Construction Strategy for Flexible and Breathable SiO2/Al/NFs/PET Composite Fabrics with Dual Shielding against Microwave and Infrared–Thermal Radiations for Wearable Protective Clothing
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Preparation Methods
2.3. Characterization and Testing
3. Results and Discussion
3.1. Macroscopic Morphologies and Microstructures
3.2. UV–Vis–NIR Spectra and IR Emission Spectra
3.3. Infrared and Thermal Radiation-Shielding Properties
3.4. Electric Conductive Fabrics and Electromagnetic Shielding Effectiveness
3.5. Influence of the Surface Microstructure
3.6. Air Permeability and Moisture Permeability of the Composite Fabrics
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Guo, H.T.; Chen, Y.M.; Li, Y.; Zhou, W.; Xu, W.H.; Pang, L.; Fan, X.M.; Jiang, S.H. Electrospun fibrous materials and their applications for electromagnetic interference shielding: A review. Compos. Part A Appl. Sci. Manuf. 2021, 143, 106309. [Google Scholar] [CrossRef]
- Lu, Y.; Shi, Y. A microfabricated lab-on-chip with three-dimensional electrodes for microscopic observation of bioelectromagnetic effects of cells. Bioelectrochemistry 2023, 154, 108554. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.C.; Yao, L.H.; Zheng, Q.; Cao, M.S. Graphene-wrapped multiloculated nickel ferrite: A highly efficient electromagnetic attenuation material for microwave absorbing and green shielding. Nano Res. 2022, 15, 6751–6760. [Google Scholar] [CrossRef]
- Zhang, H.; Zheng, X.; Jiang, R.; Liu, Z.; Li, W.; Zhou, X. Research progress of functional composite electromagnetic shielding materials. Eur. Polym. J. 2023, 185, 111825. [Google Scholar] [CrossRef]
- Zhao, H.; Hou, L.; Bi, S.Y.; Lu, Y.X. Enhanced X-Band Electromagnetic-Interference Shielding Performance of Layer-Structured Fabric-Supported Polyaniline/Cobalt-Nickel Coatings. Acs Appl. Mater. Interfaces 2017, 9, 33059–33070. [Google Scholar] [CrossRef] [PubMed]
- Nikitin, V.F.; Smirnov, N.N.; Smirnova, M.; Tyurenkova, V. On board electronic devices safety subject to high frequency electromagnetic radiation effects. Acta Astronaut. 2017, 135, 181–186. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Ruan, K.P.; Zhou, K.; Gu, J.W. Controlled distributed ti3c2tx hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding. Adv. Mater. 2023, 35, e2211642. [Google Scholar] [CrossRef]
- Yang, J.J.; Zhang, X.F.; Zhang, X.; Wang, L.; Feng, W.; Li, Q. Beyond the Visible: Bioinspired Infrared Adaptive Materials. Adv. Mater. 2021, 33, 2004754. [Google Scholar] [CrossRef]
- Zhu, H.Z.; Li, Q.; Zheng, C.Q.; Hong, Y.; Xu, Z.Q.; Wang, H.; Shen, W.D.; Kaur, S.; Ghosh, P.; Qiu, M. High-temperature infrared camouflage with efficient thermal management. Light-Sci. Appl. 2020, 9, 1–8. [Google Scholar] [CrossRef]
- Zhu, H.Z.; Li, Q.; Tao, C.N.; Hong, Y.; Xu, Z.Q.; Shen, W.D.; Kaur, S.; Ghosh, P.; Qiu, M. Multispectral camouflage for infrared, visible, lasers and microwave with radiative cooling. Nat. Commun. 2021, 12, 1–8. [Google Scholar] [CrossRef]
- Yang, C.; Niu, S.; Chang, H.C.; Wang, Y.Y.; Feng, Y.J.; Zhang, Y.; Li, G.H.; Chen, S.; Qu, Y.C.; Xiao, L. Thermal infrared and broadband microwave stealth glass windows based on multi-band optimization. Opt. Express 2021, 29, 13610–13623. [Google Scholar] [CrossRef] [PubMed]
