Characterization and Implementation of Cocoa Pod Husk as a Reinforcing Agent to Obtain Thermoplastic Starches and Bio-Based Composite Materials
Abstract
:1. Introduction
2. Materials
3. Experimental Procedure
3.1. Obtaining Plantain Starch
3.2. Plantain Peel Short Fiber (PPSF)
3.3. Obtaining Cocoa Husk Flours
3.4. Obtaining Thermoplastic Starch (TPS)
3.5. Development of a Bio-Based Composite Material from Plantain TPS and FFCH Reinforced with PPSF
3.6. Thermal, Physicochemical, and Structural Characterization of the Cocoa Pod Husk Flour
3.6.1. Cellulose, Hemicellulose, and Lignin Content
3.6.2. Particle Size
3.6.3. Scanning Electron Microscopy (SEM)
3.6.4. Proximal Analysis
3.6.5. Differential Scanning Calorimetry (DSC)
3.6.6. Thermogravimetric Analysis (TGA)
3.6.7. Fourier-Transform Infrared Spectrometry (FT-IR)
3.6.8. X-ray Diffraction (XRD)
3.6.9. Tensile Test
4. Results and Discussions
4.1. Obtaining Cocoa Husk Flour
4.1.1. Thermal, Physicochemical, and Structural Characterization of Cocoa Pod Husk Flour
Cellulose, Hemicellulose, and Lignin Content
Particle Size
Scanning Electron Microscopy (SEM)
Proximal Analysis
Differential Scanning Calorimetry (DSC)
Thermogravimetric Analysis (TGA)
Fourier-Transform Infrared Spectrometry (FTIR)
X-ray Diffraction (XRD)
4.2. Production of TPS Based on Plantain and FFCH
4.2.1. Influence of FFCH on TPS and Bio-Based Composite Material
Scanning Electron Microscopy (SEM)
X-ray Diffraction (XRD)
Tensile Test
Thermogravimetric Analysis (TGA)
Differential Scanning Calorimetry (DSC)
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jaimes, Y.L.V.; Guerrero, J.S.R.; Castrillo, L.C.L. Caracterización fisicoquímica, microbiológica y funcional de harina de cáscara de cacao (Theobroma cacao L.) variedad CCN-51. Cuad. Act. 2017, 9, 65–75. [Google Scholar]
- López, A.S.; Ferreira, H.I.S.; Llamosas, A.; Romeu, A.P. Present status of cacao by-products utilization in Brazil. In Proceedings of the International Cocoa Research Conference, Lome, Togo, 12–18 February 1985. [Google Scholar]
- Adjin-Tetteh, M.; Asiedu, N.; Dodoo-Arhin, D.; Karam, A.; Amaniampong, P.N. Thermochemical conversion and characterization of cocoa pod husks a potential agricultural waste from Ghana. Ind. Crops Prod. 2018, 119, 304–312. [Google Scholar] [CrossRef]
- Campos-Vega, R.; Nieto-Figueroa, K.H.; Oomah, B.D. Cocoa (Theobroma cacao L.) pod husk: Renewable source of bioactive compounds. Trends Food Sci. Technol. 2018, 81, 172–184. [Google Scholar] [CrossRef]
- Herrera Rengifo, J.D.; Villa Prieto, L.; Olaya Cabrera, A.C.; García Alzate, L.S. Extracción de almidón de cáscara de cacao Theobroma cacao L. como alternativa de bioprospección. Rev. Ion 2020, 33, 25–34. [Google Scholar]
- Dai, Y.; Sun, Q.; Wang, W.; Lu, L.; Liu, M.; Li, J.; Yang, S.; Sun, Y.; Zhang, K.; Xu, J.; et al. Utilizations of agricultural waste as adsorbent for the removal of contaminants: A review. Chemosphere 2018, 211, 235–253. [Google Scholar] [CrossRef]
- Priyangini, F.; Walde, S.G.; Chidambaram, R. Extraction optimization of pectin from cocoa pod husks (Theobroma cacao L.) with ascorbic acid using response surface methodology. Carbohydr. Polym. 2018, 202, 497–503. [Google Scholar] [CrossRef]
- Meza-Sepulveda, D.C.; Hernandez-Urrea, C.; Quintero-Saavedra, J.I. Physicochemical characterization of the pod husk of Theobroma cacao L. of clones CCN51, FEAR5, and FSV41 and its agroindustrial application. Heliyon 2024, 10, E28761. [Google Scholar] [CrossRef]
