Chitosan-2D Nanomaterial-Based Scaffolds for Biomedical Applications
Abstract
:1. Introduction
2. Advantages of Chitosan for Biomedical Applications
2.1. Biocompatibility
2.2. Porosity
2.3. Molecular Weight
2.4. Water Retention Ability
2.5. Biodegradability
3. Types of Chitosan Scaffold
3.1. Hydrogel Scaffold
3.2. Sponges
3.3. Fiber Scaffolds
3.4. Microspheres Scaffolds
4. Types of Chitosan Nanostructures
4.1. Chitosan Nanoparticles (CS NPs)
4.2. Chitosan Nanospheres (CS NSs)
4.3. Chitosan Nanosheets (CS NTs)
5. The Advantages of 2D Nanomaterials for Biomedical Applications
- High surface-to-volume ratio and tunable interfacial chemistry are some of the most important characteristics of 2D nanomaterials, which are generally required for biomedical applications.
- 2D nanomaterials showed a rippling or wrinkling effect in the case of out-of-plane bending or folding, which allows cells to strongly attach and spread freely over the underlying substrate [79]. This process of nanocomposite formation helped in biomedical applications as strong cell attachment to the substrate is one of the desired criteria for biomedical applications.
- Mechanical strain gradients allow electrical polarization, which can regenerate electrically active tissues such as bone, neurons, and cardiac tissue [80].
- Two-dimensional nanomaterials can interact with cellular membrane in penetration mode as well as attachment mode [79,81]. Hydrophobic attraction drives the penetration mode interaction between the lipid layer of cellular membrane and the 2D nanomaterials, whereas the hydrophilic interaction works for the interaction in attachment mode.
6. Chitosan-2D Nanomaterial Scaffolds for Biomedical Applications
6.1. Chitosan-Graphene
6.2. Chitosan-Black Phosphorus
6.3. Chitosan-MoS2
6.4. Chitosan-MXene
7. Conclusions and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Harugade, A.; Sherje, A.P.; Pethe, A. Chitosan: A review on properties, biological activities and recent progress in biomedical applications. React. Funct. Polym. 2023, 191, 105634. [Google Scholar] [CrossRef]
- Periayah, M.H.; Halim, A.S.; Saad, A.Z. Chitosan: A Promising Marine Polysaccharide for Biomedical Research. Pharmacogn. Rev. 2016, 10, 39–42. [Google Scholar] [CrossRef] [PubMed]
- Leonida, M.; Ispas-Szabo, P.; Mateescu, M.A. Self-stabilized chitosan and its complexes with carboxymethyl starch as excipients in drug delivery. Bioact. Mater. 2018, 3, 334–340. [Google Scholar] [CrossRef] [PubMed]
- Almajidi, Y.Q.; Ponnusankar, S.; Chaitanya, M.; Marisetti, A.L.; Hsu, C.Y.; Dhiaa, A.M.; Saadh, M.J.; Pal, Y.; Thabit, R.; Adhab, A.H.; et al. Chitosan-based nanofibrous scaffolds for biomedical and pharmaceutical applications: A comprehensive review. Int. J. Biol. Macromol. 2024, 264, 130683. [Google Scholar] [CrossRef] [PubMed]
- Rasool, A.; Rizwan, M.; Islam, A.; Abdullah, H.; Shafqat, S.S.; Azeem, M.K.; Rasheed, T.; Bilal, M. Chitosan-Based Smart Polymeric Hydrogels and Their Prospective Applications in Biomedicine. Starch-Starke 2024, 76, 2100150. [Google Scholar] [CrossRef]
- Guo, Y.B.; Qiao, D.L.; Zhao, S.M.; Liu, P.; Xie, F.W.; Zhang, B.J. Biofunctional chitosan-biopolymer composites for biomedical applications. Mater. Sci. Eng. R. 2024, 159, 100775. [Google Scholar] [CrossRef]
- Del Bakhshayesh, A.R.; Asadi, N.; Alihemmati, A.; Nasrabadi, H.T.; Montaseri, A.; Davaran, S.; Saghati, S.; Akbarzadeh, A.; Abedelahi, A. An overview of advanced biocompatible and biomimetic materials for creation of replacement structures in the musculoskeletal systems: Focusing on cartilage tissue engineering. J. Biol. Eng. 2019, 13, 85. [Google Scholar] [CrossRef]
- Wang, Q.L.; Wang, X.Y.; Feng, Y.K. Chitosan Hydrogel as Tissue Engineering Scaffolds for Vascular Regeneration Applications. Gels 2023, 9, 373. [Google Scholar] [CrossRef]
- Thottappillil, N.; Nair, P.D. Scaffolds in vascular regeneration: Current status. Vasc. Health Risk Manag. 2015, 11, 79–91. [Google Scholar] [CrossRef]
