Spinodal Decomposition of Filled Polymer Blends: The Role of the Osmotic Effect of Fillers
Abstract
:1. Introduction
2. Theory
2.1. The Condition of the Spinodal Decomposition of Filled Polymer Blends in Infinite Dilution Approximation
2.2. Osmotic Effect of Fillers on the Thermodynamics of a Polymer Blend
2.3. The Effect of Fillers on the Spinodal Decomposition of Polymer Blends
3. Discussion and Comparison with the Experiment
3.1. Determination of the Cross-Species Interaction Parameter of a Pure Blend
3.2. The Spinodal of a Filled Polymer Blend
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SL | Sanchez–Lacombe lattice theory |
LCST | Low critical solution temperature |
UCST | Upper critical solution temperature |
r.(l.) h.s. | Right (left) hand side |
Appendix A
References
- Qi, X.D.; Yang, J.H.; Zhang, N.; Huang, T.; Zhou, Z.W.; Kuehnert, I.; Poetschke, P.; Wang, Y. Selective localization of carbon nanotubes and its effect on the structure and properties of polymer blends. Prog. Polym. Sci. 2021, 123, 101471. [Google Scholar] [CrossRef]
- Yan, L.T.; Xie, X.M. Computational modeling and simulation of nanoparticle self-assembly in polymeric systems: Structures, properties and external field effects. Prog. Polym. Sci. 2013, 38, 369–405. [Google Scholar] [CrossRef]
- Huang, C.; Gao, J.; Yu, W.; Zhou, C. Phase Separation of Poly(methyl methacrylate)/Poly(styrene-co-acrylonitrile) Blends with Controlled Distribution of Silica Nanoparticles. Macromolecules 2012, 45, 8420–8429. [Google Scholar] [CrossRef]
- Gao, J.; Huang, C.; Wang, N.; Yu, W.; Zhou, C. Phase separation of poly (methyl methacrylate)/poly (styrene-co-acrylonitrile) blends in the presence of silica nanoparticles. Polymer 2012, 53, 1772–1782. [Google Scholar] [CrossRef]
- Chung, H.J.; Kim, J.; Ohno, K.; Composto, R.J. Controlling the Location of Nanoparticles in Polymer Blends by Tuning the Length and End Group of Polymer Brushes. ACS Macro Lett. 2012, 1, 252–256. [Google Scholar] [CrossRef]
- Naziri, A.A.; Ehsani, M.; Khonakdar, H.A.; Hemmati, F.; Jafari, S.H. Spherical nanoparticle effects on the lower critical solution temperature phase behavior of poly(e-caprolactone)/poly(styrene-co-acrylonitrile) blends: Separation of thermodynamic aspects from kinetics. J. Appl. Polym. Sci. 2020, 137, 48679. [Google Scholar] [CrossRef]
- Muzata, T.S.; Jagadeshvaran, P.L.; Bose, S. Nanoparticles influence miscibility in LCST polymer blends: From fundamental perspective to current applications. Phys. Chem. Chem. Phys. 2020, 22, 20167–20188. [Google Scholar] [CrossRef]
- Xavier, P.; Rao, P.; Bose, S. Nanoparticle induced miscibility in LCST polymer blends: Critically assessing the enthalpic and entropic effects. Phys. Chem. Chem. Phys. 2016, 18, 47–64. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; l’Abee, R.M.A.; Goossens, J.G.P. The Control of Silica Nanoparticles on the Phase Separation of Poly(methyl methacrylate)/Poly(styrene-co-acrylonitrile) Blends. Macromol. Chem. Phys. 2013, 214, 2705–2715. [Google Scholar] [CrossRef]
- Lipatov, Y.S.; Nesterov, A.E.; Ignatova, T.D.; Nesterov, D.A. Effect of polymer-filler surface interactions on the phase separation in polymer blends. Polymer 2002, 43, 875–880. [Google Scholar] [CrossRef]
- Nesterov, A.E.; Lipatov, Y.S. Compatibilizing effect of a filler in binary polymer mixtures. Polymer 1999, 40, 1347–1349. [Google Scholar] [CrossRef]
- Krause, B.; Rzeczkowski, P.; Poetschke, P. Thermal Conductivity and Electrical Resistivity of Melt-Mixed Polypropylene Composites Containing Mixtures of Carbon-Based Fillers. Polymers 2019, 11, 1073. [Google Scholar] [CrossRef] [PubMed]
