Micro-Nanoparticle Characterization: Establishing Underpinnings for Proper Identification and Nanotechnology-Enabled Remediation
Abstract
:1. Introduction
2. Characterization
2.1. Characterization Overview (Introduction)
2.2. Fourier-Transform Infrared Spectroscopy
2.3. Raman Spectroscopy
2.4. Proton Nuclear Magnetic Resonance Spectroscopy (H-NMR)
2.5. Pyrolysis: Curie Point-Gas Chromatography-Mass Spectrometry and Induced Coupled Plasma-Mass Spectrometry
2.6. Miscellaneous Identification, Isolation, and Quantification Techniques
2.7. Morphological Characterization
2.8. Isolation and Sample Pretreatment
2.9. Characterization Overview (Conclusions)
3. SOTA Characterization and Existing/Theoretical Modes of Remediation
3.1. SOTA Characterization
3.1.1. Optical-Photothermal Infrared Microspectroscopy (O-PTIR)
3.1.2. Z-Stack Confocal Microscopy
3.1.3. Mueller Matrix Polarimetry
3.1.4. Holographic Imaging
3.2. Existing Modes of Remediation
3.3. Theoretical Modes of Remediation via Nanotechnology
3.3.1. Layer-by-Layer (LBL) Nanoparticle Remediator
3.3.2. Enzyme Selection
3.3.3. Processing Implementation in Wastewater Management
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Bergmann, M.; Gutow, L.; Klages, M. Marine Anthropogenic Litter; Springer Nature: Berlin/Heidelberg, Germany, 2015; pp. 1–447. [Google Scholar] [CrossRef]
- Gallo, F.; Fossi, C.; Weber, R.; Santillo, D.; Sousa, J.; Ingram, I.; Nadal, A.; Romano, D. Marine litter plastics and microplastics and their toxic chemicals components: The need for urgent preventive measures. Environ. Sci. Eur. 2018, 30, 13. [Google Scholar] [CrossRef] [PubMed]
- Ryan, P.G. A Brief History of Marine Litter Research. In Marine Anthropogenic Litter; Springer International Publishing: Cham, Switzerland, 2015; pp. 1–25. [Google Scholar] [CrossRef]
- Chamas, A.; Moon, H.; Zheng, J.; Qiu, Y.; Tabassum, T.; Jang, J.H.; Abu-Omar, M.; Scott, S.L.; Suh, S. Degradation Rates of Plastics in the Environment. ACS Sustain. Chem. Eng. 2020, 8, 3494–3511. [Google Scholar] [CrossRef]
- Uheida, A.; Mejía, H.G.; Abdel-Rehim, M.; Hamd, W.; Dutta, J. Visible light photocatalytic degradation of polypropylene microplastics in a continuous water flow system. J. Hazard. Mater. 2021, 406, 124299. [Google Scholar] [CrossRef]
- Corcoran, P.L.; Biesinger, M.C.; Grifi, M. Plastics and beaches: A degrading relationship. Mar. Pollut. Bull. 2009, 58, 80–84. [Google Scholar] [CrossRef]
- Mecozzi, M.; Pietroletti, M.; Monakhova, Y.B. FTIR spectroscopy supported by statistical techniques for the structural characterization of plastic debris in the marine environment: Application to monitoring studies. Mar. Pollut. Bull. 2016, 106, 155–161. [Google Scholar] [CrossRef] [PubMed]
- ter Halle, A.; Ghiglione, J.F. Nanoplastics: A Complex, Polluting Terra Incognita. Environ. Sci. Technol. 2021, 55, 14466–14469. [Google Scholar] [CrossRef]
- Ren, Z.; Gui, X.; Xu, X.; Zhao, L.; Qiu, H.; Wang, X.; Cao, X. Weathering of microplastics and their enhancement on the retention of cadmium in coastal soil saturated with seawater. J. Hazard. Mater. 2022, 440, 129850. [Google Scholar] [CrossRef]
- Alharbi, O.M.L.; Basheer, A.A.; Khattab, R.A.; Ali, I. Health and environmental effects of persistent organic pollutants. J. Mol. Liq. 2018, 263, 442–453. [Google Scholar] [CrossRef]
- Zhao, M.; Huang, L.; Babu Arulmani, S.R.; Yan, J.; Wu, L.; Wu, T.; Zhang, H.; Xiao, T. Adsorption of Different Pollutants by Using Microplastic with Different Influencing Factors and Mechanisms in Wastewater: A Review. Nanomaterials 2022, 12, 2256. [Google Scholar] [CrossRef]
- Atugoda, T.; Vithanage, M.; Wijesekara, H.; Bolan, N.; Sarmah, A.K.; Bank, M.S.; You, S.; Ok, Y.S. Interactions between microplastics, pharmaceuticals and personal care products: Implications for vector transport. Environ. Int. 2021, 149, 106367. [Google Scholar] [CrossRef] [PubMed]
- Ye, Z.; Mai, T.; Cheng, Y.; Zhang, X.; Liu, Z.; Zhang, Z.; Li, Y. Neurotoxicity of microplastics: A CiteSpace-based review and emerging trends study. Environ. Monit. Assess. 2023, 195, 960. [Google Scholar] [CrossRef] [PubMed]
- Agboola, O.D.; Benson, N.U. Physisorption and Chemisorption Mechanisms Influencing Micro (Nano) Plastics-Organic Chemical Contaminants Interactions: A Review. Front. Environ. Sci. 2021, 9, 678574. [Google Scholar] [CrossRef]