- Aranaz, I.; Alcántara, A.R.; Civera, M.C.; Arias, C.; Elorza, B.; Caballero, A.H.; Acosta, N. Chitosan: An Overview of Its Properties and Applications. Polymers 2021, 13, 3256. [Google Scholar] [CrossRef]
- Rozmyslowska-Wojciechowska, A.; Karwowska, E.; Gloc, M.; Wozniak, J.; Petrus, M.; Przybyszewski, B.; Wojciechowski, T.; Jastrzebska, A.M. Controlling the Porosity and Biocidal Properties of the Chitosan-Hyaluronate Matrix Hydrogel Nanocomposites by the Addition of 2D TiCT MXene. Materials 2020, 13, 4587. [Google Scholar] [CrossRef] [PubMed]
- Murugesan, S.; Scheibel, T. Chitosan-based nanocomposites for medical applications. J. Polym. Sci. 2021, 59, 1610–1642. [Google Scholar] [CrossRef]
- Choudhary, P.; Ramalingam, B.; Das, S.K. Fabrication of Chitosan-Reinforced Multifunctional Graphene Nanocomposite as Antibacterial Scaffolds for Hemorrhage Control and Wound-Healing Application. ACS Biomater. Sci. Eng. 2020, 6, 5911–5929. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Peng, X.; Xu, X.Y.; Wu, M.Z.; Sun, F.; Xin, Q.W.; Zhang, H.B.; Zuo, L.R.; Cao, Y.L.; Xia, Y.H.; et al. Chitosan based photothermal scaffold fighting against bone tumor-related complications: Recurrence, infection, and defects. Carbohydr. Polym. 2023, 300, 120264. [Google Scholar] [CrossRef] [PubMed]
- Yan, P.F.; Li, M.Y.; Liu, J.; Song, L.F.; Tang, K.Y. Near-infrared responsive quaternized chitosan-coated MoS2/poly(vinyl alcohol) hydrogel with improved mechanical and rapid antibacterial properties. Eur. Polym. J. 2022, 180, 111593. [Google Scholar] [CrossRef]
- Rizeq, B.R.; Younes, N.N.; Rasool, K.; Nasrallah, G.K. Synthesis, Bioapplications, and Toxicity Evaluation of Chitosan-Based Nanoparticles. Int. J. Mol. Sci. 2019, 20, 5776. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.B.; Zhou, J.R.; Liu, L.; Huang, C.J.; Zhou, D.Q.; Fu, L.L. Characterization and toxicology evaluation of chitosan nanoparticles on the embryonic development of zebrafish. Carbohydr. Polym. 2016, 141, 204–210. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.L.; Qi, W.; Han, F.; Shao, J.Z.; Gao, J.Q. Toxicity evaluation of biodegradable chitosan nanoparticles using a zebrafish embryo model. Int. J. Nanomed. 2011, 6, 3351–3359. [Google Scholar] [CrossRef]
- Lutzweiler, G.; Halili, A.N.; Vrana, N.E. The Overview of Porous, Bioactive Scaffolds as Instructive Biomaterials for Tissue Regeneration and Their Clinical Translation. Pharmaceutics 2020, 12, 602. [Google Scholar] [CrossRef]
- Ameer, J.M.; Kumar, P.R.A.; Kasoju, N. Strategies to Tune Electrospun Scaffold Porosity for Effective Cell Response in Tissue Engineering. J. Funct. Biomater. 2019, 10, 30. [Google Scholar] [CrossRef]
- Choi, S.W.; Zhang, Y.; MacEwan, M.R.; Xia, Y.N. Neovascularization in Biodegradable Inverse Opal Scaffolds with Uniform and Precisely Controlled Pore Sizes. Adv. Healthc. Mater. 2013, 2, 145–154. [Google Scholar] [CrossRef] [PubMed]
- Gupte, M.J.; Swanson, W.B.; Hu, J.; Jin, X.B.; Ma, H.Y.; Zhang, Z.P.; Liu, Z.N.; Feng, K.; Feng, G.J.; Xiao, G.Y.; et al. Pore size directs bone marrow stromal cell fate and tissue regeneration in nanofibrous macroporous scaffolds by mediating vascularization. Acta Biomater. 2018, 82, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Conoscenti, G.; Schneider, T.; Stoelzel, K.; Pavia, F.C.; Brucato, V.; Goegele, C.; La Carrubba, V.; Schulze-Tanzil, G. PLLA scaffolds produced by thermally induced phase separation (TIPS) allow human chondrocyte growth and extracellular matrix formation dependent on pore size. Mater. Sci. Eng. C-Mater. 2017, 80, 449–459. [Google Scholar] [CrossRef] [PubMed]
- Shavandi, A.; Bekhit, A.E.D.A.; Ali, M.A.; Sun, Z. Bio-mimetic composite scaffold from mussel shells, squid pen and crab chitosan for bone tissue engineering. Int. J. Biol. Macromol. 2015, 80, 445–454. [Google Scholar] [CrossRef] [PubMed]
