Surface Development of Polyethylene Terephthalate Films Using Low-Pressure, High-Frequency Argon + Oxygen Plasma on Zinc Powder for Dye-Sensitized Solar Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of ZnO/PET Substrates
2.2. Fabrication of DSSCs
2.3. Characterization
3. Results
3.1. Physics of Surface Reaction under Low-Pressure, High-Frequency Ar + O2 Plasma of ZnO Film Fabrication on PET Substrate
3.2. Influence of RF Power to the Thickness of ZnO Thin Films
3.3. Structral Properties of ZnO Film Deposited on PET Substrates
3.4. Electrical Properties
3.5. Transmittance Properties
3.6. Photovoltaic Characterization of DSSCs
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Best Research-Cell Efficiencies Chart. Available online: https://www.nrel.gov/pv/cell-efficiency.html (accessed on 30 April 2024).
- Halme, J.; Vahermaa, P.; Miettunen, K.; Lund, P. Device Physics of Dye Solar Cells. Adv. Mater. 2010, 22, E210–E234. [Google Scholar] [CrossRef] [PubMed]
- Peter, L.M. Dye-sensitized nanocrystalline solar cells. Phys. Chem. Chem. Phys. 2007, 9, 2630–2642. [Google Scholar] [CrossRef] [PubMed]
- O’Regan, B.; Gratzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 1991, 353, 737–740. [Google Scholar] [CrossRef]
- Kalyanasundaram, K. Dye-Sensitized Solar Cells, 1st ed.; EPFL: Lausanne, Switzerland, 2010; pp. 1–38. [Google Scholar]
- Noorasid, N.S.; Arith, F.; Mustafa, A.N.; Azam, M.A.; Mahalingam, S.; Chelvanathan, P.; Amin, N. Current advancement of flexible dye sensitized solar cell: A review. Optik 2022, 254, 168089. [Google Scholar] [CrossRef]
- Cavallo, C.; Di Pascasio, F.; Latini, A.; Bonomo, M.; Dini, D. Nanostructured semiconductor materials for dye-sensitized solar cells. J. Nanomater. 2017, 3, 5323164. [Google Scholar] [CrossRef]
- Chen, L.; Tan, W.; Zhang, J.; Zhou, X.; Zhang, X.; Lin, Y. Fabrication of high performance Pt counter electrodes on conductive plastic substrate for flexible dye-sensitized solar cells. Electrochim. Acta. 2010, 55, 3721–3726. [Google Scholar] [CrossRef]
- Weerasinghe, H.; Huang, F.; Cheng, Y.-B. Fabrication of flexible dye sensitized solar cells on plastic substrates. Nano Energy 2013, 2, 174–189. [Google Scholar] [CrossRef]
- Su, H.; Zhang, M.; Chang, Y.-H.; Zhai, P.; Hau, N.Y.; Huang, Y.-T.; Liu, C.; Soh, A.K.; Feng, S.-P. Highly conductive and low cost Ni-PET flexible substrate for efficient dye-sensitized solar cells. ACS Appl. Mater. Interfaces 2014, 6, 5577–5584. [Google Scholar] [CrossRef] [PubMed]
- Murali, B.; Gireesh Baiju, K.; Krishna Prasad, R.; Jayanarayanan, K.; Kumaresan, D. Fabrication of high-efficiency PET polymer-based flexible dye-sensitized solar cells and tapes via heat sink-supported thermal sintering of bilayer TiO2 photoanodes. Sustain. Energy Fuels 2022, 6, 2503–2513. [Google Scholar] [CrossRef]
- Stranks, S.D.; E Eperson, G.; Grancini, G.; Menelaou, C.; Alcocer, M.J.P.; Leijtens, T.; Herz, L.M.; Petrozza, A.; Snaith, H.J. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 2013, 342, 341–344. [Google Scholar] [CrossRef]
- Anta, J.A.; Guillen, E.; Tena-Zaera, R. ZnO-based dye-sensitized solar cells. J. Phys. Chem. C 2012, 116, 11413–11425. [Google Scholar] [CrossRef]
- Vittal, R.; Ho, K.-C. Zinc oxide based dye-sensitized solar cells: A review. Renew. Sustain. Energy Rev. 2017, 70, 920–935. [Google Scholar] [CrossRef]
- Poonthong, W.; Mungkung, N.; Arunrungrusmi, S.; Yuji, T.; Sung, Y.-M. High performance of IZO coated on PET substrate for electroluminescence device using oxygen plasma treatment. Int. J. Photoenergy 2021, 2021, 889002. [Google Scholar] [CrossRef]
