simultaneous measurement of nitrogen content and uniformity of nitration of nitrocellulose. Cent. Eur. J. Energ. Mater. 2018, 15, 554–571. [Google Scholar] [CrossRef]
- Okada, K.; Saito, Y.; Akiyoshi, M.; Endo, T.; Matsunaga, T. Preparation and characterization of nitrocellulose nanofiber. Propellants Explos. Pyrotech. 2021, 46, 962–968. [Google Scholar] [CrossRef]
- Sullivan, F.; Simon, L.; Ioannidis, N.; Patel, S.; Ophir, Z.; Gogos, C.; Jaffe, M.; Tirmizi, S.; Bonnett, P.; Abbate, P. Nitration kinetics of cellulose fibers derived from wood pulp in mixed acids. Ind. Eng. Chem. Res. 2018, 57, 1883–1893. [Google Scholar] [CrossRef]
- Nikolsky, S.N.; Zlenko, D.V.; Melnikov, V.P.; Stovbun, S.V. The fibrils untwisting limits the rate of cellulose nitration process. Carbohydr. Polym. 2019, 204, 232–237. [Google Scholar] [CrossRef] [PubMed]
- Solovov, R.; Kazberova, A.; Ershov, B. Special aspects of nitrocellulose molar mass determination by dynamic light scattering. Polymers 2023, 15, 263. [Google Scholar] [CrossRef]
- Gao, X.; Jiang, L.; Xu, Q.; Wu, W.Q.; Mensaha, R.A. Thermal kinetics and reactive mechanism of cellulose nitrate decomposition by traditional multi kinetics and modeling calculation under isothermal and non-isothermal conditions. Ind. Crops Prod. 2020, 145, 112085. [Google Scholar] [CrossRef]
- Yakaew, P.; Phetchara, T.; Kampeerapappun, P.; Srikulkit, K. Chitosan-Coated Bacterial Cellulose (BC)/Hydrolyzed Collagen Films and Their Ascorbic Acid Loading/Releasing Performance: A Utilization of BCWaste from Kombucha Tea Fermentation. Polymers 2022, 14, 4544. [Google Scholar] [CrossRef]
- Pacheco, G.; Nogueira, C.R.; Meneguin, A.B.; Trovatti, E.; Silva, M.C.C.; Machado, R.T.A.; Ribeiro, S.J.L.; Filho, E.C.S.; Baruda, H.S. Development and characterization of bacterial cellulose produced by cashew tree residues as alternative carbon source. Ind. Crops Prod. 2017, 107, 13–19. [Google Scholar] [CrossRef]
- Skiba, E.A.; Gladysheva, E.K.; Budaeva, V.V.; Aleshina, L.A.; Sakovich, G.V. Yield and quality of bacterial cellulose from agricultural waste. Cellulose 2022, 29, 1543–1555. [Google Scholar] [CrossRef]
- Tarchoun, A.F.; Trache, D.; Klapötke, T.; Derradji, M.; Bessa, W. Ecofriendly isolation and characterization of microcrystalline cellulose from giant reed using various acidic media. Cellulose 2019, 26, 7635–7651. [Google Scholar] [CrossRef]
Sample | N Content, % | Viscosity, 2 % Solution in Acetone, mPa·s | Solubility in Mixed Alcohol–Ester, % | Ash Content, % |
---|---|---|---|---|
NBCN MA | 11.77 | 1086 | 14.5 | 0.002 |
NBCN NA+MC | 12.27 | acetonogel | 0.7 | 0.002 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gismatulina, Y.A. Promising Energetic Polymers from Nanostructured Bacterial Cellulose. Polymers 2023, 15, 2213. https://doi.org/10.3390/polym15092213
Gismatulina YA. Promising Energetic Polymers from Nanostructured Bacterial Cellulose. Polymers. 2023; 15(9):2213. https://doi.org/10.3390/polym15092213
Chicago/Turabian StyleGismatulina, Yulia A. 2023. "Promising Energetic Polymers from Nanostructured Bacterial Cellulose" Polymers 15, no. 9: 2213. https://doi.org/10.3390/polym15092213