- Nong, J.; Jiang, X.; Wei, X.; Zhang, Y.; Li, N.; Li, X.; Chen, H.; He, X.; Yu, Y.; Zhang, Z. Optical transparent metamaterial with multi-band compatible camouflage based on inverse design. Opt. Express 2023, 31, 33622–33637. [Google Scholar] [CrossRef] [PubMed]
- Maity, S.; Singha, K.; Debnath, P.; Singha, M. Textiles in electromagnetic radiation protection. J. Saf. Eng. 2013, 2, 11–19. [Google Scholar] [CrossRef]
- He, M.; Zhao, B.; Yue, X.; Chen, Y.; Qiu, F.; Zhang, T. Infrared radiative modulating textiles for personal thermal management: Principle, design and application. Nano Energy 2023, 116, 108821. [Google Scholar] [CrossRef]
- Shrivastava, V.P.; Radhawal, K.; Rawat, S.; Khare, R. A transparent zinc oxide based metamaterial for perfect absorption of long-wavelength and mid-wavelength infrared spectral bands. Mater. Today Commun. 2023, 36, 106714. [Google Scholar] [CrossRef]
- Shayegan, K.J.; Biswas, S.; Zhao, B.; Fan, S.; Atwater, H.A. Direct observation of the violation of Kirchhoff’s law of thermal radiation. Nat. Photonics 2023, 17, 891–896. [Google Scholar] [CrossRef]
- Hu, J.; Hu, Y.; Ye, Y.; Shen, R. Unique applications of carbon materials in infrared stealth: A review. Chem. Eng. J. 2023, 452, 139147. [Google Scholar] [CrossRef]
- Jeong, S.-M.; Ahn, J.; Choi, Y.K.; Lim, T.; Seo, K.; Hong, T.; Choi, G.H.; Kim, H.; Lee, B.W.; Park, S.Y.; et al. Development of a wearable infrared shield based on a polyurethane–antimony tin oxide composite fiber. NPG Asia Mater. 2020, 12, 32. [Google Scholar] [CrossRef]
- Tan, H.; Gou, J.; Zhang, X.; Ding, L.; Wang, H. Sandwich-structured Ti3C2Tx-MXene/reduced-graphene-oxide composite membranes for high-performance electromagnetic interference and infrared shielding. J. Membr. Sci. 2023, 675, 121560. [Google Scholar] [CrossRef]
- Peng, L.; Jiang, S.; Guo, R.; Xu, J.; Li, X.; Miao, D.; Wang, Y.; Shang, S. IR protection property and color performance of TiO2/Cu/TiO2 coated polyester fabrics. J. Mater. Sci. Mater. Electron. 2018, 29, 16188–16198. [Google Scholar] [CrossRef]
- Xue, R.; Liu, G.; Liu, F. A simple and efficient method for the preparation of SiO2/PI/AF aerogel composite fabrics and their thermal insulation performance. Ceram. Int. 2023, 49, 210–215. [Google Scholar] [CrossRef]
- Khlebtsov, B.N.; Khanadeev, V.A.; Khlebtsov, N.G. Determination of the size, concentration, and refractive index of silica nanoparticles from turbidity spectra. Langmuir 2008, 24, 8964–8970. [Google Scholar] [CrossRef] [PubMed]
- Agcayazi, T.; Chatterjee, K.; Bozkurt, A.; Ghosh, T.K. Flexible interconnects for electronic textiles. Adv. Mater. Technol. 2018, 3, 1700277. [Google Scholar] [CrossRef]
- Walia, S.; Shah, C.M.; Gutruf, P.; Nili, H.; Chowdhury, D.R.; Withayachumnankul, W.; Bhaskaran, M.; Sriram, S. Flexible metasurfaces and metamaterials: A review of materials and fabrication processes at micro-and nano-scales. Appl. Phys. Rev. 2015, 2, 011303. [Google Scholar] [CrossRef]
- Jo, H.; King, J.L.; Blomstrand, K.; Sridharan, K. Spectral emissivity of oxidized and roughened metal surfaces. Int. J. Heat Mass Transf. 2017, 115, 1065–1071. [Google Scholar] [CrossRef]
- Kelly, P.J.; Arnell, R.D. Magnetron sputtering: A review of recent developments and applications. Vacuum 2000, 56, 159–172. [Google Scholar] [CrossRef]
- Tan, X.-Q.; Liu, J.-Y.; Niu, J.-R.; Liu, J.-Y.; Tian, J.-Y. Recent progress in magnetron sputtering technology used on fabrics. Materials 2018, 11, 1953. [Google Scholar] [CrossRef]