- Koelmans, A.A.; Besseling, E.; Shim, W.J.; Koelmans, A.A.; Besseling, E.; Besseling, E.; Shim, W.J. Nanoplastics in the Aquatic Environment. Critical Review. In Marine Anthropogenic Litter; Springer Nature: Berlin/Heidelberg, Germany, 2015; pp. 325–340. [Google Scholar] [CrossRef]
- Shao, H.; Han, Z.; Krasteva, N.; Wang, D. Identification of signaling cascade in the insulin signaling pathway in response to nanopolystyrene particles. Nanotoxicology 2019, 13, 174–188. [Google Scholar] [CrossRef]
- Thushari, G.G.N.; Senevirathna, J.D.M. Plastic pollution in the marine environment. Heliyon 2020, 6, 33–69. [Google Scholar] [CrossRef]
- deBruyn, A.M.H.; Gobas, F.A.P.C. A Bioenergetic Biomagnification Model for the Animal Kingdom. Environ. Sci. Technol. 2006, 40, 1581–1587. [Google Scholar] [CrossRef]
- Lu, H.-C.; Smith, J.L.; Ziajahromi, S.; Leusch, F.D.L. Microplastics and other anthropogenic fibres in large apex shark species: Abundance, characteristics, and recommendations for future research. Chemosphere 2024, 349, 140957. [Google Scholar] [CrossRef]
- Sá, S.; Torres-Pereira, A.; Ferreira, M.; Monteiro, S.S.; Fradoca, R.; Sequeira, M.; Vingada, J.; Eira, C. Microplastics in Cetaceans Stranded on the Portuguese Coast. Animals 2023, 13, 3263. [Google Scholar] [CrossRef]
- Hernandez-Milian, G.; Lusher, A.; MacGabban, S.; Rogan, E. Microplastics in grey seal (Halichoerus grypus) intestines: Are they associated with parasite aggregations? Mar. Pollut. Bull. 2019, 146, 349–354. [Google Scholar] [CrossRef]
- Garthwaite, J. “How Much Microplastic Do Whales Eat? Up to 10 Million Pieces per Day, Stanford Research Finds,” Stanford Report. Available online: https://news.stanford.edu/stories/2022/11/whales-eat-colossal-amounts-microplastics#:~:text=Humpbackwhalessubsistingprimarilyon,millionmicroplasticpiecesperday (accessed on 20 September 2024).
- Microplastics Found in Feces and Natural Habitat of Taiwan’s Protected Species. Greenpeace East Asia. Available online: https://www.greenpeace.org/eastasia/press/7525/microplastics-found-in-feces-and-natural-habitat-of-taiwans-protected-species/ (accessed on 20 September 2024).
- Zhang, J.; Wang, L.; Kannan, K. Polyethylene Terephthalate and Polycarbonate Microplastics in Pet Food and Feces from the United States. Environ. Sci. Technol. 2019, 53, 12035–12042. [Google Scholar] [CrossRef] [PubMed]
- Ratnayaka, A.A.W.; Serieys, L.E.K.; Hangawatte, T.A.; Leung, L.K.P.; Fisher, D.O. Plastic ingestion by fishing cats suggests trophic transfer in urban wetlands. Environ. Pollut. 2023, 316, 120694. [Google Scholar] [CrossRef] [PubMed]
- Oliveri Conti, G.; Ferrante, M.; Banni, M.; Favara, C.; Nicolosi, I.; Cristaldi, A.; Fiore, M.; Zuccarello, P. Micro- and nano-plastics in edible fruit and vegetables. The first diet risks assessment for the general population. Environ. Res. 2020, 187, 109677. [Google Scholar] [CrossRef]
- Li, H.; Yang, Z.; Jiang, F.; Li, L.; Li, Y.; Zhang, M.; Qi, Z.; Ma, R.; Zhang, Y.; Fang, J.; et al. Detection of microplastics in domestic and fetal pigs’ lung tissue in natural environment: A preliminary study. Environ. Res. 2023, 216, 114623. [Google Scholar] [CrossRef]
- Galloway, T.S. Micro- and Nano-plastics and Human Health. In Marine Anthropogenic Litter; Springer International Publishing: Cham, Switzerland, 2015; pp. 343–366. [Google Scholar] [CrossRef]
- Leslie, H.A.; van Velzen, M.J.M.; Brandsma, S.H.; Vethaak, A.D.; Garcia-Vallejo, J.J.; Lamoree, M.H. Discovery and quantification of plastic particle pollution in human blood. Environ. Int. 2022, 163, 107199. [Google Scholar] [CrossRef]
- Marfella, R.; Prattichizzo, F.; Sardu, C.; Fulgenzi, G.; Graciotti, L.; Spadoni, T.; D’Onofrio, N.; Scisciola, L.; La Grotta, R.; Frigé, C.; et al. Microplastics and Nanoplastics in Atheromas and Cardiovascular Events. N. Engl. J. Med. 2024, 390, 900–910. [Google Scholar] [CrossRef]
- Jadhav, E.B.; Sankhla, M.S.; Bhat, R.A.; Bhagat, D.S. Microplastics from food packaging: An overview of human consumption, health threats, and alternative solutions. Environ. Nanotechnol. Monit. Manag. 2021, 16, 100608. [Google Scholar] [CrossRef]
- Zhao, X.; You, F. Microplastic Human Dietary Uptake from 1990 to 2018 Grew across 109 Major Developing and Industrialized Countries but Can Be Halved by Plastic Debris Removal. Environ. Sci. Technol. 2024, 58, 8709–8723. [Google Scholar] [CrossRef]
- Islam, M.S.; Rahman, M.M.; Larpruenrudee, P.; Arsalanloo, A.; Beni, H.M.; Islam, M.A.; Gu, Y.; Sauret, E. How microplastics are transported and deposited in realistic upper airways? Phys. Fluids 2023, 35. [Google Scholar] [CrossRef]