- Lima, P.A.L.; Resende, C.X.; Soares, G.D.D.; Anselme, K.; Almeida, L.E. Preparation, characterization and biological test of 3D-scaffolds based on chitosan, fibroin and hydroxyapatite for bone tissue engineering. Mater. Sci. Eng. C-Mater. 2013, 33, 3389–3395. [Google Scholar] [CrossRef] [PubMed]
- Tangsadthakun, C.; Kanokpanont, S.; Sanchavanakit, N.; Pichyangkura, R.; Banaprasert, T.; Tabata, Y.; Damrongsakkul, S. The influence of molecular weight of chitosan on the physical and biological properties of collagen/chitosan scaffolds. J. Biomater. Sci.-Polym. Ed. 2007, 18, 147–163. [Google Scholar] [CrossRef]
- Saravanan, S.; Leena, R.S.; Selvamurugan, N. Chitosan based biocomposite scaffolds for bone tissue engineering. Int. J. Biol. Macromol. 2016, 93, 1354–1365. [Google Scholar] [CrossRef] [PubMed]
- Levengood, S.K.L.; Zhang, M.Q. Chitosan-based scaffolds for bone tissue engineering. J. Mater. Chem. B 2014, 2, 3161–3184. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.Y.; Li, Q.; Pan, Y.K.; Yao, Y.; Tang, S.C.; Su, J.C.; Shin, J.W.; Wei, J.; Zhao, J. Nanoporosity improved water absorption, in vitro degradability, mineralization, osteoblast responses and drug release of poly(butylene succinate)-based composite scaffolds containing nanoporous magnesium silicate compared with magnesium silicate. Int. J. Nanomed. 2017, 12, 3637–3651. [Google Scholar] [CrossRef]
- Jiménez-Gómez, C.P.; Cecilia, J.A. Chitosan: A Natural Biopolymer with a Wide and Varied Range of Applications. Molecules 2020, 25, 3981. [Google Scholar] [CrossRef]
- Pattnaik, S.; Nethala, S.; Tripathi, A.; Saravanan, S.; Moorthi, A.; Selvamurugan, N. Chitosan scaffolds containing silicon dioxide and zirconia nano particles for bone tissue engineering. Int. J. Biol. Macromol. 2011, 49, 1167–1172. [Google Scholar] [CrossRef] [PubMed]
- Peter, M.; Binulal, N.S.; Nair, S.V.; Selvamurugan, N.; Tamura, H.; Jayakumar, R. Novel biodegradable chitosan-gelatin/nano-bioactive glass ceramic composite scaffolds for alveolar bone tissue engineering. Chem. Eng. J. 2010, 158, 353–361. [Google Scholar] [CrossRef]
- Modrák, M.; Trebunová, M.; Balogová, A.F.; Hudák, R.; Zivcák, J. Biodegradable Materials for Tissue Engineering: Development, Classification and Current Applications. J. Funct. Biomater. 2023, 14, 159. [Google Scholar] [CrossRef] [PubMed]
- Tajvar, S.; Hadjizadeh, A.; Samandari, S.S. Scaffold degradation in bone tissue engineering: An overview. Int. Biodeterior. Biodegrad. 2023, 180, 105599. [Google Scholar] [CrossRef]
- Kim, S.; Cui, Z.K.; Koo, B.; Zheng, J.W.; Aghaloo, T.; Lee, M. Chitosan Lysozyme Conjugates for Enzyme-Triggered Hydrogel Degradation in Tissue Engineering Applications. ACS Appl. Mater. Inter. 2018, 10, 41138–41145. [Google Scholar] [CrossRef] [PubMed]
- Mathaba, M.; Daramola, M.O. Effect of Chitosan’s Degree of Deacetylation on the Performance of PES Membrane Infused with Chitosan during AMD Treatment. Membranes 2020, 10, 52. [Google Scholar] [CrossRef] [PubMed]
- Saravanan, S.; Nethala, S.; Pattnaik, S.; Tripathi, A.; Moorthi, A.; Selvamurugan, N. Preparation, characterization and antimicrobial activity of a bio-composite scaffold containing chitosan/nano-hydroxyapatite/nano-silver for bone tissue engineering. Int. J. Biol. Macromol. 2011, 49, 188–193. [Google Scholar] [CrossRef] [PubMed]
- Bashir, S.; Hina, M.; Iqbal, J.; Rajpar, A.H.; Mujtaba, M.A.; Alghamdi, N.A.; Wageh, S.; Ramesh, K.; Ramesh, S. Fundamental Concepts of Hydrogels: Synthesis, Properties, and Their Applications. Polymers 2020, 12, 2702. [Google Scholar] [CrossRef] [PubMed]
- Mantha, S.; Pillai, S.; Khayambashi, P.; Upadhyay, A.; Zhang, Y.L.; Tao, O.; Pham, H.M.; Tran, S.D. Smart Hydrogels in Tissue Engineering and Regenerative Medicine. Materials 2019, 12, 3323. [Google Scholar] [CrossRef]
- Radulescu, D.M.; Neacsu, I.A.; Grumezescu, A.M.; Andronescu, E. New Insights of Scaffolds Based on Hydrogels in Tissue Engineering. Polymers 2022, 14, 799. [Google Scholar] [CrossRef]
