Artificial Trabecular Meshwork Structure Combining Melt Electrowriting and Solution Electrospinning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fabrication of SE and MEW Scaffolds: Printing Parameters
2.2. Scaffold Imaging and Measurements
2.3. Uniaxial Tensile Testing
2.4. G-Code Generator GUI
2.5. Cell Experiments
2.5.1. Cell Viability
2.5.2. Nuclei Shape and Scaffold Infiltration
2.5.3. Cell Culture with Glucocorticoids and Rho Inhibitors
2.5.4. Immunostaining and Confocal Imaging
2.5.5. SEM of Cell-Loaded Scaffolds
2.6. Statistical Information
3. Results and Discussion
3.1. Fabrication and Mechanical Characterization of Graded Porous Scaffold
3.2. Cell Culture Studies
3.2.1. Cell Morphology and Distribution on the Scaffold
3.2.2. Biological Characterization of PCL-Based HTM Scaffold
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dautriche, C.N.; Xie, Y.; Sharfstein, S.T. Walking through trabecular meshwork biology: Toward engineering design of outflow physiology. Biotechnol. Adv. 2014, 32, 971–983. [Google Scholar] [CrossRef]
- Buffault, J.; Labbé, A.; Hamard, P.; Brignole-Baudouin, F.; Baudouin, C. The trabecular meshwork: Structure, function and clinical implications. A review of the literature. J. Fr. Ophtalmol. 2020, 43, e217–e230. [Google Scholar] [CrossRef]
- Abu-hassan, D.W.; Acott, T.S.; Kelley, M.J. The Trabecular Meshwork: A Basic Review of Form and Function. J. Ocul. Biol. 2014, 2, 9. [Google Scholar]
- Tan, J.C.H.; Gonzalez, J.M.; Hamm-Alvarez, S.; Song, J. In situ autofluorescence visualization of human trabecular meshwork structure. Investig. Ophthalmol. Vis. Sci. 2012, 53, 2080–2088. [Google Scholar] [CrossRef]
- Last, J.A.; Pan, T.; Ding, Y.; Reilly, C.M.; Keller, K.; Acott, T.S.; Fautsch, M.P.; Murphy, C.J.; Russell, P. Elastic modulus determination of normal and glaucomatous human trabecular meshwork. Investig. Ophthalmol. Vis. Sci. 2011, 52, 2147–2152. [Google Scholar] [CrossRef]
- Wang, K.; Read, A.T.; Sulchek, T.; Ethier, C.R. Trabecular meshwork stiffness in glaucoma. Exp. Eye Res. 2017, 158, 3–12. [Google Scholar] [CrossRef]
- Bikuna-Izagirre, M.; Aldazabal, J.; Extramiana, L.; Moreno-Montañés, J.; Carnero, E.; Paredes, J. Technological advances in ocular trabecular meshwork in vitro models for glaucoma research. Biotechnol. Bioeng. 2022, 119, 2698–2714. [Google Scholar] [CrossRef]
- Torrejon, K.Y.; Pu, D.; Bergkvist, M.; Danias, J.; Sharfstein, S.T.; Xie, Y. Recreating a human trabecular meshwork outflow system on microfabricated porous structures. Biotechnol. Bioeng. 2013, 110, 3205–3218. [Google Scholar] [CrossRef]
- Torrejon, K.Y.; Papke, E.L.; Halman, J.R.; Stolwijk, J.; Dautriche, C.N.; Bergkvist, M.; Danias, J.; Sharfstein, S.T.; Xie, Y. Bioengineered glaucomatous 3D human trabecular meshwork as an in vitro disease model. Biotechnol. Bioeng. 2016, 113, 1357–1368. [Google Scholar] [CrossRef]
- Torrejon, K.Y.; Papke, E.L.; Halman, J.R.; Bergkvist, M.; Danias, J.; Sharfstein, S.T.; Xie, Y. TGFβ2-induced outflow alterations in a bioengineered trabecular meshwork are offset by a rho-associated kinase inhibitor. Sci. Rep. 2016, 6, 38319. [Google Scholar] [CrossRef]
- Torrejon, K.Y.; Pu, D.; Bergkvist, M.; Sharfstein, S.; Xie, Y.; Tokranova, N.A.; Danias, J. Bioengineered human trabecular meshwork for glaucoma therapeutic screening. Investig. Ophthalmol. Vis. Sci. 2012, 53, 3272. [Google Scholar]