- Chen, Q.; Gao, J.; Yu, H.; Su, H.; Yang, Y.; Cao, Y.; Zhang, Q.; Ren, Y.; Hollert, H.; Shi, H.; et al. An emerging role of microplastics in the etiology of lung ground glass nodules. Environ. Sci. Eur. 2022, 34, 25. [Google Scholar] [CrossRef]
- Amato-Lourenço, L.F.; Carvalho-Oliveira, R.; Júnior, G.R.; dos Santos Galvão, L.; Ando, R.A.; Mauad, T. Presence of airborne microplastics in human lung tissue. J. Hazard. Mater. 2021, 416, 126124. [Google Scholar] [CrossRef] [PubMed]
- Woo, J.-H.; Seo, H.J.; Lee, J.-Y.; Lee, I.; Jeon, K.; Kim, B.; Lee, K. Polypropylene nanoplastic exposure leads to lung inflammation through p38-mediated NF-κB pathway due to mitochondrial damage. Part. Fibre Toxicol. 2023, 20, 2. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhao, Y.; Du, F.; Cai, H.; Wang, G.; Shi, H. Microplastic Fallout in Different Indoor Environments. Environ. Sci. Technol. 2020, 54, 6530–6539. [Google Scholar] [CrossRef]
- Aristizabal, M.; Jiménez-Orrego, K.V.; Caicedo-León, M.D.; Páez-Cárdenas, L.S.; Castellanos-García, I.; Villalba-Moreno, D.L.; Ramírez-Zuluaga, L.V.; Hsu, J.T.S.; Jaller, J.; Gold, M. Microplastics in dermatology: Potential effects on skin homeostasis. J. Cosmet. Dermatol. 2024, 23, 766–772. [Google Scholar] [CrossRef]
- Abafe, O.A.; Harrad, S.; Abdallah, M.A.-E. Novel Insights into the Dermal Bioaccessibility and Human Exposure to Brominated Flame Retardant Additives in Microplastics. Environ. Sci. Technol. 2023, 57, 10554–10562. [Google Scholar] [CrossRef]
- Boccia, P.; Mondellini, S.; Mauro, S.; Zanellato, M.; Parolini, M.; Sturchio, E. Potential Effects of Environmental and Occupational Exposure to Microplastics: An Overview of Air Contamination. Toxics 2024, 12, 320. [Google Scholar] [CrossRef] [PubMed]
- Gambino, I.; Bagordo, F.; Grassi, T.; Panico, A.; De Donno, A. Occurrence of Microplastics in Tap and Bottled Water: Current Knowledge. Int. J. Environ. Res. Public Heal. 2022, 19, 5283. [Google Scholar] [CrossRef] [PubMed]
- Kaseke, T.; Lujic, T.; Cirkovic Velickovic, T. Nano- and Microplastics Migration from Plastic Food Packaging into Dairy Products: Impact on Nutrient Digestion, Absorption, and Metabolism. Foods 2023, 12, 3043. [Google Scholar] [CrossRef]
- Canha, N.; Jafarova, M.; Grifoni, L.; Gamelas, C.A.; Alves, L.C.; Almeida, S.M.; Loppi, S. Microplastic contamination of lettuces grown in urban vegetable gardens in Lisbon (Portugal). Sci. Rep. 2023, 13, 14278. [Google Scholar] [CrossRef]
- Milne, M.H.; De Frond, H.; Rochman, C.M.; Mallos, N.J.; Leonard, G.H.; Baechler, B.R. Exposure of U.S. adults to microplastics from commonly-consumed proteins. Environ. Pollut. 2024, 343, 123233. [Google Scholar] [CrossRef]
- Othman, A.M.; Elsayed, A.A.; Sabry, Y.M.; Khalil, D.; Bourouina, T. Detection of Sub-20 μm Microplastic Particles by Attenuated Total Reflection Fourier Transform Infrared Spectroscopy and Comparison with Raman Spectroscopy. ACS Omega 2023, 8, 10335–10341. [Google Scholar] [CrossRef]
- Asamoah, B.O.; Uurasjärvi, E.; Räty, J.; Koistinen, A.; Roussey, M.; Peiponen, K.E. Towards the Development of Portable and In Situ Optical Devices for Detection of Micro-and Nanoplastics in Water: A Review on the Current Status. Polymers 2021, 13, 730. [Google Scholar] [CrossRef]
- Cai, L.; Wang, J.; Peng, J.; Tan, Z.; Zhan, Z.; Tan, X.; Chen, Q. Characteristic of microplastics in the atmospheric fallout from Dongguan city, China: Preliminary research and first evidence. Environ. Sci. Pollut. Res. 2017, 24, 24928–24935. [Google Scholar] [CrossRef]
- Dris, R.; Gasperi, J.; Saad, M.; Mirande, C.; Tassin, B. Synthetic fibers in atmospheric fallout: A source of microplastics in the environment? Mar. Pollut. Bull. 2016, 104, 290–293. [Google Scholar] [CrossRef]
- Sandt, C.; Waeytens, J.; Deniset-Besseau, A.; Nielsen-Leroux, C.; Réjasse, A. Use and misuse of FTIR spectroscopy for studying the bio-oxidation of plastics. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 258, 119841. [Google Scholar] [CrossRef]
- Tang, P.L.; Forster, R.; McCumskay, R.; Rogerson, M.; Waller, C. Handheld FT-IR Spectroscopy for the Triage of Micro- and Meso-Sized Plastics in the Marine Environment Incorporating an Accelerated Weathering Study and an Aging Estimation. Spectroscopy. Available online: https://www.spectroscopyonline.com/view/handheld-ft-ir-spectroscopy-triage-micro-and-meso-sized-plastics-marine-environment-incorporating-ac (accessed on 1 March 2022).