- White, M.S.; Olson, D.C.; Shaheen, S.E.; Kopidakis, N.; Ginley, D.S. Inverted bulk-heterojunction organic photovoltaic device using a solution-derived ZnO underlayer. Appl. Phys. Lett. 2006, 89, 143517. [Google Scholar] [CrossRef]
- Waldauf, C.; Morana, M.; Denk, P.; Schilinsky, P.; Coakley, K.; A Choulis, S.; Brabec, C.J. Highly efficient inverted organic photovoltaics using solution based titanium oxide as electron selective contact. Appl. Phys. Lett. 2006, 89, 233517. [Google Scholar] [CrossRef]
- Ossai, A.N.; Alabi, A.B.; Ezike, S.C.; Aina, A.O. Zinc oxide-based dye-sensitized solar cells using natural and synthetic sensitizers. Curr. Res. Green Sustain. Chem. 2020, 3, 10043. [Google Scholar] [CrossRef]
- Thomas, D.G. Interstitial zinc in zinc oxide. J. Phys. Chem. Solids. 1957, 3, 229–237. [Google Scholar] [CrossRef]
- Harrison, S.E. Conductivity and hall effect of ZnO at low temperatures. Phys. Rev. 1954, 93, 52–62. [Google Scholar] [CrossRef]
- Hutson, A.R. Hall effect studies of doped zinc oxide single crystals. Phys. Rev. Res. 1957, 108, 222–230. [Google Scholar] [CrossRef]
- Ribut, S.H.; Abdullah, C.A.C.; Yusoff, M.Z.M. Investigation of structural and optical properties of zinc oxide thin films growth on various substrates. Results Phys. 2019, 13, 102146. [Google Scholar] [CrossRef]
- Faraj, M.G.; Ibrahim, K. Optical and structural properties of thermally evaporated zinc oxide thin films on polyethylene terephthalate substrates. Int. J. Polym. Sci. 2011, 2011, 302843. [Google Scholar] [CrossRef]
- Zhao, M.-J.; Sun, Z.-T.; Hsu, C.-H.; Huang, P.-H.; Zhang, X.-Y.; Wu, W.-Y.; Gao, P.; Qiu, Y.; Lien, S.-Y.; Zhu, W.-Z. Zinc oxide films with high transparency and crystallinity prepared by a low temperature spatial atomic layer deposition process. Nano-materials 2020, 10, 459. [Google Scholar] [CrossRef] [PubMed]
- Morosanu, C.E. Technique of preparing thin films. In Thin Films by Chemical Vapour Deposition, 1st ed.; Siddall, G., Ed.; Elsevier: New York, NY, USA, 2016; Volume 7, pp. 31–54. [Google Scholar]
- Crowell, J.E. Chemical methods of thin film deposition: Chemical vapor deposition, atomic layer deposition, and related technologies. J. Vac. Sci. Technol. 2003, A 21, S88–S95. [Google Scholar] [CrossRef]
- Fay, S.; Kroll, U.; Bucher, C.; Vallat-Sauvain, E.; Shah, A. Low pressure chemical vapour deposition of ZnO layers for thin-film solar cells: Temperature-induced morphological changes. Sol. Energy Mater. Sol. Cells 2005, 86, 385–397. [Google Scholar] [CrossRef]
- Liang, C.; Zhong, Y.; Zhong, Q.; Li, J.; Cao, W.; Wang, X.; Wang, S.; Xu, X.; Wang, J.; Cao, Y. Low-Temperature Deposition of High-Quality SiO2 Films with a Sloped Sidewall Profile for Vertical Step Coverage. Coatings 2022, 12, 1411. [Google Scholar] [CrossRef]
- Viguie, J.C.; Spitz, J. Chemical Vapor Deposition at Low Temperatures. J. Electrochem. Soc. 1975, 122, 585. [Google Scholar] [CrossRef]
- Dupuis, R.D.; Dapkus, P.D. Room-temperature operation of Ga(1−x)AlxAs/GaAs double-heterostructure lasers grown by metalorganic chemical vapor deposition. Appl. Phys. Lett. 1997, 31, 466–468. [Google Scholar] [CrossRef]
- Sterling, H.F.; Swann, R.C.G. Chemical vapour deposition promoted by r.f. discharge. Solid State Electron. 1965, 8, 653–654. [Google Scholar] [CrossRef]