- Semeriyanov, F.F.; Chervanyov, A.I.; Jurk, R.; Subramaniam, K.; Koenig, S.; Roscher, M.; Das, A.; Stoeckelhuber, K.W.; Heinrich, G. Non-monotonic dependence of the conductivity of carbon nanotube-filled elastomers subjected to uniaxial compression/decompression. J. Appl. Phys. 2013, 113, 159901. [Google Scholar] [CrossRef]
- Sushmita, K.; Formanek, P.; Krause, B.; Poetschke, P.; Bose, S. Distribution of Carbon Nanotubes in Polycarbonate-Based Blends for Electromagnetic Interference Shielding. ACS Appl. Nano Mater. 2022, 5, 662–677. [Google Scholar] [CrossRef]
- Selvan, N.T.; Eshwaran, S.B.; Das, A.; Stoeckelhuber, K.W.; Wiessner, S.; Poetschke, P.; Nando, G.B.; Chervanyov, A.I.; Heinrich, G. Piezoresistive natural rubber-multiwall carbon nanotube nanocomposite for sensor applications. Sens. Actuators A-Phys. 2016, 239, 102–113. [Google Scholar] [CrossRef]
- Tenbrinke, G.; Karasz, F.E. Lower critical solution temperature behavior in polymer blends-compressibility and directional-specific interactions. Macromolecules 1984, 17, 815–820. [Google Scholar] [CrossRef]
- Nesterov, A.E.; Lipatov, Y.S.; Horichko, V.V.; Gritsenko, O.T. Filler effects on the compatibility and phase-separation kinetics of poly(vinyl acetate) poly(methyl methacrylate) mixtures. Polymer 1992, 33, 619–622. [Google Scholar] [CrossRef]
- Xia, T.; Huang, Y.; Jiang, X.; Lv, Y.; Yang, Q.; Li, G. The Molecular Mechanism of the Morphology Change in PS/PVME/Silica Blends Based on Rheology. Macromolecules 2013, 46, 8323–8333. [Google Scholar] [CrossRef]
- Nguyen, T.P.; Yang, S.H. 19-Hybrid materials based on polymer nanocomposites for environmental applications. In Polymer-Based Nanocomposites for Energy and Environmental Applications; Jawaid, M., Khan, M.M., Eds.; Woodhead Publishing Series in Composites Science and Engineering; Woodhead Publishing: Sawston, UK, 2018; pp. 507–551. [Google Scholar] [CrossRef]
- Warren, P. Phase behavior of a colloid plus binary polymer mixture: Theory. Langmuir 1997, 13, 4588–4594. [Google Scholar] [CrossRef]
- Lekkerkerker, H.N.W.; Poon, W.C.K.; Pusey, P.N.; Stroobants, A.; Warren, P.B. Phase-behavior of colloid plus polymer mixtures. Europhys. Lett. 1992, 20, 559–564. [Google Scholar] [CrossRef]
- Lipatov, Y.S. Polymer blends and interpenetrating polymer networks at the interface with solids. Prog. Polym. Sci. 2002, 27, 1721–1801. [Google Scholar] [CrossRef]
- Ginzburg, V.V. Influence of nanoparticles on miscibility of polymer blends. A simple theory. Macromolecules 2005, 38, 2362–2367. [Google Scholar] [CrossRef]
- He, G.; Ginzburg, V.V.; Balazs, A.C. Determining the phase behavior of nanoparticle-filled binary blends. J. Polym. Sci. Part B-Polym. Phys. 2006, 44, 2389–2403. [Google Scholar] [CrossRef]
- Huh, J.; Ginzburg, V.V.; Balazs, A.C. Thermodynamic behavior of particle/diblock copolymer mixtures: Simulation and theory. Macromolecules 2000, 33, 8085–8096. [Google Scholar] [CrossRef]
- Thompson, R.B.; Ginzburg, V.V.; Matsen, M.W.; Balazs, A.C. Block copolymer-directed assembly of nanoparticles: Forming mesoscopically ordered hybrid materials. Macromolecules 2002, 35, 1060–1071. [Google Scholar] [CrossRef]
- Solis, F.J.; Tang, H. A bulk perturbation in a grafted brush. Macromolecules 1996, 29, 7953–7959. [Google Scholar] [CrossRef]
- Sanchez, I.C.; Balazs, A.C. Generalization of the lattice-fluid model for specific interactions. Macromolecules 1989, 22, 2325–2331. [Google Scholar] [CrossRef]
- Rodgers, P.A.; Paul, D.R.; Barlow, J.W. Procedure For Predicting Lower Critical Solution Temperature Behavior In Binary Blends of Polymers. Macromolecules 1991, 24, 4101–4109. [Google Scholar] [CrossRef]