- Nava, V.; Frezzotti, M.L.; Leoni, B. Raman Spectroscopy for the Analysis of Microplastics in Aquatic Systems. Appl. Spectrosc. 2021, 75, 1341–1357. [Google Scholar] [CrossRef]
- Schymanski, D.; Goldbeck, C.; Humpf, H.-U.; Fürst, P. Analysis of microplastics in water by micro-Raman spectroscopy: Release of plastic particles from different packaging into mineral water. Water Res. 2018, 129, 154–162. [Google Scholar] [CrossRef]
- PublicSpectra|Raman Spectral Database. Available online: https://publicspectra.com/ (accessed on 4 May 2022).
- Clunies-Ross, P.J.; Smith, G.P.S.; Gordon, K.C.; Gaw, S. Synthetic shorelines in New Zealand? Quantification and characterisation of microplastic pollution on Canterbury’s coastlines. N. Z. J. Mar. Freshw. Res. 2016, 50, 317–325. [Google Scholar] [CrossRef]
- Gillibert, R.; Balakrishnan, G.; Deshoules, Q.; Tardivel, M.; Magazzù, A.; Donato, M.G.; Maragò, O.M.; Lamy De La Chapelle, M.; Colas, F.; Lagarde, F.; et al. Raman tweezers for small microplastics and nanoplastics identification in seawater. Environ. Sci. Technol. 2019, 53, 9003–9013. [Google Scholar] [CrossRef] [PubMed]
- Ramsperger, A.F.R.M.; Narayana, V.K.B.; Gross, W.; Mohanraj, J.; Thelakkat, M.; Greiner, A.; Schmalz, H.; Kress, H.; Laforsch, C. Environmental exposure enhances the internalization of microplastic particles into cells. Sci. Adv. 2020, 6, eabd1211. [Google Scholar] [CrossRef] [PubMed]
- Dong, M.; Zhang, Q.; Xing, X.; Chen, W.; She, Z.; Luo, Z. Raman spectra and surface changes of microplastics weathered under natural environments. Sci. Total Environ. 2020, 739, 139990. [Google Scholar] [CrossRef]
- Analytical Chemistry—A Guide to Proton Nuclear Magnetic Resonance (NMR)–Compound Interest. Available online: https://www.compoundchem.com/2015/02/24/proton-nmr/ (accessed on 5 March 2022).
- Corti, A.; Vinciguerra, V.; Iannilli, V.; Pietrelli, L.; Manariti, A.; Bianchi, S.; Petri, A.; Cifelli, M.; Domenici, V.; Castelvetro, V. Thorough Multianalytical Characterization and Quantification of Micro- and Nanoplastics from Bracciano Lake’s Sediments. Sustainability 2020, 12, 878. [Google Scholar] [CrossRef]
- Peez, N.; Janiska, M.-C.; Imhof, W. The first application of quantitative 1H NMR spectroscopy as a simple and fast method of identification and quantification of microplastic particles (PE, PET, and PS). Anal. Bioanal. Chem. 2019, 411, 823–833. [Google Scholar] [CrossRef]
- Papini, G.; Petrella, G.; Cicero, D.O.; Boglione, C.; Rakaj, A. Identification and quantification of polystyrene microplastics in marine sediments facing a river mouth through NMR spectroscopy. Mar. Pollut. Bull. 2024, 198, 115784. [Google Scholar] [CrossRef]
- Peez, N.; Rinesch, T.; Kolz, J.; Imhof, W. Applicable and cost-efficient microplastic analysis by quantitative 1 H-NMR spectroscopy using benchtop NMR and NoD methods. Magn. Reson. Chem. 2022, 60, 172–183. [Google Scholar] [CrossRef]
- Giannattasio, A.; Iuliano, V.; Oliva, G.; Giaquinto, D.; Capacchione, C.; Cuomo, M.T.; Hasan, S.W.; Choo, K.-H.; Korshin, G.V.; Barceló, D.; et al. Micro(nano)plastics from synthetic oligomers persisting in Mediterranean seawater: Comprehensive NMR analysis, concerns and origins. Environ. Int. 2024, 190, 108839. [Google Scholar] [CrossRef]
- Li, C.; Gao, Y.; He, S.; Chi, H.-Y.; Li, Z.-C.; Zhou, X.-X.; Yan, B. Quantification of Nanoplastic Uptake in Cucumber Plants by Pyrolysis Gas Chromatography/Mass Spectrometry. Environ. Sci. Technol. Lett. 2021, 8, 633–638. [Google Scholar] [CrossRef]
- Jiménez-Lamana, J.; Marigliano, L.; Allouche, J.; Grassl, B.; Szpunar, J.; Reynaud, S. A Novel Strategy for the Detection and Quantification of Nanoplastics by Single Particle Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Anal. Chem. 2020, 92, 11664–11672. [Google Scholar] [CrossRef]
- Bühler, C.; Simon, W. Curie Point Pyrolysis Gas Chromatography. J. Chromatogr. Sci. 1970, 8, 323–329. [Google Scholar] [CrossRef]
