Synthesis of Room Temperature Curable Polymer Binder Mixed with Polymethyl Methacrylate and Urethane Acrylate for High-Strength and Improved Transparency
Abstract
:1. Introduction
2. Material and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Kozbial, A.; Guan, W.; Li, L. Manipulating the molecular conformation of a nanometer-thick environmentally friendly coating to control the surface energy. J. Mater. Chem. A Mater. 2017, 5, 9752–9759. [Google Scholar] [CrossRef]
- Zheng, Q.; Xu, C.; Jiang, Z.; Zhu, M.; Chen, C.; Fu, F. Smart Actuators Based on External Stimulus Response. Front. Chem. 2021, 9, 650358. [Google Scholar] [CrossRef] [PubMed]
- Mrinalini, M.; Prasanthkumar, S. Recent Advances on Stimuli-Responsive Smart Materials and their Applications. ChemPlusChem. 2019, 84, 1103–1121. [Google Scholar] [CrossRef] [PubMed]
- Ramakrishnan, T.; Kumar, S.S.; Chelladurai, S.J.S.; Gnanasekaran, S.; Sivananthan, S.; Geetha, N.K.; Arthanari, R.; Assefa, G.B. Recent Developments in Stimuli Responsive Smart Materials and Applications: An Overview. J. Nanomater. 2022, 2022, 4031059. [Google Scholar] [CrossRef]
- Yan, D.; Wang, Z.; Zhang, Z. Stimuli-Responsive Crystalline Smart Materials: From Rational Design and Fabrication to Applications. Acc. Chem. Res. 2022, 55, 1047–1058. [Google Scholar] [CrossRef]
- Kreye, O.; Mutlu, H.; Meier, M.A.R. Sustainable routes to polyurethane precursors. Green Chem. 2013, 15, 1431–1455. [Google Scholar] [CrossRef]
- Yamago, S.; Yahata, Y.; Nakanishi, K.; Konishi, S.; Kayahara, E.; Nomura, A.; Goto, A.; Tsujii, Y. Synthesis of concentrated polymer brushes via surface-initiated organotellurium mediated living radical polymerization. Macromolecules 2013, 46, 6777–6785. [Google Scholar] [CrossRef]
- Treat, N.J.; Fors, B.P.; Kramer, J.W.; Christianson, M.; Chiu, C.; Read De Alaniz, J.; Hawker, C.J. Controlled radical polymerization of acrylates regulated by visible light. ACS Macro Lett. 2014, 3, 580–584. [Google Scholar] [CrossRef]
- Wang, K.; Lu, Z.; Zou, Y.; Zhu, Y.; Yu, J. Preparation and Performance Characterization of an Active Luminous Coating for Asphalt Pavement Marking. Coatings 2023, 13, 1108. [Google Scholar] [CrossRef]
- Bi, Y.; Pei, J.; Chen, Z.; Zhang, L.; Li, R.; Hu, D. Preparation and characterization of luminescent road-marking paint. Int. J. Pavement Res. Technol. 2020, 14, 252–258. [Google Scholar] [CrossRef]
- Nance, J.; Sparks, T.D. From streetlights to phosphors: A review on the visibility of roadway marking. Prog. Org. Coat. 2020, 148, 105749. [Google Scholar] [CrossRef]
- Yoon, T.H.; Lee, Y.K.; Lim, B.S.; Kim, C.W. Degree of polymerization of resin composites by different light sources. J. Oral Rehabil. 2002, 29, 1165–1173. [Google Scholar] [CrossRef] [PubMed]
- Arikawa, H.; Takahashi, H.; Kanie, T.; Ban, S. Effect of various visible light photoinitiators on the polymerization and color of light-activated resins. Dent. Mater. J. 2009, 28, 454–460. [Google Scholar] [CrossRef] [PubMed]
- Son, S.W.; Yeon, J.H. Mechanical properties of acrylic polymer concrete containing methacrylic acid as an additive. Constr. Build. Mater. 2012, 37, 669–679. [Google Scholar] [CrossRef]
