Preparation and Adsorption Performance of Boron Adsorbents Derived from Modified Waste Feathers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Adsorbent
2.2.1. Preparation of Feathers
2.2.2. Preparation of F-g-GMA
2.2.3. F-g-GMA-NMDG Preparation
2.3. Characterization
2.4. Adsorption Experiments
2.4.1. The Effect of pH on Adsorption Process
2.4.2. Adsorption Isotherm
2.4.3. Adsorption Kinetics
2.4.4. Adsorption Thermodynamics
2.4.5. Adsorption Studies from Binary Systems and Multiple System Solutions
2.4.6. Reusability Performance of Adsorbents
3. Results and Discussion
3.1. Modification of F-g-GMA Grafting Conditions
3.1.1. Effect of Temperature on GMA Grafting Process
3.1.2. Effect of GMA Concentration on GMA Grafting Process
3.1.3. Effect of Initiator Concentration on GMA Grafting Process
3.1.4. Effect of Grafting Time on GMA Grafting Process
3.2. Modification of F-g-GMA-NMDG Grafting Conditions
Effect of Solvent Environment and Time on the NMDG Grafting Process
3.3. Characterization
3.3.1. XRD Analysis
3.3.2. SEM Analysis
3.3.3. FTIR Analysis
3.3.4. TG Analysis
3.4. Adsorption Mechanism of F-g-GMA-NMDG
3.4.1. Effect of pH
3.4.2. Adsorption Isotherm
3.4.3. Adsorption Kinetics
3.4.4. Adsorption Thermodynamics
3.4.5. Adsorption Selectivity
3.4.6. Reusability Performance of Adsorbents
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Nielsen, F.H. Update on human health effects of boron. J. Trace Elem. Med. Biol. 2014, 28, 383–387. [Google Scholar] [CrossRef] [PubMed]
- Khaliq, H.; Juming, Z.; Ke-Mei, P. The Physiological Role of Boron on Health. Physiol. Role Boron Health 2018, 186, 31–51. [Google Scholar] [CrossRef]
- Abdelnour, S.A.; El-Hack, M.E.; Swelum, A.A.; Perillo, A.; Losacco, C. The vital roles of boron in animal health and production: A comprehensive review. J. Trace Elem. Med. Biol. 2018, 50, 296–304. [Google Scholar] [CrossRef]
- Crichton, R. The Importance of Iron for Biological Systems. In Inorganic Chemistry of Iron Metabolism; John Wiley & Sons, Ltd.: New York, NY, USA, 2001. [Google Scholar] [CrossRef]
- Xu, R.J.; Xing, X.R.; Zhou, Q.F.; Jiang, G.B.; Wei, F.S. Investigations on boron levels in drinking water sources in China. Environ. Monit. Assess. 2010, 165, 15–25. [Google Scholar] [CrossRef]
- Kim, K.C.; Kim, N.I.; Jiang, T.; Kang, C.I. Boron recovery from Salt Lake brine, seawater, and wastewater—A review. Hydrometallurgy 2023, 218, 106062. [Google Scholar] [CrossRef]
- Yilmaz, A.E.; Boncukcuoglu, R.; Bayar, S.; Fil, B.A.; Kocakerim, M.M. Boron removal by means of chemical precipitation with calcium hydroxide and calcium borate formation. Korean J. Chem. Eng. 2012, 29, 1382–1387. [Google Scholar] [CrossRef]
- Irawan, C.; Kuo, Y.L.; Liu, J.C. Treatment of boron-containing optoelectronic wastewater by precipitation process. Desalination 2011, 280, 146–151. [Google Scholar] [CrossRef]
- Hu, G.; Zhang, W.; Chen, Y.; Xu, C.; Liu, R.; Han, Z. Removal of boron from water by GO/ZIF-67 hybrid material adsorption. Environ. Sci. Pollut. Res. 2020, 27, 28396–28407. [Google Scholar] [CrossRef]
- Tang, Y.P.; Luo, L.; Thong, Z.W.; Chung, T.S. Recent advances in membrane materials and technologies for boron removal. J. Membr. Sci. 2017, 541, 434–446. [Google Scholar] [CrossRef]
- Li, X.Y.; Zhang, L.W.; Wang, C.W. Review of Disposal of Concentrate Streams from Nanofiltration (NF) or Reverse Osmosis (RO) Membrane Process. Adv. Mater. Res. 2012, 518–523, 3470–3475. [Google Scholar] [CrossRef]