- Almawash, S.; Osman, S.K.; Mustafa, G.; El Hamd, M.A. Current and Future Prospective of Injectable Hydrogels-Design Challenges and Limitations. Pharmaceuticals 2022, 15, 371. [Google Scholar] [CrossRef] [PubMed]
- Tang, G.K.; Tan, Z.H.; Zeng, W.S.; Wang, X.; Shi, C.G.; Liu, Y.; He, H.L.; Chen, R.; Ye, X.J. Recent Advances of Chitosan-Based Injectable Hydrogels for Bone and Dental Tissue Regeneration. Front. Bioeng. Biotech. 2020, 8, 587658. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Fu, C.H.; Wu, S.H.; Liu, G.H.; Guo, J.; Su, Z.Q. Determination of the Deacetylation Degree of Chitooligosaccharides. Mar. Drugs 2017, 15, 332. [Google Scholar] [CrossRef] [PubMed]
- Jayakumar, R.; Prabaharan, M.; Kumar, P.T.S.; Nair, S.V.; Tamura, H. Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnol. Adv. 2011, 29, 322–337. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, A.A.; Salama, A.H. Norfloxacin-loaded collagen/chitosan scaffolds for skin reconstruction: Preparation, evaluation and wound healing assessment. Eur. J. Pharm. Sci. 2016, 83, 155–165. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.M.; Park, Y.J.; Lee, S.J.; Ku, Y.; Han, S.B.; Choi, S.M.; Klokkevold, P.R.; Chung, C.P. Tissue engineered bone formation using chitosan/tricalcium phosphate sponges. J. Periodontol. 2000, 71, 410–417. [Google Scholar] [CrossRef] [PubMed]
- Arpornmaeklong, P.; Pripatnanont, P.; Suwatwirote, N. Properties of chitosan-collagen sponges and osteogenic differentiation of rat-bone-marrow stromal cells. Int. J. Oral Maxillofac. Surg. 2008, 37, 357–366. [Google Scholar] [CrossRef] [PubMed]
- Du, X.C.; Wu, L.; Yan, H.Y.; Jiang, Z.Y.; Li, S.L.; Li, W.; Bai, Y.L.; Wang, H.J.; Cheng, Z.J.; Kong, D.L.; et al. Microchannelled alkylated chitosan sponge to treat noncompressible hemorrhages and facilitate wound healing. Nat. Commun. 2021, 12, 4733. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.M.; Su, C.; Jiang, L.; Ye, S.; Liu, X.F.; Shao, W. Green and Facile Preparation of Chitosan Sponges as Potential Wound Dressings. ACS Sustain. Chem. Eng. 2018, 6, 9145–9152. [Google Scholar] [CrossRef]
- Al-Mofty, S.E.; Karaly, A.H.; Sarhan, W.A.; Azzazy, H.M.E. Multifunctional Hemostatic PVA/Chitosan Sponges Loaded with Hydroxyapatite and Ciprofloxacin. ACS Omega 2022, 7, 13210–13220. [Google Scholar] [CrossRef]
- Cao, S.J.; Xu, G.; Li, Q.J.; Zhang, S.K.; Yang, Y.F.; Chen, J.D. Double crosslinking chitosan sponge with antibacterial and hemostatic properties for accelerating wound repair. Compos. Part B-Eng. 2022, 234, 109746. [Google Scholar] [CrossRef]
- Afsharian, Y.P.; Rahimnejad, M. Bioactive electrospun scaffolds for wound healing applications: A comprehensive review. Polym. Test. 2021, 93, 106952. [Google Scholar] [CrossRef]
- Zhang, Z.P.; Hu, J.; Ma, P.X. Nanofiber-based delivery of bioactive agents and stem cells to bone sites. Adv. Drug Deliv. Rev. 2012, 64, 1129–1141. [Google Scholar] [CrossRef] [PubMed]
- Homayoni, H.; Ravandi, S.A.H.; Valizadeh, M. Electrospinning of chitosan nanofibers: Processing optimization. Carbohydr. Polym. 2009, 77, 656–661. [Google Scholar] [CrossRef]
- Mitra, A.; Dey, B. Chitosan microspheres in novel drug delivery systems. Indian. J. Pharm. Sci. 2011, 73, 355–366. [Google Scholar] [CrossRef]
- Chi, H.G.; Qiu, Y.Q.; Ye, X.Q.; Shi, J.L.; Li, Z.Y. Preparation strategy of hydrogel microsphere and its application in skin repair. Front. Bioeng. Biotech. 2023, 11, 1239183. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.L.; He, J.; Yong, X.; Lu, J.L.; Xiao, J.P.; Liao, Y.J.; Li, Q.; Xiong, C.D. Biodegradable poly (lactic acid-co-trimethylene carbonate)/chitosan microsphere scaffold with shape-memory effect for bone tissue engineering. Colloids Surf. B 2020, 195, 111218. [Google Scholar] [CrossRef] [PubMed]
- Budhiraja, M.; Zafar, S.; Akhter, S.; Alrobaian, M.; Rashid, M.A.; Barkat, M.A.; Beg, S.; Ahmad, F.J. Mupirocin-Loaded Chitosan Microspheres Embedded in Extract Containing Collagen Scaffold Accelerate Wound Healing Activity. AAPS PharmSciTech 2022, 23, 77. [Google Scholar] [CrossRef]