- Asopa, V.; Suresh, S.; Khandelwal, M.; Sharma, V.; Asopa, S.S.; Kaira, L.S. A comparative evaluation of properties of zirconia reinforced high impact acrylic resin with that of high impact acrylic resin. Saudi J. Dent. Res. 2015, 6, 146–151. [Google Scholar] [CrossRef]
- Hadizadeh, E.; Pazokifard, S.; Mirabedini, S.M.; Ashrafian, H. Optimizing practical properties of MMA-based cold plastic road marking paints using mixture experimental design. Prog. Org. Coat. 2020, 147, 105784. [Google Scholar] [CrossRef]
- Fatemi, S.; Varkani, M.K.; Ranjbar, Z.; Bastani, S. Optimization of the water-based road-marking paint by experimental design, mixture method. Prog. Org. Coat. 2006, 55, 337–344. [Google Scholar] [CrossRef]
- Mirabedini, S.M.; Zareanshahreki, F.; Mannari, V. Enhancing thermoplastic road-marking paints performance using sustainable rosin ester. Prog. Org. Coat. 2020, 139, 105454. [Google Scholar] [CrossRef]
- Bae, J.B.; Won, J.C.; Lim, W.B.; Lee, J.H.; Min, J.G.; Kim, S.W.; Kim, J.H.; Huh, P.H. Highly Flexible and Photo-Activating Acryl-Polyurethane for 3D Steric Architectures. Polymers 2021, 13, 844–853. [Google Scholar] [CrossRef]
- Park, H.W.; Seo, H.S.; Kwon, K.; Lee, J.H. Enhanced Heat Resistance of Acrylic Pressure-Sensitive Adhesive by Incorporating Silicone Blocks Using Silicone-Based Macro-Azo-Initiator. Polymers 2020, 12, 2410–2414. [Google Scholar] [CrossRef]
- Gago, I.; Rio, M.D.; Leon, G.; Miguel, B. Urethane-Acrylate/Aramid Nanocomposites Based on Graphenic Materials. A Comparative Study of Their Mechanical Properties. Polymers 2020, 12, 2388–2397. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Lee, S.Y.; Lin, Y.M. Synthesis and Formulation of PCL-Based Urethane Acrylates for DLP 3D Printers. Polymers 2020, 12, 1500–1516. [Google Scholar] [CrossRef] [PubMed]
- Teo, K.T.; Hassan, A.; Gan, S.N. UV-Curable Urethane Acrylate Resin from Palm Fatty Acid Distillate. Polymers 2018, 10, 1374–1389. [Google Scholar] [CrossRef] [PubMed]
- Nasir, K.M.; Halim, N.A.; Tajuddin, H.A.; Arof, A.K.; Abidin, Z.H.Z. The effect of PMMA on physical properties of dammar for coating paint application. Pigment Resin. Technol. 2013, 42, 137–145. [Google Scholar] [CrossRef]
- Grilli, A.; Bocci, M.; Virgili, A.; Conti, C. Mechanical Characterization and Chemical Identification of Clear Binders for Road Surface Courses. Mater. Sci. Eng. A 2020, 9, 4930646. [Google Scholar] [CrossRef]
- Yildirim, Y. Polymer modified asphalt binders. Constr. Build. Mater. 2007, 21, 66–72. [Google Scholar] [CrossRef]
- Airey, G.D.; Mohammed, M.H.; Fichter, C. Rheological characteristics of synthetic road binders. Fuel 2008, 87, 1763–1775. [Google Scholar] [CrossRef]
- Kamal, I.; Bas, Y. Materials and technologies in road pavements—An overview. Mater. Today Proc. 2021, 42, 2660–2667. [Google Scholar] [CrossRef]
- Schneider, M.; Michels, R.; Pipich, V.; Goerigk, G.; Sauer, V.; Heim, H.P.; Huber, K. Morphology of Blends with Crosslinked PMMA Microgels and Linear PMMA Chains. Macromolecules 2013, 46, 9091–9103. [Google Scholar] [CrossRef]
- Rudtsch, S.; Hammerschmidt, U. Intercomparison of Measurements of the Thermophysical Properties of Polymethyl Methacrylate. Int. J. Thermophys. 2004, 25, 1475–1482. [Google Scholar] [CrossRef]