- Peng, X.W.; Shi, D.; Zhang, Y.Z.; Zhang, L.C.; Ji, L.; Li, L. Recovery of boron from unacidified Salt Lake brine by solvent extraction with 2,2,4-trimethyl-1,3-pentanediol. J. Mol. Liq. 2021, 326, 115301. [Google Scholar] [CrossRef]
- Kabay, N.; Sarp, S.; Yuksel, M.; Kitis, M.; Koseoğlu, H.; Arar, Ö.; Bryjak, M.; Semiat, R. Removal of boron from SWRO permeate by boron selective ion exchange resins containing N-methyl glucamine groups. Desalination 2008, 223, 49–56. [Google Scholar] [CrossRef]
- Tao, H.C.; Li, S.; Zhang, L.J.; Chen, Y.Z.; Deng, L.P. Magnetic chitosan/sodium alginate gel bead as a novel composite adsorbent for Cu (II) removal from aqueous solution. Environ. Geochem. Health 2019, 41, 297–308. [Google Scholar] [CrossRef] [PubMed]
- Hannan, M.A.; Lipu, M.H.; Akhtar, M.; Begum, R.A.; Al Mamun, M.A.; Hussain, A.; Mia, M.S.; Basri, H. Solid waste collection optimization objectives, constraints, modeling approaches, and their challenges toward achieving sustainable development goals. J. Clean. Prod. 2020, 277, 123557. [Google Scholar] [CrossRef]
- Bazzi, L.; Hesemann, P.; Laassiri, S.; Hankari, S.E. Alternative approaches for the synthesis of nano silica particles and their hybrid composites: Synthesis, properties, and applications. Int. J. Environ. Sci. Technol. 2023, 20, 11575–11614. [Google Scholar] [CrossRef]
- Shanmugam, M.; Chuaicham, C.; Augustin, A.; Sasaki, K.; Sagayaraj, P.J.; Sekar, K. Upcycling hazardous metals and PET waste-derived metal–organic frameworks: A review on recent progresses and prospects. New J. Chem. 2022, 46, 15776–15794. [Google Scholar] [CrossRef]
- Ren, Q.; Wang, H. Study on the Desorption Performance of Feather as a New Adsorption Material on Pb2+. Adv. Mater. Res. 2013, 610–613, 2397–2400. [Google Scholar] [CrossRef]
- Khosa, M.A.; Wu, J.; Ullah, A. Chemical modification, characterization, and application of chicken feathers as novel biosorbents. RSC Adv. 2013, 3, 20800–20810. [Google Scholar] [CrossRef]
- Solís-Moreno, C.A.; Cervantes-González, E.; Saavedra-Leos, M.Z. Use and treatment of chicken feathers as a natural adsorbent for the removal of copper in aqueous solution. J. Environ. Health Sci. Eng. 2021, 19, 707–720. [Google Scholar] [CrossRef]
- Pu, Y.D.; Qiang, T.T.; Ren, L.F. Waste feather fiber based high extraction capacity bio-adsorbent for sustainable uranium extraction from seawater. Int. J. Biol. Macromol. 2022, 206, 699–707. [Google Scholar] [CrossRef]
- Chen, H.; Li, W.; Wang, J.; Xu, H.; Liu, Y.; Zhang, Z.; Li, Y.; Zhang, Y. Adsorption of cadmium and lead ions by phosphoric acid-modified biochar generated from chicken feather: Selective adsorption and influence of dissolved organic matter. Bioresour. Technol. 2019, 292, 121948. [Google Scholar] [CrossRef] [PubMed]
- Sun, P.; Liu, Z.T.; Liu, Z.W. Chemically Modified Chicken Feather as Sorbent for Removing Toxic Chromium (VI) Ions. Ind. Eng. Chem. Res. 2009, 48, 6882–6889. [Google Scholar] [CrossRef]
- Zubair, M.; Roopesh, M.S.; Ullah, A. Nano-modified feather keratin derived green and sustainable biosorbents for the remediation of heavy metals from synthetic wastewater. Chemosphere 2022, 308, 136339. [Google Scholar] [CrossRef]
- Bhagyaraj, S.; Al-Ghouti, M.A.; Kasak, P.; Krupa, I. An updated review on boron removal from water through adsorption processes. Emergent Mater. 2021, 4, 1167–1186. [Google Scholar] [CrossRef]