- Bickel Haase, T.; Klis, V.; Hammer, A.K.; Pinto Lopez, C.; Verheyen, C.; Naumann-Gola, S.; Zorn, H. Fermentation of cocoa pod husks with Pleurotus salmoneo-stramineus for food applications. Food Sci. Nutr. 2024, 12, 2551–2566. [Google Scholar] [CrossRef]
- Brodin, M.; Vallejos, M.; Opedal, M.T.; Area, M.C.; Chinga-Carrasco, G. Lignocellulosics as sustainable resources for production of bioplastics—A review. J. Clean. Prod. 2017, 162, 646–664. [Google Scholar] [CrossRef]
- Da Róz, A.L.; Veiga-Santos, P.; Ferreira, A.M.; Antunes, T.C.R.; Leite, F.; Yamaji, F.M.; Carvalho, A.J.F. Water susceptibility and mechanical properties of thermoplastic starch–pectin blends reactively extruded with edible citric acid. Mater. Res. 2016, 19, 138–142. [Google Scholar] [CrossRef]
- De Oliveira Begali, D.; Ferreira, L.F.; De Oliveira, A.C.S.; Borges, S.V.; De Sena Neto, A.R.; De Oliveira, C.R.; Yoshida, M.I.; Sarantopoulos, C.I.G.L. Effect of the incorporation of lignin microparticles on the properties of the thermoplastic starch/pectin blend obtained by extrusion. Int. J. Biol. Macromol. 2021, 180, 262–271. [Google Scholar] [CrossRef]
- Elizabeth, J.; Marcelo, A.; Alejandra, M. Starch-Pectin Films Obtained by Extrusion And Compression Molding. J. Multidiscip. Eng. Sci. Technol. 2019, 6, 10175–10183. [Google Scholar]
- Mellinas, C.; Ramos, M.; Jiménez, A.; Garrigós, M.C. Recent trends in the use of pectin from agro-waste residues as a natural-based biopolymer for food packaging applications. Materials 2020, 13, 673. [Google Scholar] [CrossRef]
- Mina, J. Effect of the incorporation of polycaprolactone (PCL) on the retrogradation of binary blends with cassava thermoplastic starch (TPS). Polymers 2021, 13, 38. [Google Scholar] [CrossRef]
- Barata, D.; Dias, P.; Wieringa, P.; van Blitterswijk, C.; Habibovic, P. Cell-instructive high-resolution micropatterned polylactic acid surfaces. Biofabrication 2017, 9, 035004. [Google Scholar] [CrossRef]
- Technical Association for the Pulp and Paper Industries. Acid-Insoluble Lignin in Wood and Pulp. TAPPI Test Method T 222om-88; TAPPI Press: Atlanta, GA, USA, 1998; 3p. [Google Scholar]
- Technical Association for the Pulp and Paper Industries. Ash in Wood, Pulp, Paper and Paperboard: Combustion at 525 °C. TAPPI Test Method T 211om-85; TAPPI Press: Atlanta, GA, USA, 1985. [Google Scholar]
- Rodríguez, L. Elaboración de un Material Biocompuesto a Partir de la Fibra de Plátano. Master’s Thesis, Universidad Nacional de Colombia, Manizales, Colombia, 2014. [Google Scholar]
- Technical Association for the Pulp and Paper Industries. Alpha-, Beta- and Gamma-Cellulose in Pulp. TAPPI Test Method T 203cm-99; TAPPI Press: Atlanta, GA, USA, 2009. [Google Scholar]
- Javier-Astete, R. Validación de la Metodología para la Determinación de Lignina, Celulosa y Hemicelulosa por Espectroscopia Infrarroja en Árboles. Bachelor’s Thesis, Universidad Nacional Agraria La Molina, Lima, Perú, 2021. [Google Scholar]
- ISO 13320-1:2014; Particle Size Analysis-Laser Diffraction Methods. International Organization for Standardization ISO: Geneva, Switzerland, 2020.
- Montoya-Bohórquez, J.C. Impacto de las Propiedades Viscoelásticas y Estructurales en la Impresión 3D de Hidrocoloides de Almidón-Mango y Almidón-Arabinoxilanos. Master’s Thesis, Universidad de los Andes, Bogotá, Colombia, 2018. [Google Scholar]
- ISO 1871:2009; Food and Feed Products—General Guidelines for the Determination of Nitrogen by the Kjeldahl Method. International Organization for Standardization ISO: Geneva, Switzerland, 2021.