- Fischer, M.; Scholz-Böttcher, B.M. Simultaneous Trace Identification and Quantification of Common Types of Microplastics in Environmental Samples by Pyrolysis-Gas Chromatography–Mass Spectrometry. Environ. Sci. Technol. 2017, 51, 5052–5060. [Google Scholar] [CrossRef]
- Brits, M.; van Velzen, M.J.M.; Sefiloglu, F.Ö.; Scibetta, L.; Groenewoud, Q.; Garcia-Vallejo, J.J.; Vethaak, A.D.; Brandsma, S.H.; Lamoree, M.H. Quantitation of micro and nanoplastics in human blood by pyrolysis-gas chromatography–mass spectrometry. Microplast. Nanoplast. 2024, 4, 12. [Google Scholar] [CrossRef]
- Chen, H.; Shan, X.; Qiu, X.; Ding, L.; Liang, X.; Guo, X. High-Resolution Mass Spectrometry Combined with Reactive Oxygen Species Reveals Differences in Photoreactivity of Dissolved Organic Matter from Microplastic Sources in Aqueous Environments. Environ. Sci. Technol. 2024, 58, 10334–10346. [Google Scholar] [CrossRef] [PubMed]
- Arenas-Guerrero, P.; Delgado, Á.V.; Donovan, K.J.; Scott, K.; Bellini, T.; Mantegazza, F.; Jiménez, M.L. Determination of the size distribution of non-spherical nanoparticles by electric birefringence-based methods. Sci. Rep. 2018, 8, 9502. [Google Scholar] [CrossRef]
- Hanif, M.A.; Ibrahim, N.; Dahalan, F.A.; Md Ali, U.F.; Hasan, M.; Jalil, A.A. Microplastics and nanoplastics: Recent literature studies and patents on their removal from aqueous environment. Sci. Total Environ. 2022, 810, 152115. [Google Scholar] [CrossRef]
- Kumar, A.; Dixit, C.K. 3-Methods for characterization of nanoparticles. In Advances in Nanomedicine for the Delivery of Therapeutic Nucleic Acids; Nimesh, S., Chandra, R., Gupta, N., Eds.; Woodhead Publishing: Sawston, UK, 2017; pp. 43–58. [Google Scholar] [CrossRef]
- Singh, S.; Dash, A.K.; Agrawal, S. Semisolid Dosage Forms. In Pharmaceutics; Elsevier: Amsterdam, The Netherlands, 2024; pp. 341–391. [Google Scholar] [CrossRef]
- Misra, A.; Zambrzycki, C.; Kloker, G.; Kotyrba, A.; Anjass, M.H.; Franco Castillo, I.; Mitchell, S.G.; Güttel, R.; Streb, C. Water Purification and Microplastics Removal Using Magnetic Polyoxometalate-Supported Ionic Liquid Phases (magPOM-SILPs). Angew. Chemie Int. Ed. 2020, 59, 1601–1605. [Google Scholar] [CrossRef]
- Batool, A.; Valiyaveettil, S. Surface functionalized cellulose fibers–A renewable adsorbent for removal of plastic nanoparticles from water. J. Hazard. Mater. 2021, 413, 125301. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z. Lovibond® Water Testing. 2021. Available online: https://www.tpomag.com/uploads/downloads/WHITE_PAPER_TB_SERIES_LOD_V1_EN.pdf (accessed on 20 September 2024).
- Sadar, M.J. Stabilized Formazin Composition. 1995, pp. 1–5. Available online: https://patents.google.com/patent/US5777011A/en (accessed on 20 September 2024).
- Elkhatib, D.; Oyanedel-Craver, V.; Carissimi, E. Electrocoagulation applied for the removal of microplastics from wastewater treatment facilities. Sep. Purif. Technol. 2021, 276, 118877. [Google Scholar] [CrossRef]
- Aslan, T.; Arslan, S.; Eyvaz, M.; Güçlü, S.; Yüksel, E.; Koyuncu, İ. A novel nanofiber microfiltration membrane: Fabrication and characterization of tubular electrospun nanofiber (TuEN) membrane. J. Memb. Sci. 2016, 520, 616–629. [Google Scholar] [CrossRef]
- Rajala, K.; Grönfors, O.; Hesampour, M.; Mikola, A. Removal of microplastics from secondary wastewater treatment plant effluent by coagulation/flocculation with iron, aluminum and polyamine-based chemicals. Water Res. 2020, 183, 116045. [Google Scholar] [CrossRef]
- Malvern Panalytical Basic Principles of Nanoparticle Tracking Analysis–Q&A. Malvern Panalytical. Available online: https://www.malvernpanalytical.com/en/learn/knowledge-center/insights/basic-principles-of-nanoparticle-tracking-analysis-qa#:~:text=DLScanmeasuremostmaterials,%2Cand~40nmforliposomes (accessed on 20 September 2024).
