Dual-Mode Ce-MOF Nanozymes for Rapid and Selective Detection of Hydrogen Sulfide in Aquatic Products
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Apparatus
2.2.1. Morphology Characterization
2.2.2. XPS Analysis
2.2.3. FT-IR Analysis
2.2.4. XRD Analysis
2.2.5. Brunauer–Emmett–Teller (BET) Analysis
2.2.6. Optical Detection
2.3. Synthesis of Ce-MOF
2.4. The Mimetic Peroxidase-like Activity of Ce-MOF Nanozyme
2.5. Optimization of Experimental Conditions
2.6. Selectivity and Anti-Interference Experiment
2.7. Colorimetric–Fluorescence Sensing Analysis
2.8. Detection of H2S in the Real Samples
3. Results and Discussion
3.1. Characterization
3.2. Peroxidase Mimetic Activity Analysis of Ce-MOF
3.3. Colorimetric Characteristic Analysis of Ce-MOF
3.4. Analysis of Fluorescence Properties of Ce-MOF
Sensors | Types | LOD | Ref. |
---|---|---|---|
CR-DNP | Fluorescence | 0.4 μM | [45] |
Pb(btc)-1 | Colorimetric | 110 μM | [46] |
P1 | Fluorescence | 0.66 μM | [47] |
Probe L | Fluorescence | 0.372 μM | [5] |
Microplate cover-based colorimetric assay | Colorimetric | 1.48 μM | [48] |
Eu(tdl)2abp | Fluorescence | 0.64 μM | [49] |
GG-AgNPs | Colorimetric | 0.81 μM | [50] |
Ce-MOF | Colorimetric | 0.262 μM | This work |
Fluorescence | 0.156 μM |
3.5. Selectivity and Anti-Interference
3.6. Detection of H2S e in Real Samples
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Bhadwal, S.S.; Verma, S.; Hassan, S.; Kaur, S. Unraveling the Potential of Hydrogen Sulfide as a Signaling Molecule for Plant Development and Environmental Stress Responses: A State-of-the-Art Review. Plant Physiol. Biochem. 2024, 212, 108730. [Google Scholar] [CrossRef] [PubMed]
- Zhong, K.; Zhou, S.; Yan, X.; Li, X.; Hou, S.; Cheng, L.; Gao, X.; Li, Y.; Tang, L. A Simple H2S Fluorescent Probe with Long Wavelength Emission: Application in Water, Wine, Living Cells and Detection of H2S Gas. Dye. Pigment. 2020, 174, 108049. [Google Scholar] [CrossRef]
- Wallace, J.L.; Caliendo, G.; Santagada, V.; Cirino, G.; Fiorucci, S. Gastrointestinal Safety and Anti-Inflammatory Effects of a Hydrogen Sulfide–Releasing Diclofenac Derivative in the Rat. Gastroenterology 2007, 132, 261–271. [Google Scholar] [CrossRef]
- Giuliani, D.; Ottani, A.; Zaffe, D.; Galantucci, M.; Strinati, F.; Lodi, R.; Guarini, S. Hydrogen Sulfide Slows down Progression of Experimental Alzheimer’s Disease by Targeting Multiple Pathophysiological Mechanisms. Neurobiol. Learn. Mem. 2013, 104, 82–91. [Google Scholar] [CrossRef]
- Li, Z.; Wang, J.; Peng, X.; Chen, Y.; Geng, M. A Highly Selective Fluorescent Probe for Detection of H2S Based-on Benzothiazole and Its Application. Inorganica Chim. Acta 2023, 548, 121378. [Google Scholar] [CrossRef]
- Moumen, A.; Kumarage, G.C.W.; Comini, E. P-Type Metal Oxide Semiconductor Thin Films: Synthesis and Chemical Sensor Applications. Sensors 2022, 22, 1359. [Google Scholar] [CrossRef] [PubMed]
- Dariyal, P.; Sharma, S.; Chauhan, G.S.; Singh, B.P.; Dhakate, S.R. Recent Trends in Gas Sensing via Carbon Nanomaterials: Outlook and Challenges. Nanoscale Adv. 2021, 3, 6514–6544. [Google Scholar] [CrossRef] [PubMed]