- Li, H.; Bagué, T.; Kirschner, A.; Strat, A.N.; Roberts, H.; Weisenthal, R.W.; Patteson, A.E.; Annabi, N.; Stamer, W.D.; Ganapathy, P.S.; et al. A tissue-engineered human trabecular meshwork hydrogel for advanced glaucoma disease modeling. Exp. Eye Res. 2020, 1, 36–41. [Google Scholar] [CrossRef]
- Osmond, M.; Bernier, S.M.; Pantcheva, M.B.; Krebs, M.D. Collagen and collagen-chondroitin sulfate scaffolds with uniaxially aligned pores for the biomimetic, three dimensional culture of trabecular meshwork cells. Biotechnol. Bioeng. 2017, 114, 915–923. [Google Scholar] [CrossRef]
- Osmond, M.J.; Krebs, M.D.; Pantcheva, M.B. Human trabecular meshwork cell behavior is influenced by collagen scaffold pore architecture and glycosaminoglycan composition. Biotechnol. Bioeng. 2020, 117, 3150–3159. [Google Scholar] [CrossRef] [PubMed]
- Schlunck, G.; Han, H.; Wecker, T.; Kampik, D.; Meyer-ter-Vehn, T.; Grehn, F. Substrate Rigidity Modulates Cell—Matrix Interactions and Protein Expression in Human Trabecular. Investig. Ophthalmol. Vis. Sci. 2008, 49, 262–269. [Google Scholar] [CrossRef] [PubMed]
- Thomasy, S.M.; Morgan, J.T.; Wood, J.A.; Murphy, C.J.; Russell, P. Substratum stiffness and Lat-B modulate the gene expression of the mechanotransducers YAP and TAZ in HTMC. Exp. Eye Res. 2014, 113, 66–73. [Google Scholar] [CrossRef]
- Bouchemi, M.; Roubeix, C.; Kessal, K.; Riancho, L.; Raveu, A.-L.; Soualmia, H.; Baudouin, C.; Brignole-Baudouin, F. Effect of benzalkonium chloride on trabecular meshwork cells in a new in vitro 3D trabecular meshwork model for glaucoma. Toxicol. Vitr. 2017, 41, 21–29. [Google Scholar] [CrossRef]
- Tirendi, S.; Saccà, S.C.; Vernazza, S.; Traverso, C.; Bassi, A.M.; Izzotti, A. A 3D Model of Human Trabecular Meshwork for the Research Study of Glaucoma. Front. Neurol. 2020, 11, 591776. [Google Scholar] [CrossRef]
- Crouch, D.J.; Sheridan, C.M.; Behnsen, J.G.; Sa, R.A.D.; Bosworth, L.A. Cryo-Electrospinning Generates Highly Porous Fiber Scaffolds Which Improves Trabecular Meshwork Cell Infiltration. J. Funct. Biomater. 2023, 14, 490. [Google Scholar] [CrossRef]
- Włodarczyk-Biegun, M.K.; Villiou, M.; Koch, M.; Muth, C.; Wang, P.; Ott, J.; del Campo, A. Melt Electrowriting of Graded Porous Scaffolds to Mimic the Matrix Structure of the Human Trabecular Meshwork. ACS Biomater. Sci. Eng. 2022, 8, 3899–3911. [Google Scholar] [CrossRef]
- Szentivanyi, A.L.; Zernetsch, H.; Menzel, H.; Glasmacher, B. A review of developments in electrospinning technology: New opportunities for the design of artificial tissue structures. Int. J. Artif. Organs 2011, 34, 986–997. [Google Scholar] [CrossRef]
- Dalton, P.D. Melt electrowriting with additive manufacturing principles. Curr. Opin. Biomed. Eng. 2017, 2, 49–57. [Google Scholar] [CrossRef]
- Liu, W.; Thomopoulos, S.; Xia, Y. Electrospun nanofibers for regenerative medicine. Adv. Healthc. Mater. 2012, 1, 10–25. [Google Scholar] [CrossRef]
- Detta, N.; Errico, C.; Dinucci, D.; Puppi, D.; Clarke, D.A.; Reilly, G.C.; Chiellini, F. Novel electrospun polyurethane/gelatin composite meshes for vascular grafts. J. Mater. Sci. Mater. Med. 2010, 21, 1761–1769. [Google Scholar] [CrossRef]
- Prabhakaran, M.P.; Venugopal, J.; Ramakrishna, S. Electrospun nanostructured scaffolds for bone tissue engineering. Acta Biomater. 2009, 5, 2884–2893. [Google Scholar] [CrossRef]
- Hrynevich, A.; Elçi, B.; Haigh, J.N.; McMaster, R.; Youssef, A.; Blum, C.; Blunk, T.; Hochleitner, G.; Groll, J.; Dalton, P.D. Dimension-Based Design of Melt Electrowritten Scaffolds. Small 2018, 14, 1800232. [Google Scholar] [CrossRef]