- Kern, W.; Rosler, R.S. Advances in Deposition Processes for Passivation. J. Vac. Sci. Technol. 1977, 14, 1082. [Google Scholar] [CrossRef]
- Ullah, Z.; Riaz, S.; Li, Q.; Atiq, S.; Saleem, M.; Azhar, M.; Naseem, S.; Liu, L. A comparative study of graphene growth by APCVD, LPCVD and PECVD. Mater. Res. Express 2018, 5, 035606. [Google Scholar] [CrossRef]
- Gudmundsson, J.T.; Marakhtanov, A.M.; Patel, K.K.; Gopinath, V.P.; Lieberman, M.A. On the plasma parameters of a planar inductive oxygen discharge. J. Phys. D Appl. Phys. 2000, 33, 1323. [Google Scholar] [CrossRef]
- Sun, X.; Bao, J.; Li, K.; Argyle, M.D.; Tan, G.; Adidharma, H.; Zhang, K.; Fan, M.; Ning, P. Advance in Using Plasma Technology for Modification or Fabrication of Carbon-Based Materials and Their Applications in Environ mental, Material, and Energy Fields. Adv. Funct. Mater. 2021, 31, 2006287. [Google Scholar] [CrossRef]
- Gudmundsson, J.T.; Thorsteinsson, E.G. Oxygen discharges diluted with argon: Dissociation processes. Plasma Sources Sci. Technol. 2007, 16, 399–412. [Google Scholar] [CrossRef]
- Cioffi, M.O.H.; Voorwald, H.J.C.; Mata, R.P. Surface energy increase of oxygen-plasma-treated PET. Mater. Charact. 2003, 50, 209–215. [Google Scholar] [CrossRef]
- Schofield, K. Rate constants for the gaseous interaction of O(21D2) and O(21S0—A critical evaluation. J. Photochem. 1978, 9, 55–68. [Google Scholar] [CrossRef]
- King, D.L.; Piper, L.G.; Setser, D.W. Electronic energy transfer from metastable argon (4s3P2,0) to xenon, oxygen and chlorine atoms. J. Chem. Soc. Faraday Trans. 2 1977, 73, 177–200. [Google Scholar] [CrossRef]
- Bloem, J. Gas phase diffusion and surface reactions in the chemical vapour deposition of silicon. Pure Appl. Chem. 1978, 50, 435–447. [Google Scholar] [CrossRef]
- Jagur-Grodzinski, J. Heterogeneous Modification of Polymers: Matrix and Surface Reactions, 1st ed.; Wiley: Hoboken, NJ, USA, 1997; pp. 1–121. [Google Scholar]
- Shi, Y. Hot Wire Chemical Vapor Deposition Chemistry in the Gas Phase and on the Catalyst Surface with Organosilicon Compounds. Acc. Chem. Res. 2015, 48, 163–173. [Google Scholar] [CrossRef] [PubMed]
- Pollard, R.; Wang, Y.-F. An Approach for Modeling Surface Reaction Kinetics in Chemical Vapor Deposition Processes. J. Electrochem. Soc. 1995, 142, 1712. [Google Scholar]
- Vijay, A.; Mukhopadhyaya, A.; Shrivastava, V.; Bhardwaj, D.; Ganguli, A.K.; Ali, M.E.; Vaidya, S. Understanding the role of ionic flux on the polarity of the exposed surfaces of ZnO. Phys. Chem. Chem. Phys. 2020, 22, 15427–15436. [Google Scholar] [CrossRef]
- Hu, S.Y.; Lee, Y.C.; Lee, J.W.; Huang, J.C.; Shen, J.L.; Water, W. The structural and optical properties of ZnO/Si thin films by RTA treatments. Appl. Surf. Sci. 2008, 254, 1578–1582. [Google Scholar] [CrossRef]
- Yang, R.-Y.; Weng, M.-H.; Pan, C.-T.; Hsiung, C.M.; Huang, C.C. Low-temperature deposited ZnO thin films on the flexible substrate by cathodic vacuum arc technology. Appl. Surf. Sci. 2011, 257, 7119–7122. [Google Scholar] [CrossRef]
- Khun, K.; Ibupoto, Z.; AlSalhi, M.; Atif, M.; Ansari, A.; Willander, M. Fabrication of well-aligned ZnO nanorods using a composite seed layer of ZnO nanoparticles and chi-tosan polymer. Materials 2013, 6, 4361–4374. [Google Scholar] [CrossRef]
- Han, X.-G.; He, H.-Z.; Kuang, Q.; Zhou, X.; Zhang, X.-H.; Xu, T.; Xie, Z.-X.; Zheng, L.-S. Controlling morphologies and tuning the related properties of nano/microstructured ZnO crystallites. J. Phys. Chem. C 2009, 113, 584–589. [Google Scholar] [CrossRef]
