Hydrogen Production in Microbial Electrolysis Cells Using an Alginate Hydrogel Bioanode Encapsulated with a Filter Bag
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microbial Culture
2.2. Treatment of Carbon Textile Using Cold Low-Pressure Nitrogen Plasma
2.3. Preparation of Bacterial Biofilm on the Plasma-Treated Carbon-Cloth Anode
2.4. Preparation Three Sets of Bioanodes
2.5. MEC Setup
2.6. Bio-Electrochemical and Chemical Analysis
2.7. Microbial Diversity Analysis
3. Results and Discussion
3.1. Cyclic Voltammetry Analysis and Nyquist Plots of the Different Bioanodes after 14 Days of Construction
3.2. CV Analysis and Nyquist Plots during 3 Weeks of MECs Based on the Encapsulated Alginate Bioanode
3.3. DPV and LSV Measurements of the MECs Based on the Encapsulated Alginate Bioanode Which Was Fed with Geobacter Medium and Wastewater at Different Ratios
3.4. LSV Reduction Currents of MECs Based on the Different Bioanodes Fed with Geobacter Medium and Wastewater at Different Ratios
Type of Reactor | Anode Modification | Type of Substrate | Type of Inoculum | Cell Volume (mL) | Improvement of the Bio-Electroactivity (Fold Higher) ** | References |
---|---|---|---|---|---|---|
MFC | Gel-entrapped bacteria in alginate/polyaniline/TiO2/graphite composites | Modified LB medium | Shewanella algae | 12 | 7 | [30] |
MFC | Double-layer sodium alginate hydrogel bioanodes | High-salinity waste leachate | Culture of electroactive microorganisms | 250 | 3.3 | [31] |
MFC | Polymerization of a polyaniline/sodium alginate | Sodium acetate | Mixture of microorganisms | 100 | 1.38 | [32] |
MFC | Immobilized electrogenic microorganisms using graphite/alginate granules | Electrolyte (M9 minimal medium LB medium, lactate) | Shewanella oneidensis | 150 | 1.8 | [33] |
MFC | Alginate polymer bonded onto graphite paper | Peptone Meat Broth | Paenibacillus profundus | 20 | 5 | [35] |
MFC | Stainless-steel mesh cage anode containing an alginate-bead matrix with immobilized inoculum | Synthetic wastewater | Anaerobic sludge inoculum | 160 | 3.6 | [20] |
MEC | Immobilized carbon cloth with alginate and chitosan | Wastewater | Geobacter sulffureducens and wastewater | 80 | 3.5 | [24] |
MEC | Encapsulated alginate bioanode | Wastewater | Geobacter sulffureducens and wastewater | 90 | 3 | Current study |
3.5. Bacterial Diversity Analysis of the Different Bioanodes at the End of the MECs’ Operation
3.6. COD Removal in the MECs Based on the Different Bioanodes When Fed with Geobacter Medium and Wastewater at Different Ratios
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Molinos-Senante, M.; Maziotis, A. Evaluation of Energy Efficiency of Wastewater Treatment Plants: The Influence of the Technology and Aging Factors. Appl. Energy 2022, 310, 118535. [Google Scholar] [CrossRef]
- Escapa, A.; Gil-Carrera, L.; García, V.; Morán, A. Performance of a Continuous Flow Microbial Electrolysis Cell (MEC) Fed with Domestic Wastewater. Bioresour. Technol. 2012, 117, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Schechter, M.; Schechter, A.; Rozenfeld, S.; Efrat, E.; Cahan, R. Anode Biofilm. In Technology and Application of Microbial Fuel Cells; IntechOpen Limited: London, UK, 2014. [Google Scholar] [CrossRef]
- Rozenfeld, S.; Teller, H.; Schechter, M.; Farber, R.; Krichevski, O.; Schechter, A.; Cahan, R. Exfoliated Molybdenum Di-Sulfide (MoS2) Electrode for Hydrogen Production in Microbial Electrolysis Cell. Bioelectrochemistry 2018, 123, 201–210. [Google Scholar] [CrossRef]
- Friman, H.; Schechter, A.; Ioffe, Y.; Nitzan, Y.; Cahan, R. Current Production in a Microbial Fuel Cell Using a Pure Culture of Cupriavidus Basilensis Growing in Acetate or Phenol as a Carbon Source. Microb. Biotechnol. 2013, 6, 425–434. [Google Scholar] [CrossRef] [PubMed]