- ISO 2171:2010; Cereales, Legumbres y Subproductos. Determinación del Rendimiento de Cenizas por Incineración. International Organization for Standardization ISO: Geneva, Switzerland, 2023.
- Norma Técnica Colombiana NTC 529:2000; Cereales y Productos Cereales. Determinación del Contenido de Humedad. NTC: Bogotá, Colombia, 2000.
- Norma Técnica Colombiana NTC 668:1973; Alimentos y Materias Primas Determinación de los Contenidos de Grasa y Fibra Cruda. NTC: Bogotá, Colombia, 2002.
- Ferreira-Villadiego, J.; García-Echeverria, J.; Vidala, M.V.; Pasqualino, J.; Meza-Castellara, P.; Lambis-Miranda, H. Chemical Modification and Characterization of Starch Derived from Plantain (Musa paradisiaca) Peel Waste, as a Source of Biodegradable Material. Chem. Eng. Trans. 2018, 65, 763–768. [Google Scholar]
- ASTM E1252-98; Standard Practice for General Techniques for Obtaining Infrared Spectra for Qualitative Analysis. ASTM: West Conshohocken, PA, USA, 2017.
- Liu, H.; Yu, L.; Chen, L.; Li, L. Retrogradation of corn starch after thermal treatment at different temperatures. Carbohydr. Polym. 2007, 69, 756–762. [Google Scholar] [CrossRef]
- Nara, S.; Komiya, T. Studies on the relationship between water-satured state and crystallinity by the diffraction method for moistened potato starch. Starch-Stärke 1983, 35, 407–410. [Google Scholar] [CrossRef]
- ASTM D638-14; Standard Test Method for Tensile Properties of Plastics. ASTM: West Conshohocken, PA, USA, 2014.
- Herrera-Barrios, A.; Puello-Mendez, J.; Pasqualino, J.C.; Lambis-Miranda, H.A. Agro-Industrial Waste from Cocoa Pod Husk (Theobroma cacao L.), as a Potential Raw Material for Preparation of Cellulose Nanocrystals. Chem. Eng. Trans. 2022, 92, 205–210. [Google Scholar]
- Menon, V.; Rao, M. Trends in bioconversion of lignocellulose: Biofuels, platform chemicals & biorefinery concept. Prog. Energy Combust. Sci. 2012, 38, 522–550. [Google Scholar]
- Laurichesse, S.; Avérous, L. Chemical modification of lignins: Towards biobased polymers. Prog. Polym. Sci. 2014, 39, 1266–1290. [Google Scholar] [CrossRef]
- Bamba, M.; Assanvo, E.F.; Appiah Kouassi, E.K.; Soro, D.; Ouattara, L.Y.; Yao, K.B.; Drogui, A.P.; Tyagi, D.R. Preparation and characterization of cellulose triacetate from cocoa pod husk. Bioresources 2023, 18, 1684–1698. [Google Scholar] [CrossRef]
- Versino, F. Materiales Compuestos Biodegradables con Usos Agronómicos a Partir de Raíces Tuberosas. Ph.D. Thesis, Universidad Nacional de la Plata, La Plata, Argentina, 2017. [Google Scholar]
- Barrios Guzmán, A.J.; García Enríquez, S.; Manríquez-González, R.; Rivera Prado, J.; Lomelí Ramírez, M.G. Compósitos biodegradables elaborados a partir de almidón termoplástico y partículas de madera de fresno. Rev. Mex. Cienc. For. 2015, 6, 26–41. [Google Scholar]
- Peña-Rodríguez, G.; Ortega-Triana, L.N. Caracterización morfológica y estructural de polvos de cenizas volantes. Minería Y Mater. 2014, 14, 14–19. [Google Scholar] [CrossRef]
- Muñoz, L. Caracterización de Pectinas Industriales de Cítricos y su Aplicación como Recubrimientos de Fresas. Master’s Thesis, Instituto de Investigación en Ciencias de la Alimentación, Madrid, Spain, 2016. [Google Scholar]
