Bilayer C60 Polymer/h-BN Heterostructures: A DFT Study of Electronic and Optic Properties
Abstract
:1. Introduction
2. Computational Methods
3. Results and Discussion
3.1. Geometric Structures and Properties of Individual Units
3.2. Geometric Structures and Properties of Heterostructures
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Osawa, E. Superaromaticity. Kagaku. Chem. Abstr. 1971, 74, 75698v. [Google Scholar]
- Bochvar, D.A.; Galpern, E.G. On hypothetical systems: Carbon dodecahedron, S-icosahedron and carbon-S-icosahedron. Dokl. Akad. Nauk SSSR 1973, 209, 610. [Google Scholar]
- Kroto, H.W.; Heath, J.R.; O’Brien, S.C.; Curl, R.F.; Smalley, R.E. C60: Buckminsterfullerene. Nature 1985, 318, 162–163. [Google Scholar] [CrossRef]
- Chang, X.; Xu, Y.; Delius, M.V. Recent advances in supramolecular fullerene chemistry. Chem. Soc. Rev. 2024, 53, 47–83. [Google Scholar] [CrossRef] [PubMed]
- Hou, L.; Cui, X.; Guan, B.; Wang, S.; Li, R.; Liu, Y.; Zhu, D.; Zheng, J. Synthesis of a monolayer fullerene network. Nature 2022, 606, 507–510. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Xu, J.; Peng, B.; Qin, G.; Su, G. Anisotropic optical, mechanical, and thermoelectric properties of two-dimensional fullerene networks. J. Phys. Chem. Lett. 2022, 13, 11622. [Google Scholar] [CrossRef] [PubMed]
- Tong, Y.; Liu, H.; Dai, S.; Jiang, D. Monolayer fullerene membranes for hydrogen separation. Nano Lett. 2023, 23, 7470. [Google Scholar] [CrossRef] [PubMed]
- Yu, T.; Li, J.; Han, M.; Zhang, Y.; Li, H.; Peng, Q.; Tang, H.-K. Enhancing the Mechanical Stability of 2D Fullerene with a Graphene Substrate and Encapsulation. Nanomaterials 2023, 13, 1936. [Google Scholar] [CrossRef] [PubMed]
- Mortazavi, B. Structural, electronic, thermal and mechanical properties of C60-based fullerene two-dimensional networks explored by first-principles and machine learning. Carbon 2023, 213, 118293. [Google Scholar] [CrossRef]
- Rao, A.M.; Eklund, P.C.; Hodeau, J.-L.; Marques, L.; Nunez-Regueiro, M. Infrared and Raman studies of pressure-polymerized C60s. Phys. Rev. B 1997, 55, 4766–4773. [Google Scholar] [CrossRef]
- Tanaka, M.; Yamanaka, S. Vapor-Phase Growth and Structural Characterization of Single Crystals of Magnesium Doped Two-Dimensional Fullerene Polymer Mg2C60. Cryst. Growth Des. 2018, 18, 3877–3882. [Google Scholar] [CrossRef]
- Ishikawa, M.; Kamiya, S.; Yoshimoto, S.; Suzuki, M.; Kuwahara, D.; Sasaki, N.; Miura, K. Nanocomposite Materials of Alternately Stacked C60 Monolayer and Graphene. J. Nanomater. 2010, 2010, 891514. [Google Scholar] [CrossRef]
- Mirzayev, R.; Mustonen, K.; Monazam, M.R.A.; Mittelberger, A.; Pennycook, T.J.; Mangler, C.; Susi, T.; Kotakoski, J.; Meyer, J.C. Buckyball Sandwiches. Sci. Adv. 2017, 3, e1700176. [Google Scholar] [CrossRef] [PubMed]
- Artyukh, A.A.; Chernozatonskii, L.A. Simulation of the Formation and Mechanical Properties of Layered Structures with Polymerized Fullerene-Graphene Components. JETP Lett. 2020, 111, 109–115. [Google Scholar] [CrossRef]
- Onoe, J.; Noda, Y.; Wang, Q.; Harano, K.; Nakaya, M.; Nakayama, T. Structures, fundamental properties, and potential applications of low-dimensional C60 polymers and other nanocarbons: A review. Sci. Technol. Adv. Mater. 2024, 2346068. [Google Scholar] [CrossRef] [PubMed]
- Smidstrup, S.; Markussen, T.; Vancraeyveld, P.; Wellendorff, J.; Schneider, J.; Gunst, T.; Verstichel, B.; Stradi, D.; Khomyakov, P.A.; Vej-Hansen, U.G.; et al. QuantumATK: An integrated platform of electronic and atomic-scale modelling tools. J. Phys. Cond. Matter 2019, 32, 015901. [Google Scholar] [CrossRef] [PubMed]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865. [Google Scholar] [CrossRef] [PubMed]