- Fang, Z.; Gao, L.; Zhou, L.; Zheng, Z.; Guo, B.; Zhang, C. Synthesis and Characterization of Excellent TransparencyPoly(urethane-methacrylate). J. Appl. Polym. Sci. 2009, 111, 724–729. [Google Scholar] [CrossRef]
- Ali, U.; Karim, K.J.A.; Buang, N.A. A Review of the Properties and Applications of Poly (Methyl Methacrylate) (PMMA). Macromolecules 2015, 55, 678–705. [Google Scholar] [CrossRef]
- Maurya, S.D.; Kurmvanshi, S.K.; Mohanty, S.; Nayak, S.K. A Review on Acrylate-Terminated Urethane Oligomers and Polymers: Synthesis and Applications. Polym. Plast. Technol. Eng. 2018, 57, 625–656. [Google Scholar] [CrossRef]
- Swiderski, K.W.; Khudyakov, I.V. Synthesis and Properties of Urethane Acrylate Oligomers: Direct versus Reverse Addition. Ind. Eng. Chem. Res. 2004, 43, 6281–6284. [Google Scholar] [CrossRef]
- Hua, F.J.; Hu, C.P. Morphology and mechanical properties of urethane acrylate resin networks. J. Appl. Polym. Sci. 2000, 77, 1532–1537. [Google Scholar] [CrossRef]
- Liu, B.; Nie, J.; He, Y. From rosin to high adhesive polyurethane acrylate: Synthesis and properties. Int. J. Adhes. Adhes. 2016, 66, 99–103. [Google Scholar] [CrossRef]
- Oprea, S.; Vlad, S.; Stanciu, A. Poly(urethane-methacrylates). Synthesis and characterization. Polymer 2001, 42, 7257–7266. [Google Scholar] [CrossRef]
- Sultan, M.; Atta, S.; Bhatti, H.N.; Islam, A.; Jamil, A.; Bibi, I.; Gull, N. Synthesis, Characterization, and Application Studies of Polyurethane Acrylate Thermoset Coatings: Effect of Hard Segment. Polym. Plast. Technol. Eng. 2017, 56, 1608–1618. [Google Scholar] [CrossRef]
- Kim, B.K.; Lee, K.H.; Kim, H.D. Preparation and properties of UV-curable polyurethane acrylates. J. Appl. Polym. Sci. 1996, 60, 799–805. [Google Scholar] [CrossRef]
- Studer, K.; Nguyen, P.T.; Decker, C.; Beck, E.; Schwalm, R. Redox and photoinitiated crosslinking polymerization. Prog. Org. Coat. 2005, 53, 126–133. [Google Scholar] [CrossRef]
- Zhang, S.; Shi, Z.; Xu, H.; Ma, X.; Yin, J.; Tian, M. Revisiting the mechanism of redox polymerization to build the hydrogel with excellent properties using a novel initiator. Soft Matter. 2016, 12, 2575–2582. [Google Scholar] [CrossRef]
- Fu, J.; Yu, H.; Wang, L.; Liang, R.; Zhang, C.; Jin, M. Preparation and properties of UV-curable polyurethane acrylate/SiO2 composite hard coatings. Prog. Org. Coat. 2021, 153, 106121. [Google Scholar] [CrossRef]
- Nowak, M.; Bednarczyk, P.; Mozelewska, K.; Czech, Z. Synthesis and Characterization of Urethane Acrylate Resin Based on 1,3-Propanediol for Coating Applications. Coatings 2022, 12, 1860. [Google Scholar] [CrossRef]
- Vinçotte, A.; Beauvoit, E.; Boyard, N.; Guilminot, E. Effect of solvent on PARALOID® B72 and B44 acrylic resins used as adhesives in conservation. Herit. Sci. 2019, 7, 42. [Google Scholar] [CrossRef]
- Basar, O.; Veliyath, V.P.; Tarak, F.; Sabet, E. A Systematic Study on Impact of Binder Formulation on Green Body Strength of Vat-Photopolymerisation 3D Printed Silica Ceramics Used in Investment Casting. Polymers 2023, 15, 3141–3158. [Google Scholar] [CrossRef]