- Šešlija, S.; Nešić, A.; Ružić, J.; Kalagasidis Krušić, M.; Veličković, S.; Avolio, R.; Santagata, G.; Malinconico, M. Edible blend films of pectin and poly(ethylene glycol): Preparation and physico-chemical evaluation. Food Hydrocoll. 2018, 77, 494–501. [Google Scholar] [CrossRef]
- Kiruthika, S.; Malathi, M.; Selvasekarapandian, S.; Tamilarasan, K.; Maheshwari, T. Conducting biopolymer electrolyte based on pectin with magnesium chloride salt for magnesium battery application. Polym. Bull. 2020, 77, 6299–6317. [Google Scholar] [CrossRef]
- Du, Y.; Jiang, X.; Lv, G.; Li, X.; Chi, Y.; Yan, J.; Liu, X.; Buekens, A. TG-pyrolysis and FTIR analysis of chocolate and biomass waste. J. Therm. Anal. Calorim. 2014, 117, 343–353. [Google Scholar] [CrossRef]
- Maache, M.; Bezazi, A.; Amroune, S.; Scarpa, F.; Dufresne, A. Characterization of a novel natural cellulosic fiber from Juncus effusus L. Carbohydr. Polym. 2017, 171, 163–172. [Google Scholar] [CrossRef]
- Torres, M.A. Obtención de Celulosa a Partir de la Cáscara de Cacao Ecuatoriano (Theobroma cacao L.) Mediante Hidrólisis Térmica para la Elaboración de Pulpa de Papel. Bachelor’s Thesis, Universidad Central de Ecuador, Quito, Ecuador, 2019. [Google Scholar]
- Bigucci, F.; Luppi, B.; Cerchiara, T.; Sorrenti, M.; Bettinetti, G.; Rodriguez, L.; Zecchi, V. Chitosan/pectin polyelectrolyte complexes: Selection of suitable preparative conditions for colon-specific delivery of vancomycin. Eur. J. Pharm. Sci. 2008, 35, 435–441. [Google Scholar] [CrossRef]
- Maciel, V.B.V.; Yoshida, C.M.P.; Franco, T.T. Chitosan/pectin polyelectrolyte complex as a pH indicator. Carbohydr. Polym. 2015, 132, 537–545. [Google Scholar] [CrossRef]
- Müssig, J. Industrial Applications of Natural Fibres: Structure, Properties and Technical Applications; John Wiley & Sons: Hoboken, NJ, USA, 2010; ISBN 9780470660324. [Google Scholar]
- García-Ramón, J.A.; Carmona-García, R.; Valera-Zaragoza, M.; Aparicio-Saguilán, A.; Bello-Pérez, L.A.; Aguirre-Cruz, A.; Alvarez-Ramirez, J. Morphological, barrier, and mechanical properties of banana starch films reinforced with cellulose nanoparticles from plantain rachis. Int. J. Biol. Macromol. 2021, 187, 35–42. [Google Scholar] [CrossRef]
- Prachayawarakorn, J.; Pattanasin, W. Effect of pectin particles and cotton fibers on properties of thermoplastic cassava starch composites. Songklanakarin J. Sci. Technol. 2016, 38, 129–136. [Google Scholar]
- Adeleye, O.A.; Bamiro, O.A.; Albalawi, D.A.; Alotaibi, A.S.; Iqbal, H.; Sanyaolu, S.; Femi-Oyewo, M.N.; Sodeinde, K.O.; Yahaya, Z.S.; Thiripuranathar, G. Characterizations of Alpha-Cellulose and Microcrystalline Cellulose Isolated from Cocoa Pod Husk as a Potential Pharmaceutical Excipient. Materials 2022, 15, 5992. [Google Scholar] [CrossRef]
- Sarmiento-Vásquez, Z.; Vandenberghe, L.; Rodríguez, C.; Tanobe, V.O.A.; Marín, O.; De Melo Pereira, G.V.; Ghislain Rogez, H.L.; Góes-Neto, A.; Soccol, C.R. Cocoa pod husk valorization: Alkaline-enzymatic pre-treatment for propionic acid production. Cellulose 2021, 28, 4009–4024. [Google Scholar] [CrossRef]