- Fan, M.; Ma, Y.; Tan, H.P.; Jia, Y.; Zou, S.Y.; Guo, S.X.; Zhao, M.; Huang, H.; Ling, Z.H.; Chen, Y.; et al. Covalent and injectable chitosan-chondroitin sulfate hydrogels embedded with chitosan microspheres for drug delivery and tissue engineering. Mater. Sci. Eng. C-Mater. 2017, 71, 67–74. [Google Scholar] [CrossRef]
- Thakhiew, W.; Champahom, M.; Devahastin, S.; Soponronnarit, S. Improvement of mechanical properties of chitosan-based films via physical treatment of film-forming solution. J. Food Eng. 2015, 158, 66–72. [Google Scholar] [CrossRef]
- Shoueir, K.R.; El-Desouky, N.; Rashad, M.M.; Ahmed, M.K.; Janowska, I.; El-Kemary, M. Chitosan based-nanoparticles and nanocapsules: Overview, physicochemical features, applications of a nanofibrous scaffold, and bioprinting. Int. J. Biol. Macromol. 2021, 167, 1176–1197. [Google Scholar] [CrossRef] [PubMed]
- Grenha, A. Chitosan nanoparticles: A survey of preparation methods. J. Drug Target. 2012, 20, 291–300. [Google Scholar] [CrossRef] [PubMed]
- Tayebi, T.; Baradaran-Rafii, A.; Hajifathali, A.; Rahimpour, A.; Zali, H.; Shaabani, A.; Niknejad, H. Biofabrication of chitosan/chitosan nanoparticles/polycaprolactone transparent membrane for corneal endothelial tissue engineering. Sci. Rep. 2021, 11, 7060. [Google Scholar] [CrossRef] [PubMed]
- Azizian, S.; Hadjizadeh, A.; Niknejad, H. Chitosan-gelatin porous scaffold incorporated with Chitosan nanoparticles for growth factor delivery in tissue engineering. Carbohydr. Polym. 2018, 202, 315–322. [Google Scholar] [CrossRef] [PubMed]
- Karri, V.V.S.R.; Kuppusamy, G.; Talluri, S.V.; Mannemala, S.S.; Kollipara, R.; Wadhwani, A.D.; Mulukutla, S.; Raju, K.R.S.; Malayandi, R. Curcumin loaded chitosan nanoparticles impregnated into collagen-alginate scaffolds for diabetic wound healing. Int. J. Biol. Macromol. 2016, 93, 1519–1529. [Google Scholar] [CrossRef]
- Modaresifar, K.; Hadjizadeh, A.; Niknejad, H. Design and fabrication of GelMA/chitosan nanoparticles composite hydrogel for angiogenic growth factor delivery. Artif. Cells Nanomed. Biotechnol. 2018, 46, 1799–1808. [Google Scholar] [CrossRef]
- Seddighian, A.; Ganji, F.; Baghaban-Eslaminejad, M.; Bagheri, F. Electrospun PCL scaffold modified with chitosan nanoparticles for enhanced bone regeneration. Prog. Biomater. 2021, 10, 65–76. [Google Scholar] [CrossRef]
- Delan, W.K.; Ali, I.H.; Zakaria, M.; Elsaadany, B.; Fares, A.R.; ElMeshad, A.N.; Mamdouh, W. Investigating the bone regeneration activity of PVA nanofibers scaffolds loaded with simvastatin/chitosan nanoparticles in an induced bone defect rabbit model. Int. J. Biol. Macromol. 2022, 222, 2399–2413. [Google Scholar] [CrossRef]
- Kaparekar, P.S.; Pathmanapan, S.; Anandasadagopan, S.K. Polymeric scaffold of Gallic acid loaded chitosan nanoparticles infused with collagen-fibrin for wound dressing application. Int. J. Biol. Macromol. 2020, 165, 930–947. [Google Scholar] [CrossRef]
- Amnieh, Y.A.; Ghadirian, S.; Mohammadi, N.; Shadkhast, M.; Karbasi, S. Evaluation of the effects of chitosan nanoparticles on polyhydroxy butyrate electrospun scaffolds for cartilage tissue engineering applications. Int. J. Biol. Macromol. 2023, 249, 126064. [Google Scholar] [CrossRef]
- Yang, L.M.; Zhao, X.D.; Kong, Y.S.; Li, R.J.; Li, T.; Wang, R.; Ma, Z.F.; Liang, Y.M.; Ma, S.H.; Zhou, F. Injectable carboxymethyl chitosan/nanosphere-based hydrogel with dynamic crosslinking network for efficient lubrication and sustained drug release. Int. J. Biol. Macromol. 2023, 229, 814–824. [Google Scholar] [CrossRef] [PubMed]
- Cavalli, R.; Leone, F.; Minelli, R.; Fantozzi, R.; Dianzani, C. New Chitosan Nanospheres for the Delivery of 5-Fluorouracil: Preparation, Characterization and Studies. Curr. Drug Deliv. 2014, 11, 270–278. [Google Scholar] [CrossRef]