- Voutsas, E.C.; Pappa, G.D.; Boukouvalas, C.J.; Magoulas, K.; Tassios, D.P. Miscibility in binary polymer blends: Correlation and prediction. Ind. Eng. Chem. Res. 2004, 43, 1312–1321. [Google Scholar] [CrossRef]
- Clark, E.A.; Lipson, J.E.G. LCST and UCST behavior in polymer solutions and blends. Polymer 2012, 53, 536–545. [Google Scholar] [CrossRef]
- Sanchez, I.C.; Lacombe, R.H. Statistical thermodynamics of polymer-solutions. Macromolecules 1978, 11, 1145–1156. [Google Scholar] [CrossRef]
- Huang, Y.; Jiang, S.; Li, G.; Chen, D. Effect of fillers on the phase stability of binary polymer blends: A dynamic shear rheology study. Acta Mater. 2005, 53, 5117–5124. [Google Scholar] [CrossRef]
- Gharachorlou, A.; Goharpey, F. Rheologically determined phase behavior of LCST blends in the presence of spherical nanoparticles. Macromolecules 2008, 41, 3276–3283. [Google Scholar] [CrossRef]
- Chervanyov, A.I.; Heinrich, G. Immersion energy and polymer-mediated depletion interactions between nanocolloids as studied by analytic self-consistent field theory. Phys. Rev. E 2012, 86, 021801. [Google Scholar] [CrossRef]
- Chervanyov, A.I. Polymer-mediated interactions and their effect on the coagulation-fragmentation of nano-colloids: A self-consistent field theory approach. Soft Matter 2015, 11, 1038–1053. [Google Scholar] [CrossRef]
- Chervanyov, A.I. Effective interaction between colloids immersed in a polymer blend and their effect on the equation of state of this blend. J. Colloid Interface Sci. 2020, 563, 156–167. [Google Scholar] [CrossRef]
- Chervanyov, A.I. Conductivity of Insulating Diblock Copolymer System Filled with Conductive Particles Having Different Affinities for Dissimilar Copolymer Blocks. Polymers 2020, 12, 1659. [Google Scholar] [CrossRef]
- Chervanyov, A.I. Temperature dependence of the conductivity of filled diblock copolymers. Phys. Rev. E 2020, 102, 052504. [Google Scholar] [CrossRef]
- Chervanyov, A.I. Conductivity of diblock copolymer system filled with conducting nano-particles: Effect of copolymer morphology. J. Polym. Sci. 2022, 60, 221–232. [Google Scholar] [CrossRef]
- Guggenheim, E. Thermodynamics. An Advanced Treatment for Chemists and Physicists. Z. Für Naturforschung A 1950, 5, 236. [Google Scholar] [CrossRef]
- Dlubek, G.; Piontech, J.; Kilburn, J. The structure of the free volume in poly(styrene-co-acrylonitrile) from positron lifetime and pressure volume temperature (PVT) experiments: 1. free volume from the Simha-Somcynsky analysis of PVT experiments. Macromol. Chem. Phys. 2004, 205, 500–511. [Google Scholar] [CrossRef]
- Wen, G.; Sun, Z.; Shi, T.; Yang, J.; Jiang, W.; An, L.; Li, B. Thermodynamics of PMMA/SAN blends: Application of the Sanchez-Lacombe lattice fluid theory. Macromolecules 2001, 34, 6291–6296. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chervanyov, A.I. Spinodal Decomposition of Filled Polymer Blends: The Role of the Osmotic Effect of Fillers. Polymers 2024, 16, 38. https://doi.org/10.3390/polym16010038
Chervanyov AI. Spinodal Decomposition of Filled Polymer Blends: The Role of the Osmotic Effect of Fillers. Polymers. 2024; 16(1):38. https://doi.org/10.3390/polym16010038
Chicago/Turabian StyleChervanyov, A. I. 2024. "Spinodal Decomposition of Filled Polymer Blends: The Role of the Osmotic Effect of Fillers" Polymers 16, no. 1: 38. https://doi.org/10.3390/polym16010038
APA StyleChervanyov, A. I. (2024). Spinodal Decomposition of Filled Polymer Blends: The Role of the Osmotic Effect of Fillers. Polymers, 16(1), 38. https://doi.org/10.3390/polym16010038