- Xia, M.; Liu, Q.; Zhou, Z.; Tao, Y.; Li, M.; Liu, K.; Wu, Z.; Wang, D. A novel hierarchically structured and highly hydrophilic poly(vinyl alcohol-co-ethylene)/poly(ethylene terephthalate) nanoporous membrane for lithium-ion battery separator. J. Power Sources 2014, 266, 29–35. [Google Scholar] [CrossRef]
- Rana, A.; Yadav, K.; Jagadevan, S. A comprehensive review on green synthesis of nature-inspired metal nanoparticles: Mechanism, application and toxicity. J. Clean. Prod. 2020, 272, 122880. [Google Scholar] [CrossRef]
- Oliveira, A.D.d.; Silva, V.H.d.; Pimentel, M.F.; Vinhas, G.M.; Pasquini, C.; Almeida, Y.M.B.d. Use of Infrared Spectroscopy and Near Infrared Hyperspectral Images to Evaluate Effects of Different Chemical Agents on PET Bottle Surface. Mater. Res. 2018, 21, e20170949. [Google Scholar] [CrossRef]
- Li, X.; Zhou, J.; Quan, Z.; Wang, L.; Li, F.; Qin, X.; Yu, J. Light scattering tunability of nanofiber membrane for enhancing color yield. Dye. Pigment. 2021, 193, 109462. [Google Scholar] [CrossRef]
- Giannini, V.; Fernández-Domínguez, A.I.; Heck, S.C.; Maier, S.A. Plasmonic nanoantennas: Fundamentals and their use in controlling the radiative properties of nanoemitters. Chem. Rev. 2011, 111, 3888–3912. [Google Scholar] [CrossRef] [PubMed]
- Slater, K. Comfort properties of textiles. Text. Prog. 1977, 9, 1–70. [Google Scholar] [CrossRef]
- Som, C.; Wick, P.; Krug, H.; Nowack, B. Environmental and health effects of nanomaterials in nanotextiles and façade coatings. Environ. Int. 2011, 37, 1131–1142. [Google Scholar] [CrossRef]
- Sajid, M.; Ilyas, M.; Basheer, C.; Tariq, M.; Daud, M.; Baig, N.; Shehzad, F. Impact of nanoparticles on human and environment: Review of toxicity factors, exposures, control strategies, and future prospects. Environ. Sci. Pollut. Res. 2015, 22, 4122–4143. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ye, H.; Liu, Q.; Xu, X.; Song, M.; Lu, Y.; Yang, L.; Wang, W.; Wang, Y.; Li, M.; Wang, D. Construction Strategy for Flexible and Breathable SiO2/Al/NFs/PET Composite Fabrics with Dual Shielding against Microwave and Infrared–Thermal Radiations for Wearable Protective Clothing. Polymers 2024, 16, 6. https://doi.org/10.3390/polym16010006
Ye H, Liu Q, Xu X, Song M, Lu Y, Yang L, Wang W, Wang Y, Li M, Wang D. Construction Strategy for Flexible and Breathable SiO2/Al/NFs/PET Composite Fabrics with Dual Shielding against Microwave and Infrared–Thermal Radiations for Wearable Protective Clothing. Polymers. 2024; 16(1):6. https://doi.org/10.3390/polym16010006
Chicago/Turabian StyleYe, Hui, Qiongzhen Liu, Xiao Xu, Mengya Song, Ying Lu, Liyan Yang, Wen Wang, Yuedan Wang, Mufang Li, and Dong Wang. 2024. "Construction Strategy for Flexible and Breathable SiO2/Al/NFs/PET Composite Fabrics with Dual Shielding against Microwave and Infrared–Thermal Radiations for Wearable Protective Clothing" Polymers 16, no. 1: 6. https://doi.org/10.3390/polym16010006
APA StyleYe, H., Liu, Q., Xu, X., Song, M., Lu, Y., Yang, L., Wang, W., Wang, Y., Li, M., & Wang, D. (2024). Construction Strategy for Flexible and Breathable SiO2/Al/NFs/PET Composite Fabrics with Dual Shielding against Microwave and Infrared–Thermal Radiations for Wearable Protective Clothing. Polymers, 16(1), 6. https://doi.org/10.3390/polym16010006