- Adomako, D. Cocoa pod husk pectin. Phytochemistry 1972, 11, 1145–1148. [Google Scholar] [CrossRef]
- Fontes, P.R. Estudo da pectina do mel e da casca do fruto de cacao. Rev Theobroma 1972, 2, 49–51. [Google Scholar]
- Suárez, M.; Marín, R. Rendimiento de la pectina de cáscara de cacao (Teobroma cacao L.) como estabilizante en mermelada de naranja. Rev. Cien. Tecn. Agrollanía 2019, 18, 29–34. [Google Scholar]
- Moreira, F.K.V.; Marconcini, J.M.; Mattoso, L.H.C. Evaluation on microstructure of biodegradable corn starch/citrus pectin blends prepared from melted state. In Proceedings of the 7th International Symposium on Natural Polymer and Composites, Gramado, Brazil, 7–10 September 2010. [Google Scholar]
- Hernández-Mendoza, A.G.; Saldaña-Trinidad, S.; Martínez-Hernández, S.; Pérez-Sariñana, B.Y.; Láinez, M. Optimization of alkaline pretreatment and enzymatic hydrolysis of cocoa pod husk (Theobroma cacao L.) for ethanol production. Biomass Bioenergy 2021, 154, 106268. [Google Scholar] [CrossRef]
- Ouattara, L.Y.; Soro, D.; Fanou, G.D.; Appiah Kouassi, E.K.; Bamba, M.; Yao, K.B.; Adouby, K.; Drogui, A.P.; Tyagi, D.R. Optimization of the Autoclave-Assisted Alkaline Delignification of Cocoa (Theobroma cacao) Pod Husks Using KOH to Maximize Reducing Sugars. BioResources 2022, 17, 826–848. [Google Scholar] [CrossRef]
- Torres, F.G.; Rodriguez, S.; Saavedra, A.C. Green Composite Materials from Biopolymers Reinforced with Agroforestry Waste. J. Polym. Environ. 2019, 27, 2651–2673. [Google Scholar] [CrossRef]
- Birt, D.F.; Boylston, T.; Hendrich, S.; Jane, J.L.; Hollis, J.; Li, L.; McClelland, J.; Moore, S.; Phillips, G.J.; Rowling, M.; et al. Resistant starch: Promise for improving human health. Adv. Nutr. 2013, 4, 587–601. [Google Scholar] [CrossRef]
- Nagy, R.; Máthé, E.; Csapó, J.; Sipos, P. Modifying effects of physical processes on starch and dietary fiber content of foodstuffs. Processes 2021, 9, 17. [Google Scholar] [CrossRef]
- Udomkun, P.; Masso, C.; Swennen, R.; Innawong, B.; Alakonya, A.; Kuate, A.F.; Vanlauwe, B. How does cultivar, maturation, and pre-treatment affect nutritional, physicochemical, and pasting properties of plantain flours? Foods 2021, 10, 1749. [Google Scholar] [CrossRef]
- Luna, P.; Lizarazo-Marriaga, J.M. Natural fibers as reinforcement in polymer matrix composite materials. Momento 2022, 2022, 65–79. [Google Scholar] [CrossRef]
- Paluch, M.; Ostrowska, J.; Tyński, P.; Sadurski, W.; Konkol, M. Structural and Thermal Properties of Starch Plasticized with Glycerol/Urea Mixture. J. Polym. Environ. 2022, 30, 728–740. [Google Scholar] [CrossRef]
- Area, M.R.; Rico, M.; Montero, B.; Barral, L.; Bouza, R.; López, J.; Ramírez, C. Corn starch plasticized with isosorbide and filled with microcrystalline cellulose: Processing and characterization. Carbohydr. Polym. 2019, 206, 726–733. [Google Scholar] [CrossRef]
- De Morais Teixeira, E.; Da Róz, A.L.; De Carvalho, A.J.F.; Da Silva Curvelo, A.A. Preparation and characterisation of thermoplastic starches from cassava starch, cassava root and cassava bagasse. Macromol. Symp. 2005, 229, 266–275. [Google Scholar] [CrossRef]