- Filipe, V.; Hawe, A.; Jiskoot, W. Critical Evaluation of Nanoparticle Tracking Analysis (NTA) by NanoSight for the Measurement of Nanoparticles and Protein Aggregates. Pharm. Res. 2010, 27, 796–810. [Google Scholar] [CrossRef]
- Lambert, S.; Wagner, M. Characterisation of nanoplastics during the degradation of polystyrene. Chemosphere 2016, 145, 265. [Google Scholar] [CrossRef] [PubMed]
- Meier, F.; Heinzmann, G. Field-Flow Fractionation: A Powerful Technology for the Separation and Advanced Characterization of Proteins, Antibodies, Viruses, Polymers and Nano-/Microparticles. 2017, pp. 1–34. Available online: https://www.researchgate.net/publication/319505751_Field-Flow_Fractionation_A_powerful_technology_for_the_separation_and_advanced_characterization_of_proteins_antibodies_viruses_polymers_and_nano-microparticles (accessed on 20 September 2024).
- Williams, S.K.R.; Runyon, J.R.; Ashames, A.A. Field-Flow Fractionation: Addressing the Nano Challenge. Anal. Chem. 2011, 83, 634–642. [Google Scholar] [CrossRef] [PubMed]
- Ratna, D. Chapter 6-Characterization, Performance Evaluation and Lifetime Analysis of Thermoset Resin, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 503–582. [Google Scholar] [CrossRef]
- Tanzi, M.C.; Farè, S.; Candiani, G. Chapter 7-Techniques of Analysis; Tanzi, M.C., Farè, S., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 393–469. [Google Scholar] [CrossRef]
- Gill, P.; Moghadam, T.T.; Ranjbar, B. Differential scanning calorimetry techniques: Applications in biology and nanoscience. J. Biomol. Tech. 2010, 21, 167–193. Available online: http://www.ncbi.nlm.nih.gov/pubmed/21119929 (accessed on 20 September 2024).
- A Beginner’s Guide. Waltham, MA, USA. 2015. Available online: https://resources.perkinelmer.com/lab-solutions/resources/docs/faq_beginners-guide-to-thermogravimetric-analysis_009380c_01.pdf (accessed on 20 September 2024).
- Wies, S.; Geyer, A.; Eysel, W. The limit of detection in differential scanning calorimetry. J. Therm. Anal. 1992, 38, 277–287. [Google Scholar] [CrossRef]
- Majewsky, M.; Bitter, H.; Eiche, E.; Horn, H. Determination of microplastic polyethylene (PE) and polypropylene (PP) in environmental samples using thermal analysis (TGA-DSC). Sci. Total Environ. 2016, 568, 507–511. [Google Scholar] [CrossRef]
- Bitter, H.; Lackner, S. Fast and easy quantification of semi-crystalline microplastics in exemplary environmental matrices by differential scanning calorimetry (DSC). Chem. Eng. J. 2021, 423, 129941. [Google Scholar] [CrossRef]
- Procházková, P.; Kalčíková, G.; Maršálková, E.; Zlámalová Gargošová, H.; Kučerík, J. Innovative approach for quantitative determination of ingested microplastics by Daphnia magna: Use of differential scanning calorimetry and thermogravimetry. J. Therm. Anal. Calorim. 2024, 1–8. [Google Scholar] [CrossRef]
- Kurzweg, L.; Hauffe, M.; Schirrmeister, S.; Adomat, Y.; Socher, M.; Grischek, T.; Fery, A.; Harre, K. Microplastic analysis in sediments of the Elbe River by electrostatic separation and differential scanning calorimetry. Sci. Total Environ. 2024, 930, 172514. [Google Scholar] [CrossRef] [PubMed]
- Wlasits, P.J.; Stoellner, A.; Lattner, G.; Maggauer, K.; Winkler, P.M. Size characterization and detection of aerosolized nanoplastics originating from evaporated thermoplastics. Aerosol Sci. Technol. 2021, 56, 176–185. [Google Scholar] [CrossRef]
- Joy, D.C.; Pawley, J.B. High-resolution scanning electron microscopy. Ultramicroscopy 1992, 47, 80–100. [Google Scholar] [CrossRef]
- Image Resolution; University of Cambridge: Cambridge, UK. Available online: https://www.doitpoms.ac.uk/tlplib/tem/resolution.php#:~:text=ConventionalTEMscanachieveresolutions,(inphasecontrastimages) (accessed on 20 September 2024).