- Liu, X.H.; Hou, G.K.; Zheng, H.L.; Li, W. Preparation of Wool-g-Glycidyl Methacrylate with a Constructed –SH Groups/Ammonium Persulfate Redox System and Characterization. Mater. Sci. 2022, 28, 340–346. [Google Scholar] [CrossRef]
- Yang, Y.; Xie, Y.; Pang, L.; Li, M.; Song, X.; Wen, J.; Zhao, H. Preparation of reduced graphene oxide/poly(acrylamide) nanocomposite and its adsorption of Pb (II) and methylene blue. Langmuir 2013, 29, 10727–10736. [Google Scholar] [CrossRef] [PubMed]
- Shi, Z.; Reddy, N.; Hou, X.; Yang, Y. Tensile properties of thermoplastic feather films grafted with different methacrylates. ACS Sustain. Chem. Eng. 2014, 2, 1849–1856. [Google Scholar] [CrossRef]
- Patnam, P.L.; Ray, S.S.; Chatterjee, A.K.; Jain, S.L. Self-driven graft polymerization of vinyl monomers on poultry chicken feathers in the absence of initiator/catalyst. J. Appl. Polym. Sci. 2017, 134, 44645. [Google Scholar] [CrossRef]
- Mohammed Ali, N.S.; Alalwan, H.A.; Alminshid, A.H.; Mohammed, M.M. Synthesis and characterization of Fe3O4-SiO2 nanoparticles as adsorbent material for methyl blue dye removal from aqueous solutions. Pollution 2022, 8, 295–302. [Google Scholar] [CrossRef]
- Yu, H.; Cao, Y.; Kang, G.; Liu, J.; Li, M.; Yuan, Q. Enhancing antifouling property of polysulfone ultrafiltration membrane by grafting zwitterionic copolymer via UV-initiated polymerization. J. Membr. Sci. 2009, 342, 6–13. [Google Scholar] [CrossRef]
- Yusof, A.H.M.; Ulbricht, M. Polypropylene-based membrane adsorbers via photo-initiated graft copolymerization: Optimizing separation performance by preparation conditions. J. Membr. Sci. 2008, 311, 294–305. [Google Scholar] [CrossRef]
- Qi, T.; Sonoda, A.; Makita, Y.; Kanoh, H.; Ooi, K.; Hirotsu, T. Synthesis and Borate Uptake of Two Novel Chelating Resins. Ind. Eng. Chem. Res. 2002, 41, 133–138. [Google Scholar] [CrossRef]
- Samatya, S.; Tuncel, A.; Kabay, N. Boron removal from geothermal water by a novel monodisperse porous poly (GMA-co-EDM) resin containing N-methyl-D-glucamine functional group. Solvent Extr. Ion Exch. 2012, 30, 341–349. [Google Scholar] [CrossRef]
- Li, Z.; Reimer, C.; Picard, M.; Mohanty, A.K.; Misra, M. Characterization of Chicken Feather Biocarbon for Use in sustainable biocomposites. Front. Mater. 2020, 7, 3. [Google Scholar] [CrossRef]
- Sharma, S.; Gupta, A.; Chik, S.M.; Kee, C.Y.; Podder, P.K. Study of Different Treatment Methods on Chicken Feather Biomass. IIUM Eng. J. 2017, 18, 47–55. [Google Scholar] [CrossRef]
- Zhang, X.; Ren, Q.L.; Yang, Y.W.; Xing, H.B.; Su, B.G.; Bao, Z.B. Materials for boron adsorption. Prog. Chem. 2015, 27, 125–134. [Google Scholar] [CrossRef]
- Sokker, H.H.; Badawy, S.M.; Zayed, E.M.; Eldien, F.A.; Farag, A.M. Radiation-induced grafting of glycidyl methacrylate onto cotton fabric waste and its modification for anchoring hazardous wastes from their solutions. J. Hazard. Mater. 2009, 168, 137–144. [Google Scholar] [CrossRef] [PubMed]
- Yu, N.; Jiang, H.; Luo, Z.; Geng, W.; Zhu, J. Boron Adsorption Using NMDG-Modified Polypropylene Melt-Blown Fibers Induced by Ultraviolet Grafting. Polymers 2023, 15, 2252. [Google Scholar] [CrossRef] [PubMed]
- Ingri, N.; Dahlen, J.; Buchardt, O.; Kvande, P.C.; Meisingseth, E. Equilibrium Studies of Polyanions. 10. On the First Equilibrium Steps in the Acidification of B(OH)4−, an Application of the Self-Medium Method. Acta Chem. Scand. 1963, 17, 573–580. [Google Scholar] [CrossRef]
- Wang, D.; Ding, S.; Zhang, W.; Hu, Y.; Xu, H. Adsorption kinetics, isotherms and thermodynamics of aromatic amino acids in feather hydrolysate onto modified activated carbon. Environ. Prog. Sustain. Energy 2024, 43, e14252. [Google Scholar] [CrossRef]