- Castilho, M.; Feyen, D.; Flandes-Iparraguirre, M.; Hochleitner, G.; Groll, J.; Doevendans, P.A.; Vermonden, T.; Ito, K.; Sluijter, J.P.; Malda, J. Melt Electrospinning Writing of Poly-Hydroxymethylglycolide-co-ε-Caprolactone-Based Scaffolds for Cardiac Tissue Engineering. Adv. Healthc. Mater. 2017, 6, 1700311. [Google Scholar] [CrossRef]
- Youssef, A.; Hrynevich, A.; Fladeland, L.; Balles, A.; Groll, J.; Dalton, P.D.; Zabler, S. The Impact of Melt Electrowritten Scaffold Design on Porosity Determined by X-Ray Microtomography. Tissue Eng. Part C Methods 2019, 25, 367–378. [Google Scholar] [CrossRef]
- Gwiazda, M.; Kumar, S.; Świeszkowski, W.; Ivanovski, S.; Vaquette, C. The effect of melt electrospun writing fiber orientation onto cellular organization and mechanical properties for application in Anterior Cruciate Ligament tissue engineering. J. Mech. Behav. Biomed. Mater. 2020, 104, 103631. [Google Scholar] [CrossRef]
- Hewitt, E.; Mros, S.; Mcconell, M.; Cabral, J.; Ali, A. Melt electrowriting with novel milk protein/PCL biomaterials for skin regeneration. Biomed. Mater. 2019, 14, 055013. [Google Scholar] [CrossRef]
- Kim, B.; Grzybowski, D.M.; Weber, P.; Roberts, C.J.; Zhao, Y. Electrospun micro/nanofiber assisted in vitro construction of trabecular meshwork for glaucoma investigation. In Proceedings of the Conference, MicroTAS 2009—The 13th International Conference on Miniaturized Systems for Chemistry and Life Sciences, Jeju, Republic of Korea, 1–5 November 2009; pp. 1192–1194. [Google Scholar]
- Bikuna-Izagirre, M.; Aldazabal, J.; Extramiana, L.; Moreno-Montañés, J.; Carnero, E.; Paredes, J. Nanofibrous PCL-Based Human Trabecular Meshwork for Aqueous Humor Outflow Studies. ACS Biomater. Sci. Eng. 2023, 9, 6333–6344. [Google Scholar] [CrossRef]
- Clark, A.F.; Wilson, K.; De Kater, A.W.; Allingham, R.R.; McCartney, M.D. Dexamethasone-induced ocular hypertension in perfusion-cultured human eyes. Investig. Ophthalmol. Vis. Sci. 1995, 36, 478–489. [Google Scholar]
- Clark, A.F.; Brotchie, D.; Read, A.T.; Hellberg, P.; English-Wright, S.; Pang, I.; Ethier, C.R.; Grierson, I. Dexamethasone alters F-actin architecture and promotes cross-linked actin network formation in human trabecular meshwork tissue. Cell Motil. Cytoskelet. 2005, 60, 83–95. [Google Scholar] [CrossRef]
- Ren, R.; Li, G.; Le, T.D.; Kopczynski, C.; Stamer, W.D.; Gong, H. Netarsudil increases Outflow facility in human eyes through multiple mechanisms. Investig. Ophthalmol. Vis. Sci. 2016, 57, 6197–6209. [Google Scholar] [CrossRef]
- Keller, K.E.; Kopczynski, C. Effects of netarsudil on actin-driven cellular functions in normal and glaucomatous trabecular meshwork cells: A live imaging study. J. Clin. Med. 2020, 9, 3524. [Google Scholar] [CrossRef]
- Vernon, M.J.; Lu, J.; Padman, B.; Lamb, C.; Kent, R.; Mela, P.; Doyle, B.; Ihdayhid, A.R.; Jansen, S.; Dilley, R.J.; et al. Engineering Heart Valve Interfaces Using Melt Electrowriting: Biomimetic Design Strategies from Multi-Modal Imaging. Adv. Healthc. Mater. 2022, 11, 2201028. [Google Scholar] [CrossRef]
- Xu, H.; Liashenko, I.; Lucchetti, A.; Du, L.; Dong, Y.; Zhao, D.; Meng, J.; Yamane, H.; Dalton, P.D. Designing with Circular Arc Toolpaths to Increase the Complexity of Melt Electrowriting. Adv. Mater. Technol. 2022, 7, 2101676. [Google Scholar] [CrossRef]
- Robinson, T.M.; Hutmacher, D.W.; Dalton, P.D. The Next Frontier in Melt Electrospinning: Taming the Jet. Adv. Funct. Mater. 2019, 29, 1904664. [Google Scholar] [CrossRef]