- Heyd, J.; Scuseria, G.E.; Ernzerhof, M. Hybrid Functionals Based on a Screened Coulomb Potential. J. Chem. Phys. 2003, 118, 8207–8215. [Google Scholar] [CrossRef]
- Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799. [Google Scholar] [CrossRef] [PubMed]
- Kochaev, A.I. Hypothetical planar and nanotubular crystalline structures with five interatomic bonds of Kepler nets type. AIP Adv. 2017, 7, 025202. [Google Scholar] [CrossRef]
- Soriano, M.; Palacios, J.J. Theory of projections with nonorthogonal basis sets: Partitioning techniques and effective Hamiltonians. Phys. Rev. B 2014, 90, 075128. [Google Scholar] [CrossRef]
- Kochaev, A.; Maslov, M.; Katin, K.; Efimov, V.; Efimova, I. Stabilization of porous borophene-graphene vertical heterostructure using unilateral hydrogenation. Mater. Today Nano 2022, 20, 100247. [Google Scholar] [CrossRef]
- Kochaev, A.; Maslov, M.; Katin, K.; Singh, S. Covalent and van der Waals interactions in a vertical heterostructure composed of boron and carbon. Phys. Rev. B 2022, 105, 235444. [Google Scholar] [CrossRef]
- Harris, P.J.F. Fullerene Polymers: A Brief Review. J. Carbon Res. 2020, 6, 71. [Google Scholar] [CrossRef]
- Campanera, J.M.; Savini, G.; Suarez-Martinez, I.; Heggie, M.I. Density functional Calculations on the Intricacies of Moiré Patterns on Graphite. Phys. Rev. B 2007, 75, 235449. [Google Scholar]
- Demin, V.A.; Chernozatonskii, L.A. Diamane-like Films Based on Twisted G/BN Bilayers: DFT Modelling of Atomic Structures and Electronic Properties. Nanomaterials 2023, 13, 841. [Google Scholar] [CrossRef] [PubMed]
- Meng, Y.; Feng, J.; Han, S.; Xu, Z.; Mao, W.; Zhang, T. Photonic van der Waals integration from 2D materials to 3D nanomembranes. Nat. Rev. Mater. 2023, 8, 498–517. [Google Scholar] [CrossRef]
- Nie, X.; Wu, X.; Wang, Y.; Ban, S.; Lei, Z.; Yi, J.; Liu, Y.; Liu, Y. Surface acoustic wave induced phenomena in two-dimensional materials. Nanoscale Horiz. 2023, 8, 158–175. [Google Scholar] [CrossRef] [PubMed]
Bond Type | h-BN | HPC60 Fullerene | qHPC60 Fullerene | C60 (HPC60)/ h-BN | C60 (qHPC60)/ h-BN |
---|---|---|---|---|---|
B–N | 1.45 | 1.46 | 1.48 | ||
C–C | 1.36 (A) | 1.41 (A) | 1.36 | 1.41 | |
1.40 (B) | 1.45 (B) | 1.39 | 1.45 | ||
1.52 (C) | 1.48 (C) | 1.51 | 1.50 | ||
1.59 (D) | 1.59 (D) | 1.58 | 1.55 |
h-BN | HPC60 Fullerene | qHPC60 Fullerene | C60 (HPC60)/ h-BN | C60 (qHPC60)/ h-BN | |
---|---|---|---|---|---|
d, Å | 2.50 | 9.21 | 15.8; 9.17 | 9.13 | 15.4; 8.91 |
Eb, eV | −1.372 | −1.281 | −1.069 | −0.529 | |
Eg, eV | 6.08 | 1.48 | 1.48 | 1.47 | 1.42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chernozatonskii, L.A.; Kochaev, A.I. Bilayer C60 Polymer/h-BN Heterostructures: A DFT Study of Electronic and Optic Properties. Polymers 2024, 16, 1580. https://doi.org/10.3390/polym16111580
Chernozatonskii LA, Kochaev AI. Bilayer C60 Polymer/h-BN Heterostructures: A DFT Study of Electronic and Optic Properties. Polymers. 2024; 16(11):1580. https://doi.org/10.3390/polym16111580
Chicago/Turabian StyleChernozatonskii, Leonid A., and Aleksey I. Kochaev. 2024. "Bilayer C60 Polymer/h-BN Heterostructures: A DFT Study of Electronic and Optic Properties" Polymers 16, no. 11: 1580. https://doi.org/10.3390/polym16111580
APA StyleChernozatonskii, L. A., & Kochaev, A. I. (2024). Bilayer C60 Polymer/h-BN Heterostructures: A DFT Study of Electronic and Optic Properties. Polymers, 16(11), 1580. https://doi.org/10.3390/polym16111580