- Xing, L.; Zhao, Q.; Zheng, X.Y.; Hui, M.W.; Peng, Y.L.; Zhu, X.; Hu, L.; Yao, W.L.; Yan, Z.Q. Porous Ag-Chitosan Nanospheres Bridged by Cysteine Residues for Colorimetric Sensing of Trace Hg. ACS Appl. Nano Mater. 2021, 4, 3639–3646. [Google Scholar] [CrossRef]
- Askari, M.; Afshar, M.; Khorashadizadeh, M.; Zardast, M.; Naghizadeh, A. Wound Healing Effects of Chitosan Nanosheets/Honey Compounds in Male BALB/c Mice. Int. J. Low. Extrem. Wounds 2022. [Google Scholar] [CrossRef] [PubMed]
- Derakhshi, M.; Daemi, S.; Shahini, P.; Habibzadeh, A.; Mostafavi, E.; Ashkarran, A.A. Two-Dimensional Nanomaterials beyond Graphene for Biomedical Applications. J. Funct. Biomater. 2022, 13, 27. [Google Scholar] [CrossRef]
- Jiang, M.J.; Zhu, Y.N.; Li, Q.S.; Liu, W.X.; Dong, A.; Zhang, L. 2D nanomaterial-based 3D network hydrogels for anti-infection therapy. J. Mater. Chem. B 2024, 12, 916–951. [Google Scholar] [CrossRef] [PubMed]
- Naskar, A.; Kim, K.S. Black phosphorus nanomaterials as multi-potent and emerging platforms against bacterial infections. Microb. Pathog. 2019, 137, 103800. [Google Scholar] [CrossRef] [PubMed]
- Naskar, A.; Khan, H.; Sarkar, R.; Kumar, S.; Halder, D.; Jana, S. Anti-biofilm activity and food packaging application of room temperature solution process based polyethylene glycol capped Ag-ZnO-graphene nanocomposite. Mater. Sci. Eng. C-Mater. 2018, 91, 743–753. [Google Scholar] [CrossRef]
- Murali, A.; Lokhande, G.; Deo, K.A.; Brokesh, A.; Gaharwar, A.K. Emerging 2D nanomaterials for biomedical applications. Mater. Today 2021, 50, 276–302. [Google Scholar] [CrossRef]
- Cho, C.; Zhang, Z.C.; Kim, J.M.; Ma, P.J.; Haque, M.F.; Snapp, P.; Nam, S. Spatial Tuning of Light-Matter Interaction via Strain-Gradient-Induced Polarization in Freestanding Wrinkled 2D Materials. Nano Lett. 2023, 23, 9340–9346. [Google Scholar] [CrossRef]
- Baig, N. Two-dimensional nanomaterials: A critical review of recent progress, properties, applications, and future directions. Compos. Part A Appl. Sci. Manuf. 2023, 165, 107362. [Google Scholar] [CrossRef]
- Hermenean, A.; Codreanu, A.; Herman, H.; Balta, C.; Rosu, M.; Mihali, C.V.; Ivan, A.; Dinescu, S.; Ionita, M.; Costache, M. Chitosan-Graphene Oxide 3D scaffolds as Promising Tools for Bone Regeneration in Critical-Size Mouse Calvarial Defects. Sci. Rep. 2017, 7, 16641. [Google Scholar] [CrossRef] [PubMed]
- Dinescu, S.; Ionita, M.; Ignat, S.R.; Costache, M.; Hermenean, A. Graphene Oxide Enhances Chitosan-Based 3D Scaffold Properties for Bone Tissue Engineering. Int. J. Mol. Sci. 2019, 20, 5077. [Google Scholar] [CrossRef] [PubMed]
- Saravanan, S.; Sareen, N.; Abu-El-Rub, E.; Ashour, H.; Sequiera, G.L.; Ammar, H.I.; Gopinath, V.; Shamaa, A.A.; Saved, S.S.E.; Moudgil, M.; et al. Graphene Oxide-Gold Nanosheets Containing Chitosan Scaffold Improves Ventricular Contractility and Function After Implantation into Infarcted Heart. Sci. Rep. 2018, 8, 15069. [Google Scholar] [CrossRef] [PubMed]
- Sivashankari, P.R.; Prabaharan, M. Three-dimensional porous scaffolds based on agarose/chitosan/graphene oxide composite for tissue engineering. Int. J. Biol. Macromol. 2020, 146, 222–231. [Google Scholar] [CrossRef]
- Yang, B.; Wang, P.B.; Mu, N.; Ma, K.; Wang, S.; Yang, C.Y.; Huang, Z.B.; Lai, Y.; Feng, H.; Yin, G.F.; et al. Graphene oxide-composited chitosan scaffold contributes to functional recovery of injured spinal cord in rats. Neural Regen. Res. 2021, 16, 1829–1835. [Google Scholar] [CrossRef] [PubMed]
- Shamekhi, M.A.; Mirzadeh, H.; Mahdavi, H.; Rabiee, A.; Mohebbi-Kalhori, D.; Eslaminejad, M.B. Graphene oxide containing chitosan scaffolds for cartilage tissue engineering. Int. J. Biol. Macromol. 2019, 127, 396–405. [Google Scholar] [CrossRef]
- Jiang, L.L.; Chen, D.Y.; Wang, Z.; Zhang, Z.M.; Xia, Y.L.; Xue, H.Y.; Liu, Y. Preparation of an Electrically Conductive Graphene Oxide/Chitosan Scaffold for Cardiac Tissue Engineering. Appl. Biochem. Biotech. 2019, 188, 952–964. [Google Scholar] [CrossRef] [PubMed]