- Logan, B.E. Microbial Fuel Cells; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2008; pp. 1–200. [Google Scholar] [CrossRef]
- Kyazze, G.; Popov, A.; Dinsdale, R.; Esteves, S.; Hawkes, F.; Premier, G.; Guwy, A. Influence of Catholyte PH and Temperature on Hydrogen Production from Acetate Using a Two Chamber Concentric Tubular Microbial Electrolysis Cell. Int. J. Hydrogen Energy 2010, 35, 7716–7722. [Google Scholar] [CrossRef]
- Rousseau, R.; Etcheverry, L.; Roubaud, E.; Basséguy, R.; Délia, M.L.; Bergel, A. Microbial Electrolysis Cell (MEC): Strengths, Weaknesses and Research Needs from Electrochemical Engineering Standpoint. Appl. Energy 2020, 257, 113938. [Google Scholar] [CrossRef]
- Merrill, M.D.; Logan, B.E. Electrolyte Effects on Hydrogen Evolution and Solution Resistance in Microbial Electrolysis Cells. J. Power Sources 2009, 191, 203–208. [Google Scholar] [CrossRef]
- Gluhchev, G.; Ignatov, I.; Karadzhov, S.; Miloshev, G.; Ivanov, N.; Mosin, O.; Professor, A.; Professor, A. Electrochemically Activited Water. Biophysical and Biological Effects of Anolyte and Catholyte as Types of Water. J. Med. Physiol. Biophys. 2015, 10, 1–17. [Google Scholar]
- Logan, B.E. Exoelectrogenic Bacteria That Power Microbial Fuel Cells. Nat. Rev. Microbiol. 2009, 7, 375–381. [Google Scholar] [CrossRef]
- Kadier, A.; Simayi, Y.; Kalil, M.S.; Abdeshahian, P.; Hamid, A.A. A Review of the Substrates Used in Microbial Electrolysis Cells (MECs) for Producing Sustainable and Clean Hydrogen Gas. Renew. Energy 2014, 71, 466–472. [Google Scholar] [CrossRef]
- Cheng, S.; Logan, B.E. High Hydrogen Production Rate of Microbial Electrolysis Cell (MEC) with Reduced Electrode Spacing. Bioresour. Technol. 2011, 102, 3571–3574. [Google Scholar] [CrossRef] [PubMed]
- Kadier, A.; Simayi, Y.; Abdeshahian, P.; Azman, N.F.; Chandrasekhar, K.; Kalil, S. A Comprehensive Review of Microbial Electrolysis Cells (MEC) Reactor Designs and Configurations for Sustainable Hydrogen Gas Production. Alex. Eng. J. 2016, 55, 427–443. [Google Scholar] [CrossRef]
- Truong, D.H.; Dam, M.S.; Bujna, E.; Rezessy-Szabo, J.; Farkas, C.; Vi, V.N.H.; Csernus, O.; Nguyen, V.D.; Gathergood, N.; Friedrich, L.; et al. In Situ Fabrication of Electrically Conducting Bacterial Cellulose-Polyaniline-Titanium-Dioxide Composites with the Immobilization of Shewanella Xiamenensis and Its Application as Bioanode in Microbial Fuel Cell. Fuel 2021, 285, 119259. [Google Scholar] [CrossRef]
- Yang, P.; Gao, Y.; He, W.; An, J.; Liu, J.; Li, N.; Feng, Y. A Wood Pulp Sponge Cleaning Wipe as a High-Performance Bioanode Material in Microbial Electrochemical Systems for Its Vast Biomass Carrying Capacity, Large Capacitance, and Small Charge Transfer Resistance. J. Mater. Sci. Technol. 2024, 181, 1–10. [Google Scholar] [CrossRef]
- De-Bashan, L.E.; Bashan, Y. Immobilized Microalgae for Removing Pollutants: Review of Practical Aspects. Bioresour. Technol. 2010, 101, 1611–1627. [Google Scholar] [CrossRef] [PubMed]
- Christwardana, M.; Handayani, A.S.; Yudianti, R. Joelianingsih Cellulose—Carrageenan Coated Carbon Felt as Potential Anode Structure for Yeast Microbial Fuel Cell. Int. J. Hydrogen Energy 2021, 46, 6076–6086. [Google Scholar] [CrossRef]
- Mohebrad, B.; Ghods, G.; Rezaee, A. Dairy Wastewater Treatment Using Immobilized Bacteria on Calcium Alginate in a Microbial Electrochemical System. J. Water Process Eng. 2022, 46, 102609. [Google Scholar] [CrossRef]
- Neethu, B.; Bhowmick, G.D.; Ghangrekar, M.M. Improving Performance of Microbial Fuel Cell by Enhanced Bacterial-Anode Interaction Using Sludge Immobilized Beads with Activated Carbon. Process Saf. Environ. Prot. 2020, 143, 285–292. [Google Scholar] [CrossRef]