- Mariano, S.; Tacconi, S.; Fidaleo, M.; Rossi, M.; Dini, L. Micro and Nanoplastics Identification: Classic Methods and Innovative Detection Techniques. Front. Toxicol. 2021, 3, 636640. [Google Scholar] [CrossRef]
- Hoogenboom, B.W. Stretching the resolution limit of atomic force microscopy. Nat. Struct. Mol. Biol. 2021, 28, 629–630. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.; Shirato, N.; Zhu, X.; Rosenmann, D.; Tong, X.; Xu, W.; Petrovic, C.; Rose, V.; Nazaretski, E. X-ray Assisted Scanning Tunneling Microscopy and Its Applications for Materials Science: The First Results on Cu Doped ZrTe3. Crystals 2019, 9, 588. [Google Scholar] [CrossRef]
- Yang, T.; Luo, J.; Nowack, B. Characterization of Nanoplastics, Fibrils, and Microplastics Released during Washing and Abrasion of Polyester Textiles. Environ. Sci. Technol. 2021, 55, 15873–15881. [Google Scholar] [CrossRef] [PubMed]
- Shim, W.J.; Song, Y.K.; Hong, S.H.; Jang, M. Identification and quantification of microplastics using Nile Red staining. Mar. Pollut. Bull. 2016, 113, 469–476. [Google Scholar] [CrossRef] [PubMed]
- Maes, T.; Jessop, R.; Wellner, N.; Haupt, K.; Mayes, A.G. A rapid-screening approach to detect and quantify microplastics based on fluorescent tagging with Nile Red. Sci. Rep. 2017, 7, 44501. [Google Scholar] [CrossRef] [PubMed]
- Araujo, C.F.; Nolasco, M.M.; Ribeiro, A.M.P.; Ribeiro-Claro, P.J.A. Identification of microplastics using Raman spectroscopy: Latest developments and future prospects. Water Res. 2018, 142, 426–440. [Google Scholar] [CrossRef] [PubMed]
- Valsesia, A.; Parot, J.; Ponti, J.; Mehn, D.; Marino, R.; Melillo, D.; Muramoto, S.; Verkouteren, M.; Hackley, V.A.; Colpo, P. Detection, counting and characterization of nanoplastics in marine bioindicators: A proof of principle study. Microplast. Nanoplast. 2021, 1, 5. [Google Scholar] [CrossRef]
- Schwaferts, C.; Niessner, R.; Elsner, M.; Ivleva, N.P. Methods for the analysis of submicrometer- and nanoplastic particles in the environment. TrAC Trends Anal. Chem. 2019, 112, 52–65. Available online: https://linkinghub.elsevier.com/retrieve/pii/S0165993618304631 (accessed on 28 May 2022). [CrossRef]
- Coppock, R.L.; Cole, M.; Lindeque, P.K.; Queirós, A.M.; Galloway, T.S. A small-scale, portable method for extracting microplastics from marine sediments. Environ. Pollut. 2017, 230, 829–837. [Google Scholar] [CrossRef]
- Díaz-Jaramillo, M.; Islas, M.S.; Gonzalez, M. Spatial distribution patterns and identification of microplastics on intertidal sediments from urban and semi-natural SW Atlantic estuaries. Environ. Pollut. 2021, 273, 116398. [Google Scholar] [CrossRef] [PubMed]
- Crichton, E.M.; Noël, M.; Gies, E.A.; Ross, P.S. A novel, density-independent and FTIR-compatible approach for the rapid extraction of microplastics from aquatic sediments. Anal. Methods 2017, 9, 1419–1428. [Google Scholar] [CrossRef]
- Thomas, D.; Schütze, B.; Heinze, W.M.; Steinmetz, Z. Sample Preparation Techniques for the Analysis of Microplastics in Soil—A Review. Sustainability 2020, 12, 9074. [Google Scholar] [CrossRef]
- Marchetti, A.; Beltran, V.; Nuyts, G.; Borondics, F.; De Meyer, S.; Van Bos, M.; Jaroszewicz, J.; Otten, E.; Debulpaep, M.; De Wael, K. Novel optical photothermal infrared (O-PTIR) spectroscopy for the noninvasive characterization of heritage glass-metal objects. Sci. Adv. 2022, 8, eabl6769. [Google Scholar] [CrossRef]
- Gvazava, N.; Konings, S.C.; Cepeda-Prado, E.; Skoryk, V.; Umeano, C.H.; Dong, J.; Silva, I.A.N.; Ottosson, D.R.; Leigh, N.D.; Wagner, D.E.; et al. Label-Free High-Resolution Photothermal Optical Infrared Spectroscopy for Spatiotemporal Chemical Analysis in Fresh, Hydrated Living Tissues and Embryos. J. Am. Chem. Soc. 2023, 145, 24796–24808. [Google Scholar] [CrossRef]
- Tarafdar, A.; Xie, J.; Gowen, A.; O’Higgins, A.C.; Xu, J.-L. Advanced optical photothermal infrared spectroscopy for comprehensive characterization of microplastics from intravenous fluid delivery systems. Sci. Total Environ. 2024, 929, 172648. [Google Scholar] [CrossRef]
- Tarafdar, A.; Choi, S.-H.; Kwon, J.-H. Differential staining lowers the false positive detection in a novel volumetric measurement technique of microplastics. J. Hazard. Mater. 2022, 432, 128755. [Google Scholar] [CrossRef]
- Bai, Y.; Zhang, B.; Xu, N.; Zhou, J.; Shi, J.; Diao, Z. Vision-based navigation and guidance for agricultural autonomous vehicles and robots: A review. Comput. Electron. Agric. 2023, 205, 107584. [Google Scholar] [CrossRef]