- Pan, W.Z.; Dai, C.B.; Li, Y.; Yin, Y.M.; Gong, L.; Machuki, J.O.; Yang, Y.; Qiu, S.; Guo, K.J.; Gao, F.L. PRP-chitosan thermoresponsive hydrogel combined with black phosphorus nanosheets as injectable biomaterial for biotherapy and phototherapy treatment of rheumatoid arthritis. Biomaterials 2020, 239, 119851. [Google Scholar] [CrossRef]
- He, M.M.; Zhu, C.; Sun, D.; Liu, Z.; Du, M.X.; Huang, Y.; Huang, L.Z.; Wang, J.H.; Liu, L.M.; Li, Y.B.; et al. Layer-by-layer assembled black phosphorus/chitosan composite coating for multi-functional PEEK bone scaffold. Compos. Part. B-Eng. 2022, 246, 110266. [Google Scholar] [CrossRef]
- Shen, H.Y.; Jiang, C.Y.; Li, W.; Wei, Q.F.; Ghiladi, R.A.; Wang, Q.Q. Synergistic Photodynamic and Photothermal Antibacterial Activity of In Situ Grown Bacterial Cellulose/MoS-Chitosan Nanocomposite Materials with Visible Light Illumination. ACS Appl. Mater. Interfaces 2021, 13, 31193–31205. [Google Scholar] [CrossRef] [PubMed]
- Liang, Z.Y.; Gao, J.; Yin, Z.Z.; Li, J.Y.; Cai, W.R.; Kong, Y. A sequential delivery system based on MoS nanoflower doped chitosan/oxidized dextran hydrogels for colon cancer treatment. Int. J. Biol. Macromol. 2023, 233, 123616. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.L.; Zhang, L.; Liu, Y.H.; Cai, L.; Zhou, L.Z.; Jiang, H.J.; Chen, J. Encapsulating MoS-nanoflowers conjugated with chitosan oligosaccharide into electrospun nanofibrous scaffolds for photothermal inactivation of bacteria. J. Nanostructure Chem. 2022, 14, 137–151. [Google Scholar] [CrossRef]
- Mukheem, A.; Shahabuddin, S.; Akbar, N.; Anwar, A.; Sarih, N.M.; Sudesh, K.; Khan, N.A.; Sridewi, N. Fabrication of biopolymer polyhydroxyalkanoate/chitosan and 2D molybdenum disulfide-doped scaffolds for antibacterial and biomedical applications. Appl. Microbiol. Biotechnol. 2020, 104, 3121–3131. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.H.; Liu, J.H.; Chen, Y.; Zhu, T.; Li, Y.H.; Zhang, C.L.; Zeng, X.; Chen, Q.M.; Peng, Q. Photothermal and natural activity-based synergistic antibacterial effects of Ti3C2Tx MXene-loaded chitosan hydrogel against methicillin-resistant Staphylococcus aureus. Int. J. Biol. Macromol. 2023, 240, 124482. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.Q.; Xu, D.R.; Ding, Y.; Lv, X.X.; Huang, T.T.; Yuan, B.L.; Jiang, L.; Sun, X.Y.; Yao, Y.Q.; Tang, J. A conductive polyacrylamide hydrogel enabled by dispersion-enhanced MXene@chitosan assembly for highly stretchable and sensitive wearable skin. J. Mater. Chem. B 2021, 9, 8862–8870. [Google Scholar] [CrossRef]
- Naskar, A.; Lee, S.; Kim, K.S. Au-ZnO Conjugated Black Phosphorus as a Near-Infrared Light-Triggering and Recurrence-Suppressing Nanoantibiotic Platform against. Pharmaceutics 2021, 13, 52. [Google Scholar] [CrossRef]
- Cho, H.; Naskar, A.; Lee, S.; Kim, S.; Kim, K.S. A New Surface Charge Neutralizing Nano-Adjuvant to Potentiate Polymyxins in Killing Mcr-1 Mediated Drug-Resistant. Pharmaceutics 2021, 13, 250. [Google Scholar] [CrossRef]
- Luo, M.M.; Fan, T.J.; Zhou, Y.; Zhang, H.; Mei, L. 2D Black Phosphorus-Based Biomedical Applications. Adv. Funct. Mater. 2019, 29, 1808306. [Google Scholar] [CrossRef]
- Naskar, A.; Cho, H.; Kim, K.S. Black phosphorus-based CuS nanoplatform: Near-infrared-responsive and reactive oxygen species-generating agent against environmental bacterial pathogens. J. Environ. Chem. Eng. 2022, 10, 108226. [Google Scholar] [CrossRef]
- Naskar, A.; Shin, J.; Kim, K.S. A MoS based silver-doped ZnO nanocomposite and its antibacterial activity against β-lactamase expressing. RSC Adv. 2022, 12, 7268–7275. [Google Scholar] [CrossRef] [PubMed]
- Yadav, V.; Roy, S.; Singh, P.; Khan, Z.; Jaiswal, A. 2D MoS-Based Nanomaterials for Therapeutic, Bioimaging, and Biosensing Applications. Small 2019, 15, 1803706. [Google Scholar] [CrossRef] [PubMed]
- Mutalik, C.; Okoro, G.; Chou, H.L.; Lin, I.H.; Yougbaré, S.; Chang, C.C.; Kuo, T.R. Phase-Dependent 1T/2H-MoS Nanosheets for Effective Photothermal Killing of Bacteria. ACS Sustain. Chem. Eng. 2022, 10, 8949–8957. [Google Scholar] [CrossRef]