- Bao, Q.; Liu, X.; Xia, Y.; Gao, F.; Kauffmann, L.-D.; Margeat, O.; Ackermann, J.; Fahlman, M. Effects of ultraviolet soaking on surface electronic structures of solution processed ZnO nanoparticle films in polymer solar cells. J. Mater. Chem. A 2014, 2, 17676–17682. [Google Scholar] [CrossRef]
- Qi, B.; Wang, J. Fill factor in organic solar cells. Phys. Chem. Chem. Phys. 2013, 15, 8972–8982. [Google Scholar] [CrossRef]
- Winder, C.; Saricftci, N.Z. Low bandgap polymers for photon harvesting in bulk heterojunction solar cells. J. Mater. Chem. 2004, 14, 1077–1086. [Google Scholar] [CrossRef]
Source and Materials | Conditions |
---|---|
Substrate | PET |
Source material | DEZn of Tri Chemical Laboratories Inc. |
Carrier Ar gas flow rate | 20 L/min |
O2 gas flow rate | 0.5 L/min |
RF plasma generator | 200–300 W |
Scrolling distance | 25 mm |
Anode and cathode gap | 35 mm |
RF Power (W) | Resistivity (Ω) | Mobility (cm2/V·s) | Carrier Concentration (cm−3) | |||
---|---|---|---|---|---|---|
Lowest | Highest | Lowest | Highest | Lowest | Highest | |
200 | 7.2 × 10−2 | 1.7 | 1.2 × 101 | 3.1 × 102 | 7.6 × 1015 | 1.5 × 1016 |
220 | 2.2 × 10−2 | 1.1 | 4.1 × 101 | 1.1 × 102 | 3.2 × 1016 | 8.5 × 1016 |
240 | 1.7 × 10−2 | 7.3 × 10−1 | 4.6 | 1.8 × 102 | 9.7 × 1016 | 2.3 × 1017 |
260 | 1.2 × 10−2 | 9.2 × 10−1 | 7.4 | 1.2 × 102 | 8.3 × 1016 | 2.2 × 1017 |
280 | 5.1 × 10−4 | 6.4 × 10−1 | 9.8 | 1.2 × 103 | 8.9 × 1016 | 1.7 × 1017 |
300 * | 1.8 × 10−4 | 3.1 × 10−1 | 1.2 × 102 | 2.1 × 103 | 2.3 × 1017 | 9.7 × 1017 |
ZnO/PET Substrate | Jsc (mA/cm−2) | Voc (V) | FF | Efficiency (η, %) |
---|---|---|---|---|
RF 200 W | 13.66 | 0.69 | 0.55 | 5.18 |
RF 220 W | 13.78 | 0.67 | 0.57 | 5.26 |
RF 240 W | 13.95 | 0.66 | 0.58 | 5.34 |
RF 260 W | 14.10 | 0.65 | 0.59 | 5.40 |
RF 280 W | 14.21 | 0.64 | 0.61 | 5.54 |
RF 300 W | 14.32 | 0.63 | 0.63 | 5.68 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poonthong, W.; Mungkung, N.; Tunlasakun, K.; Thungsuk, N.; Kasayapanand, N.; Arunrungrusmi, S.; Tanitteerapan, T.; Maneepen, T.; Songruk, A.; Yuji, T. Surface Development of Polyethylene Terephthalate Films Using Low-Pressure, High-Frequency Argon + Oxygen Plasma on Zinc Powder for Dye-Sensitized Solar Cells. Polymers 2024, 16, 2283. https://doi.org/10.3390/polym16162283
Poonthong W, Mungkung N, Tunlasakun K, Thungsuk N, Kasayapanand N, Arunrungrusmi S, Tanitteerapan T, Maneepen T, Songruk A, Yuji T. Surface Development of Polyethylene Terephthalate Films Using Low-Pressure, High-Frequency Argon + Oxygen Plasma on Zinc Powder for Dye-Sensitized Solar Cells. Polymers. 2024; 16(16):2283. https://doi.org/10.3390/polym16162283
Chicago/Turabian StylePoonthong, Wittawat, Narong Mungkung, Khanchai Tunlasakun, Nuttee Thungsuk, Nat Kasayapanand, Somchai Arunrungrusmi, Tanes Tanitteerapan, Threerapong Maneepen, Apidat Songruk, and Toshifumi Yuji. 2024. "Surface Development of Polyethylene Terephthalate Films Using Low-Pressure, High-Frequency Argon + Oxygen Plasma on Zinc Powder for Dye-Sensitized Solar Cells" Polymers 16, no. 16: 2283. https://doi.org/10.3390/polym16162283
APA StylePoonthong, W., Mungkung, N., Tunlasakun, K., Thungsuk, N., Kasayapanand, N., Arunrungrusmi, S., Tanitteerapan, T., Maneepen, T., Songruk, A., & Yuji, T. (2024). Surface Development of Polyethylene Terephthalate Films Using Low-Pressure, High-Frequency Argon + Oxygen Plasma on Zinc Powder for Dye-Sensitized Solar Cells. Polymers, 16(16), 2283. https://doi.org/10.3390/polym16162283