- Shi, R.; Zhang, Z.; Liu, Q.; Han, Y.; Zhang, L.; Chen, D.; Tian, W. Characterization of citric acid/glycerol co-plasticized thermoplastic starch prepared by melt blending. Carbohydr. Polym. 2007, 69, 748–755. [Google Scholar] [CrossRef]
- Van Soest, J.J.G.; Hulleman, S.H.D.; De Wit, D.; Vliegenthart, J.F.G. Changes in the mechanical properties of thermoplastic potato starch in relation with changes in B-type crystallinity. Carbohydr. Polym. 1996, 29, 225–232. [Google Scholar] [CrossRef]
- Bodirlau, R.; Teaca, C.A.; Spiridon, I. Influence of natural fillers on the properties of starch-based biocomposite films. Compos. Part B Eng. 2013, 44, 575–583. [Google Scholar] [CrossRef]
- Versino, F.; López, O.V.; García, M.A. Sustainable use of cassava (Manihot esculenta) roots as raw material for biocomposites development. Ind. Crops Prod. 2015, 65, 79–89. [Google Scholar] [CrossRef]
- Chen, J.; Wang, X.; Long, Z.; Wang, S.; Zhang, J.; Wang, L. Preparation and performance of thermoplastic starch and microcrystalline cellulose for packaging composites: Extrusion and hot pressing. Int. J. Biol. Macromol. 2020, 165, 2295–2302. [Google Scholar] [CrossRef]
- Calambás Pulgarin, H.L.; Caicedo, C.; López, E.F. Effect of surfactant content on rheological, thermal, morphological and surface properties of thermoplastic starch (TPS) and polylactic acid (PLA) blends. Heliyon 2022, 8, e10833. [Google Scholar] [CrossRef]
- Zainuddin, S.Y.Z.; Ahmad, I.; Kargarzadeh, H.; Abdullah, I.; Dufresne, A. Potential of using multiscale kenaf fibers as reinforcing filler in cassava starch-kenaf biocomposites. Carbohydr. Polym. 2013, 92, 2299–2305. [Google Scholar] [CrossRef]
- Rico, M.; Rodríguez-Llamazares, S.; Barral, L.; Bouza, R.; Montero, B. Processing and characterization of polyols plasticized-starch reinforced with microcrystalline cellulose. Carbohydr. Polym. 2016, 149, 83–93. [Google Scholar] [CrossRef]
- Gutiérrez, T.J.; Alvarez, V.A. Eco-friendly films prepared from plantain flour/PCL blends under reactive extrusion conditions using zirconium octanoate as a catalyst. Carbohydr. Polym. 2017, 178, 260–269. [Google Scholar] [CrossRef]
- Mondragón, M.; Arroyo, K.; Romero-García, J. Biocomposites of thermoplastic starch with surfactant. Carbohydr. Polym. 2008, 74, 201–208. [Google Scholar] [CrossRef]
- Liu, Y.; Liang, Z.; Liao, L.; Xiong, J. Effect of sisal fiber on retrogradation and structural characteristics of thermoplastic cassava starch. Polym. Polym. Compos. 2022, 30, 09673911221080363. [Google Scholar] [CrossRef]
Properties | Starch from Plantain Pulp | Fiber from Plantain Peel |
---|---|---|
Particle size (µm) | 13.52 ± 5.21 (Width) | 569.96 (average) |
22.90 ± 8.16 (Long) | ||
Amylose content (%) | 28.37 ± 0.28 | - |
Lignin content (%) | - | 22.43 ± 2.50 |
Gelatinization temperature (°C) | 86.50 | - |
Enthalpy of fusion (J/g) | 97.49 | 224.20 |
Water absorption index (g Gel/g Sample) | 2.40 ± 0.01 | - |
Water solubility index (g Soluble/g Sample) | 0.9 ± 0.07 | - |
Swelling power (g Gel/g Sample) | 2.41 ± 0.01 | - |
Relative crystallinity (%) | 45.78 (C Standard) | - |
Sample | Composition (%) | ||
---|---|---|---|
Pulp Starch | FFCH | PPSF | |
TPS | 65.0 | - | - |
TPS2 | 50.0 | 15.0 | - |