- Shi, J.P.; Li, J.; Wang, Y.; Cheng, J.J.; Zhang, C.Y. Recent advances in MoS-based photothermal therapy for cancer and infectious disease treatment. J. Mater. Chem. B 2020, 8, 5793–5807. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Dai, X.Y.; Feng, W.; Chen, Y. Biomedical Applications of MXenes: From Nanomedicine to Biomaterials. Acc. Mater. Res. 2022, 3, 785–798. [Google Scholar] [CrossRef]
- Yang, B.X.; Kilari, S.; Brahmbhatt, A.; McCall, D.L.; Torres, E.N.; Leof, E.B.; Mukhopadhyay, D.; Misra, S. CorMatrix Wrapped Around the Adventitia of the Arteriovenous Fistula Outflow Vein Attenuates Venous Neointimal Hyperplasia. Sci. Rep. 2017, 7, 14298. [Google Scholar] [CrossRef]
- Almeida, A.; Günday-Türeli, N.; Sarmento, B. A scale-up strategy for the synthesis of chitosan derivatives used in micellar nanomedicines. Int. J. Pharm. 2021, 609, 121151. [Google Scholar] [CrossRef]
Material | Effect | NP Size | Ref. |
---|---|---|---|
CS NPs-BSA-bFGF | Significantly affected the physical properties of chitosan-gelatin scaffold | ∼266 nm | [64] |
CUR-CS NPs | Improved stability and solubility for better tissue regeneration applications | ∼197 nm | [65] |
GelMA/CS NPs-bFGF | Provide a sustained release of growth factors | ∼267 nm | [66] |
CS NPs-PCL-DEX | Enhanced osteogenic differentiation of the mesenchymal stem cells | ∼285 nm | [67] |
PVA NF with SIM/CS NPs | Controlled drug delivery for bone regeneration application | ∼110–140 nm | [68] |
GA-CSNPs | Wound healing | ∼96–357 nm | [69] |
CS NPs-PHB | Cartilage tissue engineering | ∼255 nm | [70] |
Material | Effect | Ref. |
---|---|---|
CS-GO-1 | Bone tissue regeneration in critical-size mouse calvarial defects | [82] |
CS-GO-2 | Ability to support stem cell differentiation processes for bone tissue engineering | [83] |
CS-GAP | Antibacterial scaffolds for hemorrhage control and wound-healing application | [13] |
CS-GO-Au | Improvement of the ventricular contractility and function into infarcted heart in rat model. | [84] |
Agarose/CS/GO | Potential application in bone and osteochondral tissue engineering | [85] |
GO-composited CS | Functional recovery of injured spinal cord in rats | [86] |
CS-GO-3 | Cartilage tissue engineering | [87] |
GO/CS | Cardiac tissue engineering | [88] |
CS/HC/HA/BP | Photothermal scaffold for bone tumor-related application | [14] |
BP/CS/PRP | Photothermal treatment of rheumatoid arthritis | [89] |
BP/CS composite | The biocompatible polyetheretherketone (PEEK) scaffold provided similar mechanical properties and architecture compared to that of the natural bone. | [90] |
QCS-MoS2-PVA | Photothermal antibacterial activity against S. aureus and E. coli. | [15] |
BC/MoS2-CS | Photodynamic and photothermal antibacterial activities against E. coli and S. aureus | [91] |
MoS2 doped CS/OD hydrogels | Photothermal colon cancer treatment | [92] |
MoS2-LA-COS | Photothermal antibacterial activity against S. aureus and E. coli. | [93] |
PHA-CS/MoS2 | Antibacterial activity against multi-drug-resistant E. coli K1 and methicillin-resistant S. aureus (MRSA) | [94] |
MX-CS | Synergistic photothermal antibacterial activity against MRSA | [95] |
MX-CS-hyaluronate | Antibacterial activity against E. coli, S. aureus, and Bacillus sp. | [11] |
MXene@CS | Highly stretchable and sensitive wearable skin | [96] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naskar, A.; Kilari, S.; Misra, S. Chitosan-2D Nanomaterial-Based Scaffolds for Biomedical Applications. Polymers 2024, 16, 1327. https://doi.org/10.3390/polym16101327
Naskar A, Kilari S, Misra S. Chitosan-2D Nanomaterial-Based Scaffolds for Biomedical Applications. Polymers. 2024; 16(10):1327. https://doi.org/10.3390/polym16101327
Chicago/Turabian StyleNaskar, Atanu, Sreenivasulu Kilari, and Sanjay Misra. 2024. "Chitosan-2D Nanomaterial-Based Scaffolds for Biomedical Applications" Polymers 16, no. 10: 1327. https://doi.org/10.3390/polym16101327