- Tuan, T.S.R.; Aung, M.M.; Ahmad, A.; Rayung, M.; Su’ait, M.S.; Yusof, N.A.; Lae, K.Z.W. Enhancement of Plasticizing Effect on Bio-Based Polyurethane Acrylate Solid Polymer Electrolyte and Its Properties. Polymers 2018, 10, 1142–1159. [Google Scholar] [CrossRef]
- Xiang, H.; Wang, X.; Lin, G.; Xi, L.; Yang, Y.; Lei, D.; Dong, H.; Su, J.; Cui, Y.; Liu, X. Preparation, Characterization and Application of UV-Curable Flexible Hyperbranched Polyurethane Acrylate. Polymers 2017, 9, 552–563. [Google Scholar] [CrossRef]
- Chang, H.H.; Tseng, Y.T.; Huang, S.W.; Kuo, Y.F.; Yeh, C.L.; Wu, C.H.; Huang, Y.C.; Jeng, R.J.; Lin, J.J.; Lin, C.P. Evaluation of Carbon Dioxide-Based Urethane Acrylate Composites for Sealers of Root Canal Obturation. Polymers 2020, 12, 482–500. [Google Scholar] [CrossRef]
- Ghanali, S.K.; Adrus, N.; Majid, R.; Ali, F.; Jamaluddin, J. UV-LED as a New Emerging Tool for Curable Polyurethane Acrylate Hydrophobic Coating. Polymers 2021, 13, 487–497. [Google Scholar] [CrossRef]
- Zhen, Y.; Mingguang, H.; Han, C. Synthesis and properties of hydroxy acrylic resin with high solid content. AIP Conf. Proc. 2017, 1890. [Google Scholar] [CrossRef]
- Brown, R.A.; Coogan, R.G.; Gortier, D.G.; Reeve, M.S.; Rega, J.D. Comparing and contrasting the properties of urethane/acrylic hybrids with those of corresponding blends of urethane dispersions and acrylic emulsion. Prog. Org. Coat. 2005, 52, 73–84. [Google Scholar] [CrossRef]
- Pieper, R.J.; Ekin, A.; Webster, D.C.; Casse, F.; Callow, J.A.; Callow, M.E. Combinatorial approach to study the effect of acrylic polyol composition on the properties of crosslinked siloxane-polyurethane fouling-release coatings. J. Coat. Technol. 2007, 4, 453–461. [Google Scholar] [CrossRef]
- Yao, T.; Han, S.; Gong, X.; Zhang, J.; Chang, X.; Zhang, Z. Performance evaluation of a polyurethane-urea binder for asphalt pavement groove-filling. Constr. Build. Mater. 2022, 315, 125734. [Google Scholar] [CrossRef]
- Mousaa, I.M.; Ali, N.M.; Attia, M.K. Preparation of high performance coating films based on urethane acrylate oligomer and liquid silicone rubber for corrosion protection of mild steel using electron beam radiation. Prog. Org. Coat. 2021, 155, 106222. [Google Scholar] [CrossRef]
- Zhang, J.; Li, X.; Shi, X.; Hua, M.; Zhou, X.; Wang, X. Synthesis of core–shell acrylic–polyurethane hybrid latex as binder of aqueous pigment inks for digital inkjet printing. Prog. Nat. Sci. 2021, 22, 71–78. [Google Scholar] [CrossRef]
- Zheng, W.; Wang, H.; Chen, Y.; Ji, J.; You, Z.; Zhang, Y. A review on compatibility between crumb rubber and asphalt binder. Constr. Build. Mater. 2021, 297, 123820. [Google Scholar] [CrossRef]
- Verdet, M.; Salenikovich, A.; Cointe, A.; Coureau, J.L.; Galimeard, P.; Toro, W.M.; Blanchet, P.B.; Delisee, C. Mechanical Performance of Polyurethane and Epoxy Adhesives in Connections with Glued-in Rods at Elevated Temperatures. Constr. Build. Mater. 2016, 11, 8200–8214. [Google Scholar] [CrossRef]
- Lim, W.B.; Bae, J.H.; Lee, G.H.; Lee, J.H.; Min, J.G.; Huh, P.H. Transparency- and Repellency-Enhanced Acrylic-Based Binder for Stimuli-Responsive Road Paint Safety Improvement Technology. Materials 2021, 14, 6829. [Google Scholar] [CrossRef]