- Parichenko, A.; Huang, S.; Pang, J.; Ibarlucea, B.; Cuniberti, G. Recent Advances in Technologies toward the Development of 2D Materials-Based Electronic Noses. TrAC Trends Anal. Chem. 2023, 166, 117185. [Google Scholar] [CrossRef]
- Anisimov, D.S.; Chekusova, V.P.; Trul, A.A.; Abramov, A.A.; Borshchev, O.V.; Agina, E.V.; Ponomarenko, S.A. Fully Integrated Ultra-Sensitive Electronic Nose Based on Organic Field-Effect Transistors. Sci. Rep. 2021, 11, 10683. [Google Scholar] [CrossRef] [PubMed]
- Feng, S.; Farha, F.; Li, Q.; Wan, Y.; Xu, Y.; Zhang, T.; Ning, H. Review on Smart Gas Sensing Technology. Sensors 2019, 19, 3760. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.-Y.; Chai, T.-Q.; Zhang, H.; Yang, F.-Q. Applications of Mild-Condition Synthesized Metal Complexes with Enzyme-like Activity in the Colorimetric and Fluorescence Analysis. Coord. Chem. Rev. 2024, 508, 215761. [Google Scholar] [CrossRef]
- Vanable, E.P.; Habgood, L.G.; Patrone, J.D. Current Progress in the Chemoenzymatic Synthesis of Natural Products. Molecules 2022, 27, 6373. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Huang, L.; Wang, Y.; Sun, J.; Yue, T.; Zhang, W.; Wang, J. One-Pot Bottom-up Fabrication of a 2D/2D Heterojuncted Nanozyme towards Optimized Peroxidase-like Activity for Sulfide Ions Sensing. Sens. Actuators B Chem. 2020, 306, 127565. [Google Scholar] [CrossRef]
- Wang, K.; Meng, X.; Yan, X.; Fan, K. Nanozyme-Based Point-of-Care Testing: Revolutionizing Environmental Pollutant Detection with High Efficiency and Low Cost. Nano Today 2024, 54, 102145. [Google Scholar] [CrossRef]
- Muzammil, K.; Solanki, R.; Alkaim, A.F.; Romero Parra, R.M.; Lafta, H.A.; Jalil, A.T.; Gupta, R.; Hammid, A.T.; Mustafa, Y.F. A Novel Approach Based on the Ultrasonic-Assisted Microwave Method for the Efficient Synthesis of Sc-MOF@SiO2 Core/Shell Nanostructures for H2S Gas Adsorption: A Controllable Systematic Study for a Green Future. Front. Chem. 2022, 10, 956104. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; AlTakroori, H.H.D.; Greish, Y.E.; Alzamly, A.; Siddig, L.A.; Qamhieh, N.; Mahmoud, S.T. Flexible Cu3(HHTP)2 MOF Membranes for Gas Sensing Application at Room Temperature. Nanomaterials 2022, 12, 913. [Google Scholar] [CrossRef] [PubMed]
- Qi, B.; Wang, X.; Wang, X.; Cheng, J.; Shang, Y. Synthesis and H2S-Sensing Properties of MOF-Derived Cu-Doped ZnO Nanocages. Nanomaterials 2022, 12, 2579. [Google Scholar] [CrossRef] [PubMed]
- Nagarkar, S.S.; Saha, T.; Desai, A.V.; Talukdar, P.; Ghosh, S.K. Metal-Organic Framework Based Highly Selective Fluorescence Turn-on Probe for Hydrogen Sulphide. Sci. Rep. 2014, 4, 7053. [Google Scholar] [CrossRef]
- Du, X.; Wu, G.; Dou, X.; Ding, Z.; Xie, J. Recent Advances of Fluorescence MOF-Based Sensors for the Freshness of Aquatic Products. Microchem. J. 2024, 203, 110901. [Google Scholar] [CrossRef]
- Chen, Q.; He, Q.; Wang, Y.; Huang, C.; Lin, Y.; Wang, J.; Shen, W.; Qiu, B.; Xu, X. Aptamer-Controlled Peroxidase Activity of Platinum Nanoparticles/Fe-MOF Nanozyme for Highly Effective Voltammetric Detection of Carcinoembryonic Antigen. Microchem. J. 2024, 201, 110609. [Google Scholar] [CrossRef]