TPS + F 1 | 45.5 | - | 30.0 |
TPS2 + F 2 | 42.5 | 12.7 | 15.0 |
Type of Flour | Holocellulose (%) | Cellulose (%) | Hemicellulose (%) | Lignin (%) |
---|---|---|---|---|
CFCH | 32.08 | 16.20 ± 0.99 | 15.88 ± 3.01 | 29.83 ± 0.10 |
FFCH | 36.35 | 25.02 ± 2.18 | 11.33 ± 0.43 | 20.95 ± 2.00 |
Sample | d (0.1) µm | d (0.5) µm | d (0.9) µm | D (3.4) µm |
---|---|---|---|---|
FFCH | 4.549 | 23.393 | 116.217 | 44.038 |
CFCH | 217.384 | 410.913 | 679.593 | 426.131 |
Chemical Composition | Type of CPH Flour (%) | ||
---|---|---|---|
FFCH (<150 µm) | CFCH (>150 µm) | Campos-Vega et al., 2018 (22 µm) [4] | |
Humidity (%) | 6.2 | 5.5 | 10.5 |
Ash (%) | 24.0 | 22.4 | 9 |
Crude fibre (%) | 38.1 | 47.2 | 36.6 |
Lipids (%) | <5.0 | <5.0 | 1.5 |
Protein (%) | <2.0 | 3.69 | 2.1 |
Sample | Day | σmax (MPa) | E (MPa) | ε (%) |
---|---|---|---|---|
TPS | 0 | 4.09 ± 0.14 | 56.28 ± 21.83 | 17.33 ± 2.03 |
8 | 0.78 ± 0.12 | 6.69 ± 1.60 | 36.02 ± 7.96 | |
15 | 0.75 ± 0.10 | 6.70 ± 1.04 | 26.79 ± 7.71 | |
TPS + F | 0 | 5.12 ± 1.07 | 192.38 ± 34.00 | 1.17 ± 0.60 |
8 | 1.49 ± 0.16 | 198.65 ± 71.89 | 15.53 ± 2.20 | |
15 | 0.90 ± 0.20 | 92.19 ± 27.46 | 11.22 ± 2.90 | |
TPS2 | 0 | 3.98 ± 0.83 | 76.01 ± 23.93 | 9.09 ± 1.00 |
8 | 0.67 ± 0.07 | 9.96 ± 2.98 | 21.20 ± 1.26 | |
15 | 0.57 ± 0.07 | 7.90 ± 3.09 | 14,05 ± 0.67 | |
TPS2 + F | 0 | 7.59 ± 0.66 | 142.53 ± 13.00 | 6.01 ± 0.11 |
8 | 1.38 ± 0.20 | 21.86 ± 10.93 | 13.30 ± 4.17 | |
15 | 0.73 ± 0.08 | 26.17 ± 7.33 | 10.23 ± 2.96 |
Sample | Tm (°C) | ΔHm (J/g) | Tdonset (°C) | Tdpeak (°C) |
---|---|---|---|---|
TPS | 110.16 148.14 | 330.43 | 213.52 | 323.57 |
TPS + F | 101.59 | 301.75 | 206.58 | 307.37 |
TPS2 | 107.10 | 82.65 | 184.87 | 300.47 |
TPS2 + F | 92.28 | 179.28 | 187.03 | 304.41 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Holguín Posso, A.M.; Macías Silva, J.C.; Castañeda Niño, J.P.; Mina Hernandez, J.H.; Fajardo Cabrera de Lima, L.d.P. Characterization and Implementation of Cocoa Pod Husk as a Reinforcing Agent to Obtain Thermoplastic Starches and Bio-Based Composite Materials. Polymers 2024, 16, 1608. https://doi.org/10.3390/polym16111608
Holguín Posso AM, Macías Silva JC, Castañeda Niño JP, Mina Hernandez JH, Fajardo Cabrera de Lima LdP. Characterization and Implementation of Cocoa Pod Husk as a Reinforcing Agent to Obtain Thermoplastic Starches and Bio-Based Composite Materials. Polymers. 2024; 16(11):1608. https://doi.org/10.3390/polym16111608
Chicago/Turabian StyleHolguín Posso, Andrés Mauricio, Juan Carlos Macías Silva, Juan Pablo Castañeda Niño, Jose Herminsul Mina Hernandez, and Lety del Pilar Fajardo Cabrera de Lima. 2024. "Characterization and Implementation of Cocoa Pod Husk as a Reinforcing Agent to Obtain Thermoplastic Starches and Bio-Based Composite Materials" Polymers 16, no. 11: 1608. https://doi.org/10.3390/polym16111608
APA StyleHolguín Posso, A. M., Macías Silva, J. C., Castañeda Niño, J. P., Mina Hernandez, J. H., & Fajardo Cabrera de Lima, L. d. P. (2024). Characterization and Implementation of Cocoa Pod Husk as a Reinforcing Agent to Obtain Thermoplastic Starches and Bio-Based Composite Materials. Polymers, 16(11), 1608. https://doi.org/10.3390/polym16111608