- Saidy, N.T.; Wolf, F.; Bas, O.; Keijdener, H.; Hutmacher, D.W.; Mela, P.; De-Juan-Pardo, E.M. Biologically Inspired Scaffolds for Heart Valve Tissue Engineering via Melt Electrowriting. Small 2019, 15, 1900873. [Google Scholar] [CrossRef]
- Camras, L.J.; Stamer, W.D.; Epstein, D.; Gonzalez, P.; Yuan, F. Differential effects of trabecular meshwork stiffness on outflow facility in normal human and porcine eyes. Investig. Ophthalmol. Vis. Sci. 2012, 53, 5242–5250. [Google Scholar] [CrossRef]
- Camras, L.J.; Stamer, W.D.; Epstein, D.; Gonzalez, P.; Yuan, F. Circumferential tensile stiffness of glaucomatous trabecular meshwork. Investig. Ophthalmol. Vis. Sci. 2014, 55, 814–823. [Google Scholar] [CrossRef] [PubMed]
- Perkins, T.W.; Alvarado, J.; Polansky, J.R.; Stilwell, L.; Maglio, M.; Juster, R. Trabecular meshwork cells grown on filters. Conductivity and cytochalasin effects. Investig. Ophthalmol. Vis. Sci. 1988, 29, 1836–1846. [Google Scholar]
- Saccà, S.C.; Gandolfi, S.; Bagnis, A.; Manni, G.; Damonte, G.; Traverso, C.E.; Izzotti, A. The Outflow Pathway: A Tissue With Morphological and Functional Unity. J. Cell. Physiol. 2016, 231, 1876–1893. [Google Scholar] [CrossRef] [PubMed]
- Johnson, D.H.; Bradley, J.M.B.; Acott, T.S. The effect of dexamethasone on glycosaminoglycans of human trabecular meshwork in perfusion organ culture. Investig. Ophthalmol. Vis. Sci. 1990, 31, 2568–2571. [Google Scholar]
- Vasantha Rao, P.; Deng, P.F.; Kumar, J.; Epstein, D.L. Modulation of aqueous humor outflow facility by the Rho kinase-specific inhibitor Y-27632. Investig. Ophthalmol. Vis. Sci. 2001, 42, 1029–1037. [Google Scholar]
- Bagué, T.; Singh, A.; Ghosh, R.; Yoo, H.; Kelly, C.; Delong, M.A.; Kopczynski, C.C.; Herberg, S. Effects of Netarsudil-Family Rho Kinase Inhibitors on Human Trabecular Meshwork Cell Contractility and Actin Remodeling Using a Bioengineered ECM Hydrogel. Front. Ophthalmol. 2022, 2, 948397. [Google Scholar] [CrossRef]
Pore Size | ||||||
---|---|---|---|---|---|---|
Scaffold Height [µm] | Fiber Diameter [µm] | Theoretical * | Measured | Elastic Modulus [MPa] | Yield Stress [MPa] | |
TM1 | 260 ± 15 | 37.5 ± 2.5 | 0.6 mm | 0.86 ± 0.21 mm | 0.14 ± 0.01 | 0.24 ± 0.04 |
TM2 | 610 ± 26 | 29.1 ± 1.7 | 0.4 mm | 0.75 ± 0.15 mm | 0.18 ± 0.01 | 0.39 ± 0.03 |
TM3 | 20 ± 1.4 | 770 ± 0.2 nm | 5.59 ± 0.68 µm2 | 0.94 ± 0.05 | 2.84 ± 0.20 | |
TMFull | 510 ± 20 | 0.29 ± 0.03 | 0.65 ± 0.22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bikuna-Izagirre, M.; Aldazabal, J.; Moreno-Montañes, J.; De-Juan-Pardo, E.; Carnero, E.; Paredes, J. Artificial Trabecular Meshwork Structure Combining Melt Electrowriting and Solution Electrospinning. Polymers 2024, 16, 2162. https://doi.org/10.3390/polym16152162
Bikuna-Izagirre M, Aldazabal J, Moreno-Montañes J, De-Juan-Pardo E, Carnero E, Paredes J. Artificial Trabecular Meshwork Structure Combining Melt Electrowriting and Solution Electrospinning. Polymers. 2024; 16(15):2162. https://doi.org/10.3390/polym16152162
Chicago/Turabian StyleBikuna-Izagirre, Maria, Javier Aldazabal, Javier Moreno-Montañes, Elena De-Juan-Pardo, Elena Carnero, and Jacobo Paredes. 2024. "Artificial Trabecular Meshwork Structure Combining Melt Electrowriting and Solution Electrospinning" Polymers 16, no. 15: 2162. https://doi.org/10.3390/polym16152162
APA StyleBikuna-Izagirre, M., Aldazabal, J., Moreno-Montañes, J., De-Juan-Pardo, E., Carnero, E., & Paredes, J. (2024). Artificial Trabecular Meshwork Structure Combining Melt Electrowriting and Solution Electrospinning. Polymers, 16(15), 2162. https://doi.org/10.3390/polym16152162