- Wang, C.; Ren, G.; Yuan, B.; Zhang, W.; Lu, M.; Liu, J.; Li, K.; Lin, Y. Enhancing Enzyme-like Activities of Prussian Blue Analog Nanocages by Molybdenum Doping: Toward Cytoprotecting and Online Optical Hydrogen Sulfide Monitoring. Anal. Chem. 2020, 92, 7822–7830. [Google Scholar] [CrossRef] [PubMed]
- Liang, S.; Wu, X.-L.; Xiong, J.; Yuan, X.; Liu, S.-L.; Zong, M.-H.; Lou, W.-Y. Multivalent Ce-MOFs as Biomimetic Laccase Nanozyme for Environmental Remediation. Chem. Eng. J. 2022, 450, 138220. [Google Scholar] [CrossRef]
- Lammert, M.; Wharmby, M.T.; Smolders, S.; Bueken, B.; Lieb, A.; Lomachenko, K.A.; De Vos, D.; Stock, N. Cerium-Based Metal Organic Frameworks with UiO-66 Architecture: Synthesis, Properties and Redox Catalytic Activity. Chem. Commun. 2015, 51, 12578–12581. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Wang, X.; Zhang, Y.; Fang, Q.; Du, Y.; Wei, H. A Metal–Organic Framework-Derived Ruthenium–Nitrogen–Carbon Nanozyme for Versatile Hydrogen Sulfide and Cystathionine γ-Lyase Activity Assay. Biosens. Bioelectron. 2024, 244, 115785. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Li, M.; Hao, M.; Yu, L.L.; Li, Y. A Novel Selective Detection Method for Sulfide in Food Systems Based on the GMP-Cu Nanozyme with Laccase Activity. Talanta 2021, 235, 122775. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Jiang, J.; Shen, N.; Peng, H.; Luo, Y.; Li, N.; Huang, L.; Lu, Y.; Liu, L.; Li, B.; et al. Flexible Microfluidic Colorimetric Detection Chip Integrated with ABTS+ and Co@MnO2 Nanozyme Catalyzed TMB Reaction Systems for Bio-Enzyme Free Detection of Sweat Uric Acid. Anal. Chim. Acta 2024, 1299, 342453. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Tian, Z.; Qu, Y. One-Step Reagentless Colorimetric Analysis Platform of Biomineralized Ce-UiO-66 for Universal Detection of Biomarkers. Sens. Actuators B Chem. 2023, 397, 134705. [Google Scholar] [CrossRef]
- Giannakoudakis, D.A.; Bandosz, T.J. Defectous UiO-66 MOF Nanocomposites as Reactive Media of Superior Protection against Toxic Vapors. ACS Appl. Mater. Interfaces 2020, 12, 14678–14689. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Zhang, Z.; Han, Y.; Yang, W.; Tang, W.; Yue, T.; Li, Z. Visual Detection of Vitamin C in Fruits and Vegetables Using UiO-66 Loaded Ce-MnO2 Mimetic Oxidase. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2023, 285, 121900. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wang, X.; Kapteijn, F. Water and Metal–Organic Frameworks: From Interaction toward Utilization. Chem. Rev. 2020, 120, 8303–8377. [Google Scholar] [CrossRef] [PubMed]
- Kumaresan, L.; Hanamantrao, D.P.; Raj SL, S.; Chenrayan, S.; Rangasamy, B.; Vediappan, K. Spherically Structured Ce-Metal-Organic Frameworks with Rough Surfaces and Carbon-Coated Cerium Oxide as Potential Electrodes for Lithium Storage and Supercapacitors. ChemistrySelect 2023, 8, e202204759. [Google Scholar] [CrossRef]