- Rozenfeld, S.; Hirsch, L.O.; Gandu, B.; Farber, R.; Schechter, A.; Cahan, R. Improvement of Microbial Electrolysis Cell Activity by Using Anode Based on Combined Plasma-Pretreated Carbon Cloth and Stainless Steel. Energies 2019, 12, 1968. [Google Scholar] [CrossRef]
- Bormashenko, E.; Chaniel, G.; Grynyov, R. Towards Understanding Hydrophobic Recovery of Plasma Treated Polymers: Storing in High Polarity Liquids Suppresses Hydrophobic Recovery. Appl. Surf. Sci. 2013, 273, 549–553. [Google Scholar] [CrossRef]
- Logan, B.E.; Regan, J.M. Electricity-Producing Bacterial Communities in Microbial Fuel Cells. Trends Microbiol. 2006, 14, 512–518. [Google Scholar] [CrossRef] [PubMed]
- Gandu, B.; Rozenfeld, S.; Ouaknin Hirsch, L.; Schechter, A.; Cahan, R. Immobilization of Bacterial Cells on Carbon-Cloth Anode Using Alginate for Hydrogen Generation in a Microbial Electrolysis Cell. J. Power Sources 2020, 455, 227986. [Google Scholar] [CrossRef]
- Hirsch, L.O.; Dubrovin, I.A.; Gandu, B.; Emanuel, E.; Kjellerup, B.V.; Ugur, G.E.; Schechter, A.; Cahan, R. Anode Amendment with Kaolin and Activated Carbon Increases Electricity Generation in a Microbial Fuel Cell. Bioelectrochemistry 2023, 153, 108486. [Google Scholar] [CrossRef] [PubMed]
- Dubrovin, I.A.; Hirsch, L.O.; Rozenfeld, S.; Gandu, B.; Menashe, O.; Schechter, A.; Cahan, R. Hydrogen Production in Microbial Electrolysis Cells Based on Bacterial Anodes Encapsulated in a Small Bioreactor Platform. Microorganisms 2022, 10, 1007. [Google Scholar] [CrossRef] [PubMed]
- Zhong, D.; Liao, X.; Liu, Y.; Zhong, N.; Xu, Y. Enhanced Electricity Generation Performance and Dye Wastewater Degradation of Microbial Fuel Cell by Using a Petaline NiO@ Polyaniline-Carbon Felt Anode. Bioresour. Technol. 2018, 258, 125–134. [Google Scholar] [CrossRef]
- Hirsch, L.O.; Gandu, B.; Chiliveru, A.; Amar Dubrovin, I.; Rozenfeld, S.; Schechter, A.; Cahan, R. The Performance of a Modified Anode Using a Combination of Kaolin and Graphite Nanoparticles in Microbial Fuel Cells. Microorganisms 2024, 12, 604. [Google Scholar] [CrossRef]
- Szöllősi, A.; Hoschke, Á.; Rezessy-Szabó, J.M.; Bujna, E.; Kun, S.; Nguyen, Q.D. Formation of Novel Hydrogel Bio-Anode by Immobilization of Biocatalyst in Alginate/Polyaniline/Titanium-Dioxide/Graphite Composites and Its Electrical Performance. Chemosphere 2017, 174, 58–65. [Google Scholar] [CrossRef]
- Zhao, C.; Chen, H.; Song, Y.; Zhu, L.; Ai, T.; Wang, X.; Liu, Z.; Wei, X. Electricity Production Performance Enhancement of Microbial Fuel Cells with Double-Layer Sodium Alginate Hydrogel Bioanodes Driven by High-Salinity Waste Leachate. Water Res. 2023, 242, 120281. [Google Scholar] [CrossRef]
- Wang, Y.; Wen, Q.; Chen, Y.; Zheng, H.; Wang, S. Enhanced Performance of Microbial Fuel Cell with Polyaniline/Sodium Alginate/Carbon Brush Hydrogel Bioanode and Removal of COD. Energy 2020, 202, 117780. [Google Scholar] [CrossRef]
- Yong, Y.C.; Liao, Z.H.; Sun, J.Z.; Zheng, T.; Jiang, R.R.; Song, H. Enhancement of Coulombic Efficiency and Salt Tolerance in Microbial Fuel Cells by Graphite/Alginate Granules Immobilization of Shewanella oneidensis MR-1. Process Biochem. 2013, 48, 1947–1951. [Google Scholar] [CrossRef]
- Duarte, J.C.; Rodrigues, J.A.R.; Moran, P.J.S.; Valença, G.P.; Nunhez, J.R. Effect of Immobilized Cells in Calcium Alginate Beads in Alcoholic Fermentation. AMB Express 2013, 3, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Hubenova, E.; Mitov, M.; Hubenova, Y. Electrochemical Performance of Paenibacillus Profundus YoMME Encapsulated in Alginate Polymer. Bioelectrochemistry 2023, 150, 108354. [Google Scholar] [CrossRef] [PubMed]