- Fu, H.; Wang, B.; Li, D.; Xue, L.; Hua, Y.; Feng, Y.; Xie, H. Anaerobic fermentation treatment improved Cd2+ adsorption of different feedstocks based hydrochars. Chemosphere 2021, 263, 127981. [Google Scholar] [CrossRef]
- Zhang, R.; Xie, Y.; Song, J.; Xing, L.; Kong, D.; Li, X.M.; He, T. Extraction of boron from Salt Lake brine using 2-ethylhexanol. Hydrometallurgy 2016, 160, 129–136. [Google Scholar] [CrossRef]
- Köse, T.E.; Demiral, H.; Öztürk, N. Adsorption of boron from aqueous solutions using activated carbon prepared from olive bagasse. Desalin. Water Treat. 2011, 29, 110–118. [Google Scholar] [CrossRef]
- Babiker, E.; Al-Ghouti, M.A.; Zouari, N.; McKay, G. Removal of boron from water using adsorbents derived from waste tire rubber. J. Environ. Chem. Eng. 2019, 7, 102948. [Google Scholar] [CrossRef]
- Jaouadi, M.; Hbaieb, S.; Guedidi, H.; Reinert, L.; Amdouni, N.; Duclaux, L. Preparation and characterization of carbons from β-cyclodextrin dehydration and from olive pomace activation and their application for boron adsorption. J. Saudi Chem. Soc. 2017, 21, 822–829. [Google Scholar] [CrossRef]
- Liu, R.; Ma, W.; Jia, C.Y.; Wang, L.; Li, H.Y. Effect of pH on biosorption of boron onto cotton cellulose. Desalination 2007, 207, 257–267. [Google Scholar] [CrossRef]
- Demey-Cedeño, H.; Ruiz, M.; Barron-Zambrano, J.A.; Sastre, A.M. Boron removal from aqueous solutions using alginate gel beads in fixed-bed systems. J. Chem. Technol. Biotechnol. 2014, 89, 934–940. [Google Scholar] [CrossRef] [PubMed]
Langmuir | Freundlich | ||||
---|---|---|---|---|---|
kL | qm(mg·g−1) | R2 | kF | 1/n | R2 |
0.05 | 16.73 | 0.90 | 5.46 | 0.11 | 0.997 |
qe (mg·g−1) | Pseudo-First-Order Model | Pseudo-Second-Order Model | ||||
---|---|---|---|---|---|---|
qm (mg·g−1) | k1 | R2 | qm (mg·g−1) | k2 | R2 | |
11.44 | 11.43 | 0.03 | 0.96 | 11.071 | 0.082 | 0.994 |
T/°C | Thermodynamic Parameter | R2 | ||
---|---|---|---|---|
∆H (kJ·mol−1) | ∆S (J·mol−1·K−1) | ∆G (kJ·mol−1) | ||
25 | 11.44 | 56.79 | −5.50 | 0.997 |
35 | −6.05 | |||
45 | −6.62 |
Adsorbent | Adsorption Capacity (mg·g−1) at 25 °C | Reference |
---|---|---|
activated carbon prepared from olive bagasse | 3.5 | [44] |
adsorbents derived from waste tire rubber | 8.45 | [45] |
carbons from β-cyclodextrin dehydration and from olive pomace activation | 0.95–1.68 | [46] |
Cotton cellulose | 11.3 | [47] |
Alginate gel beads | 9.86 | [48] |
F-g-GMA-NMDG | 11.44 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, D.; Jiang, H.; Luo, Z.; Geng, W.; Zhu, J. Preparation and Adsorption Performance of Boron Adsorbents Derived from Modified Waste Feathers. Polymers 2024, 16, 1365. https://doi.org/10.3390/polym16101365
Li D, Jiang H, Luo Z, Geng W, Zhu J. Preparation and Adsorption Performance of Boron Adsorbents Derived from Modified Waste Feathers. Polymers. 2024; 16(10):1365. https://doi.org/10.3390/polym16101365
Chicago/Turabian StyleLi, Dongxing, Hui Jiang, Zhengwei Luo, Wenhua Geng, and Jianliang Zhu. 2024. "Preparation and Adsorption Performance of Boron Adsorbents Derived from Modified Waste Feathers" Polymers 16, no. 10: 1365. https://doi.org/10.3390/polym16101365
APA StyleLi, D., Jiang, H., Luo, Z., Geng, W., & Zhu, J. (2024). Preparation and Adsorption Performance of Boron Adsorbents Derived from Modified Waste Feathers. Polymers, 16(10), 1365. https://doi.org/10.3390/polym16101365