- Qin, Y.; Li, S.; Liang, L.; Wu, J.; Zhu, Y.; Zhao, S.; Ye, F. Regulating the Redox and Non-Redox Enzyme-Mimicking Activities of Ce-UiO-66-NO2 Nanozyme for Dual-Mode Sensing of Phosphate. Sens. Actuators B Chem. 2024, 412, 135782. [Google Scholar] [CrossRef]
- Jiang, B.; Duan, D.; Gao, L.; Zhou, M.; Fan, K.; Tang, Y.; Xi, J.; Bi, Y.; Tong, Z.; Gao, G.F.; et al. Standardized Assays for Determining the Catalytic Activity and Kinetics of Peroxidase-like Nanozymes. Nat. Protoc. 2018, 13, 1506–1520. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.-Q.; Liu, C.-Y.; Zeng, X.-Y.; Chen, J.; Lü, J.; Lin, R.-G.; Cao, R.; Lin, Z.-J.; Su, J.-W. MOF-808: A Metal–Organic Framework with Intrinsic Peroxidase-Like Catalytic Activity at Neutral pH for Colorimetric Biosensing. Inorg. Chem. 2018, 57, 9096–9104. [Google Scholar] [CrossRef] [PubMed]
- Darabdhara, G.; Bordoloi, J.; Manna, P.; Das, M.R. Biocompatible Bimetallic Au-Ni Doped Graphitic Carbon Nitride Sheets: A Novel Peroxidase-Mimicking Artificial Enzyme for Rapid and Highly Sensitive Colorimetric Detection of Glucose. Sens. Actuators B Chem. 2019, 285, 277–290. [Google Scholar] [CrossRef]
- Lu, Y.; Ye, W.; Yang, Q.; Yu, J.; Wang, Q.; Zhou, P.; Wang, C.; Xue, D.; Zhao, S. Three-Dimensional Hierarchical Porous PtCu Dendrites: A Highly Efficient Peroxidase Nanozyme for Colorimetric Detection of H2O2. Sens. Actuators B Chem. 2016, 230, 721–730. [Google Scholar] [CrossRef]
- Mekonnen, M.L.; Mola, A.M.; Abda, E.M. Rapid Colorimetric Detection of Thiabendazole Based on Its Inhibition Effect on the Peroxidase Mimetic Activity of Ag-MoS2 Nanozyme. ACS Agric. Sci. Technol. 2023, 3, 82–89. [Google Scholar] [CrossRef]
- Gao, L.; Zhuang, J.; Nie, L.; Zhang, J.; Zhang, Y.; Gu, N.; Wang, T.; Feng, J.; Yang, D.; Perrett, S.; et al. Intrinsic Peroxidase-like Activity of Ferromagnetic Nanoparticles. Nat. Nanotechnol. 2007, 2, 577–583. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Zhang, Y.; Xu, Y.; Liu, X.; Chen, J.; Yang, M.; Hou, C.; Huo, D. Single-Atom Cu-Attached MOFs as Peroxide-like Enzymes to Construct Dual-Mode Immunosensors for Detection of Breast Cancer Typing in Serum. Sens. Actuators B Chem. 2024, 400, 134903. [Google Scholar] [CrossRef]
- Sun, Y.; Zhao, J.; Zhang, B.-T.; Li, J.; Shi, Y.; Zhang, Y. Oxidative Degradation of Chloroxylenol in Aqueous Solution by Thermally Activated Persulfate: Kinetics, Mechanisms and Toxicities. Chem. Eng. J. 2019, 368, 553–563. [Google Scholar] [CrossRef]
- Jabiyeva, N.; Çakıroğlu, B.; Özdemir, A. The Peroxidase-like Activity of Au NPs Deposited Inverse Opal CeO2 Nanozyme for Rapid and Sensitive H2O2 Sensing. J. Photochem. Photobiol. A Chem. 2024, 452, 115576. [Google Scholar] [CrossRef]
- Yu, H.; Zhou, F.; Xie, H.; Yang, X.; Qiu, B.; Xu, X. One-Pot Synthesis of Two Novel Ce-MOFs for the Detection of Tetracyclic Antibiotics and Fe3+. J. Mol. Struct. 2024, 1307, 138023. [Google Scholar] [CrossRef]
- Wu, G.; Cheng, Q.; Ding, Z.; Xie, J. Hybrid Polymer Dots with Isothiocyanate Functional Groups for Rapid Sensing Tyramine in Aquatic Products. J. Food Compos. Anal. 2024, 128, 106058. [Google Scholar] [CrossRef]