- Kannaiah Goud, R.; Venkata Mohan, S. Prolonged Applied Potential to Anode Facilitate Selective Enrichment of Bio-Electrochemically Active Proteobacteria for Mediating Electron Transfer: Microbial Dynamics and Bio-Catalytic Analysis. Bioresour. Technol. 2013, 137, 160–170. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Mu, H.; Liu, W.; Zhang, R.; Guo, J.; Xian, M.; Liu, H. Electricigens in the Anode of Microbial Fuel Cells: Pure Cultures versus Mixed Communities. Microb. Cell Factories 2019, 18, 1–14. [Google Scholar] [CrossRef]
- Kumar, S.S.; Malyan, S.K.; Basu, S.; Bishnoi, N.R. Syntrophic Association and Performance of Clostridium, Desulfovibrio, Aeromonas and Tetrathiobacter as Anodic Biocatalysts for Bioelectricity Generation in Dual Chamber Microbial Fuel Cell. Environ. Sci. Pollut. Res. 2017, 24, 16019–16030. [Google Scholar] [CrossRef] [PubMed]
- Bond, D.R.; Lovley, D.R. Electricity Production by Geobacter Sulfurreducens Attached to Electrodes. Appl. Environ. Microbiol. 2003, 69, 1548–1555. [Google Scholar] [CrossRef] [PubMed]
- Ochiai, I.; Harada, T.; Jomori, S.; Kouzuma, A.; Watanabe, K. Bioaugmentation of Microbial Electrolysis Cells with Geobacter Sulfurreducens YM18 for Enhanced Hydrogen Production from Starch. Bioresour. Technol. 2023, 386, 129508. [Google Scholar] [CrossRef] [PubMed]
- Siegert, M.; Li, X.-F.; Yates, M.D.; Logan, B.E.; Cui, Z. The Presence of Hydrogenotrophic Methanogens in the Inoculum Improves Methane Gas Production in Microbial Electrolysis Cells. Front. Microbiol. 2015, 5, 778. [Google Scholar] [CrossRef]
- Villano, M.; Monaco, G.; Aulenta, F.; Majone, M. Electrochemically Assisted Methane Production in a Biofilm Reactor. J. Power Sources 2011, 196, 9467–9472. [Google Scholar] [CrossRef]
- Hadiyanto, H.; Christwardana, M.; Pratiwi, W.Z.; Purwanto, P.; Sudarno, S.; Haryani, K.; Hoang, A.T. Response Surface Optimization of Microalgae Microbial Fuel Cell (MMFC) Enhanced by Yeast Immobilization for Bioelectricity Production. Chemosphere 2022, 287, 132275. [Google Scholar] [CrossRef]
Geobacter Medium: Wastewater | (2:1) | (1:1) | (0:1) | |||
---|---|---|---|---|---|---|
Anode type in MEC | mA | H2 (m3·m−3·d−1) | mA | H2 (m3·m−3·d−1) | mA | H2 (m3·m−3·d−1) |
Bare bioanode | 2.83 | 0.43 | 1.25 | 0.19 | 0.88 | 0.13 |
Encapsulated bioanode | 1.87 | 0.28 | 1.96 | 0.30 | 1.09 | 0.16 |
Alginate anode | 2.53 | 0.38 | 1.59 | 0.24 | 1.82 | 0.28 |
Encapsulated alginate bioanode | 5.41 | 0.82 | 2.77 | 0.42 | 2.58 | 0.39 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hirsch, L.O.; Gandu, B.; Chiliveru, A.; Dubrovin, I.A.; Jukanti, A.; Schechter, A.; Cahan, R. Hydrogen Production in Microbial Electrolysis Cells Using an Alginate Hydrogel Bioanode Encapsulated with a Filter Bag. Polymers 2024, 16, 1996. https://doi.org/10.3390/polym16141996
Hirsch LO, Gandu B, Chiliveru A, Dubrovin IA, Jukanti A, Schechter A, Cahan R. Hydrogen Production in Microbial Electrolysis Cells Using an Alginate Hydrogel Bioanode Encapsulated with a Filter Bag. Polymers. 2024; 16(14):1996. https://doi.org/10.3390/polym16141996
Chicago/Turabian StyleHirsch, Lea Ouaknin, Bharath Gandu, Abhishiktha Chiliveru, Irina Amar Dubrovin, Avinash Jukanti, Alex Schechter, and Rivka Cahan. 2024. "Hydrogen Production in Microbial Electrolysis Cells Using an Alginate Hydrogel Bioanode Encapsulated with a Filter Bag" Polymers 16, no. 14: 1996. https://doi.org/10.3390/polym16141996
APA StyleHirsch, L. O., Gandu, B., Chiliveru, A., Dubrovin, I. A., Jukanti, A., Schechter, A., & Cahan, R. (2024). Hydrogen Production in Microbial Electrolysis Cells Using an Alginate Hydrogel Bioanode Encapsulated with a Filter Bag. Polymers, 16(14), 1996. https://doi.org/10.3390/polym16141996