- Saleeva, L.; Kashapov, R.; Shakirzyanov, F.; Kuznetsov, E.; Kashapov, L.; Smirnova, V.; Kashapov, N.; Saleeva, G.; Sachenkov, O.; Saleev, R. The Effect of Surface Processing on the Shear Strength of Cobalt-Chromium Dental Alloy and Ceramics. Materials 2022, 15, 2987. [Google Scholar] [CrossRef]
- Laureto, J.; Pearce, J. Anisotropic mechanical property variance between ASTM D638-14 type i and type iv fused filament fabricated specimens. Polym. Test. 2018, 68, 294–301. [Google Scholar] [CrossRef]
- Monserrat, B.A.; Lluma, J.; Mesa, R.J.; Rodriguez, J.T. Study of the Influence of the Manufacturing Parameters on Tensile Properties of Thermoplastic Elastomers. Polymers 2022, 14, 576. [Google Scholar] [CrossRef] [PubMed]
Functionality | Components | Content (wt%) | ||||
---|---|---|---|---|---|---|
0 wt% | 5 wt% | 10 wt% | 15 wt% | 20 wt% | ||
Base acrylate | PMMA | 89 | 84 | 79 | 74 | 69 |
2-HEMA | 10 | 10 | 10 | 10 | 10 | |
Di-acrylate | URETHANE | 0 | 5 | 10 | 15 | 20 |
Catalyst | PTE | 1 | 1 | 1 | 1 | 1 |
Initiator | BPO | 2 | 2 | 2 | 1 | 2 |
Mn | Mw | PDI | |
---|---|---|---|
PPG-UA | 7780 | 15,152 | 1.95 |
PEG-UA | 7053 | 12,904 | 1.90 |
PTMG-UA | 7874 | 15,434 | 2.00 |
(MPa) | Ref. | UA 5 wt% | UA 10 wt% | UA 15 wt% | UA 20 wt% |
---|---|---|---|---|---|
PMMA/ | 2.5 | 14.6 | 11.1 | 10.5 | 9.4 |
PPG-UA | |||||
PMMA/ | 2.5 | 6.6 | 7.7 | 5.5 | 5.2 |
PEG-UA | |||||
PMMA/ | 2.5 | 3.6 | 5.3 | 3.5 | 3.3 |
PTMG-UA |
Transmittance (%) | Ref. | UA 5 wt% | UA 10 wt% | UA 15 wt% | UA 20 wt% |
---|---|---|---|---|---|
PMMA/ | 88.7 | 89.5 | 87.3 | 82.7 | 80.6 |
PPG-UA | |||||
PMMA/ | 88.7 | 86.2 | 79.3 | 63.1 | 55.5 |
PEG-UA | |||||
PMMA/ | 88.7 | 88.5 | 87.6 | 83.8 | 81.8 |
PTMG-UA |
(MPa) | Ref. | UA 5 wt% | UA 10 wt% | UA 15 wt% | UA 20 wt% |
---|---|---|---|---|---|
PMMA/ | 7.1 | 9.7 | 9.2 | 8.5 | 7.1 |
PPG-UA | |||||
PMMA/ | 7.1 | 2.8 | 3.5 | 3.4 | 3.1 |
PEG-UA | |||||
PMMA/ | 7.1 | 2.9 | 4.3 | 4.2 | 3.5 |
PTMG-UA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.-H.; Lim, W.-B.; Min, J.-G.; Lee, J.-R.; Kim, J.-W.; Bae, J.-H.; Huh, P.-H. Synthesis of Room Temperature Curable Polymer Binder Mixed with Polymethyl Methacrylate and Urethane Acrylate for High-Strength and Improved Transparency. Polymers 2024, 16, 1418. https://doi.org/10.3390/polym16101418
Lee J-H, Lim W-B, Min J-G, Lee J-R, Kim J-W, Bae J-H, Huh P-H. Synthesis of Room Temperature Curable Polymer Binder Mixed with Polymethyl Methacrylate and Urethane Acrylate for High-Strength and Improved Transparency. Polymers. 2024; 16(10):1418. https://doi.org/10.3390/polym16101418
Chicago/Turabian StyleLee, Ju-Hong, Won-Bin Lim, Jin-Gyu Min, Jae-Ryong Lee, Ju-Won Kim, Ji-Hong Bae, and Pil-Ho Huh. 2024. "Synthesis of Room Temperature Curable Polymer Binder Mixed with Polymethyl Methacrylate and Urethane Acrylate for High-Strength and Improved Transparency" Polymers 16, no. 10: 1418. https://doi.org/10.3390/polym16101418
APA StyleLee, J. -H., Lim, W. -B., Min, J. -G., Lee, J. -R., Kim, J. -W., Bae, J. -H., & Huh, P. -H. (2024). Synthesis of Room Temperature Curable Polymer Binder Mixed with Polymethyl Methacrylate and Urethane Acrylate for High-Strength and Improved Transparency. Polymers, 16(10), 1418. https://doi.org/10.3390/polym16101418