- Dou, X.; Xu, S.; Jiang, Y.; Ding, Z.; Xie, J. Aptamers-Functionalized Nanoscale MOFs for Saxitoxin and Tetrodotoxin Sensing in Sea Foods through FRET. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2023, 284, 121827. [Google Scholar] [CrossRef] [PubMed]
- Huang, K.; Liu, M.; Liu, Z.; Cao, D.; Hou, J.; Zeng, W. Ratiometric and Colorimetric Detection of Hydrogen Sulfide with High Selectivity and Sensitivity Using a Novel FRET-Based Fluorescence Probe. Dye. Pigment. 2015, 118, 88–94. [Google Scholar] [CrossRef]
- Souza, B.A.; Sousa, F.L.; Oliveira, D.M.; Pinto, L.; Freitas, D.V.; Navarro, M. Pb-MOF Electrosynthesis Based on Recycling of Lead-Acid Battery Electrodes for Hydrogen Sulfide Colorimetric Detection. Inorganica Chim. Acta 2021, 526, 120540. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, C.; Tang, H.; Cao, D. A Novel Chromophore Reaction-Based Pyrrolopyrrole Aza-BODIPY Fluorescent Probe for H2S Detection and Its Application in Food Spoilage. Food Chem. 2023, 427, 136591. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.-W.; Lee, Y.-H.; Ahn, Y.J.; Kim, G.D.; Jang, H.M.; Lee, G.-J. Detection of Cysteine-Induced Salivary H2S to Evaluate the H2S-Producing Capability of Oral Bacteria, Using a Simple and Sensitive Colorimetric Assay: A Preliminary Study. Microchem. J. 2023, 195, 109391. [Google Scholar] [CrossRef]
- Chen, X.; Cai, W.; Liu, G.; Tu, Y.; Fan, C.; Pu, S. A Highly Selective Colorimetric and Fluorescent Probe Eu(Tdl)2abp for H2S Sensing: Application in Live Cell Imaging and Natural Water. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 282, 121657. [Google Scholar] [CrossRef] [PubMed]
- Zhai, X.; Li, Z.; Shi, J.; Huang, X.; Sun, Z.; Zhang, D.; Zou, X.; Sun, Y.; Zhang, J.; Holmes, M.; et al. A Colorimetric Hydrogen Sulfide Sensor Based on Gellan Gum-Silver Nanoparticles Bionanocomposite for Monitoring of Meat Spoilage in Intelligent Packaging. Food Chem. 2019, 290, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Du, X.; Wu, G.; Dou, X.; Ding, Z.; Xie, J. Alizarin Complexone Modified UiO-66-NH2 as Dual-Mode Colorimetric and Fluorescence pH Sensor for Monitoring Perishable Food Freshness. Food Chem. 2024, 445, 138700. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, Q.; Du, X.; Fu, Z.; Ding, Z.; Xie, J. Dual-Mode Ce-MOF Nanozymes for Rapid and Selective Detection of Hydrogen Sulfide in Aquatic Products. Polymers 2024, 16, 1747. https://doi.org/10.3390/polym16121747
Cheng Q, Du X, Fu Z, Ding Z, Xie J. Dual-Mode Ce-MOF Nanozymes for Rapid and Selective Detection of Hydrogen Sulfide in Aquatic Products. Polymers. 2024; 16(12):1747. https://doi.org/10.3390/polym16121747
Chicago/Turabian StyleCheng, Qi, Xiaoyu Du, Zuyao Fu, Zhaoyang Ding, and Jing Xie. 2024. "Dual-Mode Ce-MOF Nanozymes for Rapid and Selective Detection of Hydrogen Sulfide in Aquatic Products" Polymers 16, no. 12: 1747. https://doi.org/10.3390/polym16121747
APA StyleCheng, Q., Du, X., Fu, Z., Ding, Z., & Xie, J. (2024). Dual-Mode Ce-MOF Nanozymes for Rapid and Selective Detection of Hydrogen Sulfide in Aquatic Products. Polymers, 16(12), 1747. https://doi.org/10.3390/polym16121747