- Hilfiker, J.N.; Hong, N.; Schoeche, S. Mueller matrix spectroscopic ellipsometry. Adv. Opt. Technol. 2022, 11, 59–91. [Google Scholar] [CrossRef]
- Li, J.; Liu, H.; Liao, R.; Wang, H.; Chen, Y.; Xiang, J.; Xu, X.; Ma, H. Recognition of microplastics suspended in seawater via refractive index by Mueller matrix polarimetry. Mar. Pollut. Bull. 2023, 188, 114706. [Google Scholar] [CrossRef]
- Li, J.; Wang, H.; Liao, R.; Wang, Y.; Liu, Z.; Zhuo, Z.; Guo, Z.; Ma, H. Statistical Mueller matrix driven discrimination of suspended particles. Opt. Lett. 2021, 46, 3645. [Google Scholar] [CrossRef] [PubMed]
- Lopera, M.J.; Trusiak, M.; Doblas, A.; Ottevaere, H.; Trujillo, C. Mueller-Gabor holographic microscopy. Opt. Lasers Eng. 2024, 178, 108191. [Google Scholar] [CrossRef]
- Huang, Z.; Cao, L. Quantitative phase imaging based on holography: Trends and new perspectives. Light Sci. Appl. 2024, 13, 145. [Google Scholar] [CrossRef]
- Li, Y.; Zhu, Y.; Huang, J.; Ho, Y.-W.; Fang, J.K.-H.; Lam, E.Y. High-throughput microplastic assessment using polarization holographic imaging. Sci. Rep. 2024, 14, 2355. [Google Scholar] [CrossRef]
- Valentino, M.; Sirico, D.G.; Memmolo, P.; Miccio, L.; Bianco, V.; Ferraro, P. Digital holographic approaches to the detection and characterization of microplastics in water environments. Appl. Opt. 2023, 62, D104–D118. [Google Scholar] [CrossRef]
- Valentino, M.; Běhal, J.; Bianco, V.; Itri, S.; Mossotti, R.; Dalla Fontana, G.; Battistini, T.; Stella, E.; Miccio, L.; Ferraro, P. Intelligent polarization-sensitive holographic flow-cytometer: Towards specificity in classifying natural and microplastic fibers. Sci. Total Environ. 2022, 815, 152708. [Google Scholar] [CrossRef]
- Zhu, Y.; Li, Y.; Huang, J.; Lam, E.Y. Smart polarization and spectroscopic holography for real-time microplastics identification. Commun. Eng. 2024, 3, 32. [Google Scholar] [CrossRef]
- Tofa, T.S.; Kunjali, K.L.; Paul, S.; Dutta, J. Visible light photocatalytic degradation of microplastic residues with zinc oxide nanorods. Environ. Chem. Lett. 2019, 17, 1341–1346. [Google Scholar] [CrossRef]
- Sakr, O.S.; Borchard, G. Encapsulation of Enzymes in Layer-by-Layer (LbL) Structures: Latest Advances and Applications. Biomacromolecules 2013, 14, 2117–2135. [Google Scholar] [CrossRef]
- Talbert, J.N.; Goddard, J.M. Influence of nanoparticle diameter on conjugated enzyme activity. Food Bioprod. Process. 2013, 91, 693–699. [Google Scholar] [CrossRef]
- Ji, Y.; Mao, G.; Wang, Y.; Bartlam, M. Structural insights into diversity and n-alkane biodegradation mechanisms of alkane hydroxylases. Front. Microbiol. 2013, 4, 58. [Google Scholar] [CrossRef] [PubMed]
- Austin, H.P.; Allen, M.D.; Donohoe, B.S.; Rorrer, N.A.; Kearns, F.L.; Silveira, R.L.; Pollard, B.C.; Dominick, G.; Duman, R.; El Omari, K.; et al. Characterization and engineering of a plastic-degrading aromatic polyesterase. Proc. Natl. Acad. Sci. USA 2018, 115, E4350–E4357. [Google Scholar] [CrossRef] [PubMed]
- Wei, R.; Zimmermann, W. Microbial enzymes for the recycling of recalcitrant petroleum-based plastics: How far are we? Microb. Biotechnol. 2017, 10, 1308–1322. [Google Scholar] [CrossRef] [PubMed]
- Sadler, J.C.; Wallace, S. Microbial synthesis of vanillin from waste poly(ethylene terephthalate). Green Chem. 2021, 23, 4665–4672. [Google Scholar] [CrossRef]
- Choi, E.J.; Jin, H.M.; Lee, S.H.; Math, R.K.; Madsen, E.L.; Jeon, C.O. Comparative genomic analysis and benzene, toluene, ethylbenzene, and o-, m-, and p-xylene (BTEX) degradation pathways of Pseudoxanthomonas spadix BD-a59. Appl. Environ. Microbiol. 2013, 79, 663–671. [Google Scholar] [CrossRef]
- Zhe, Z.; Peng, H.; Yang, D.; Zhang, G.; Zhang, J.; Ju, F. Polyvinyl Chloride Biodegradation Fuels Survival of Invasive Insect Larva and Intestinal Degrading Strain of Klebsiella. bioRxiv 2021. [Google Scholar] [CrossRef]
- Yasuhira, K.; Tanaka, Y.; Shibata, H.; Kawashima, Y.; Ohara, A.; Kato, D.; Takeo, M.; Negoro, S. 6-Aminohexanoate Oligomer Hydrolases from the Alkalophilic Bacteria Agromyces sp. Strain KY5R and Kocuria sp. Strain KY2. Appl. Environ. Microbiol. 2007, 73, 7099–7102. [Google Scholar] [CrossRef]
- Matés, J.M.; Pérez-Gómez, C.; De Castro, I.N. Antioxidant enzymes and human diseases. Clin. Biochem. 1999, 32, 595–603. [Google Scholar] [CrossRef]
- Yu, C.; Shao, Z.; Liu, B.; Zhang, Y.; Wang, S. Inhibition of 2-Amino-1-methyl-6-phenylimidazo [4,5-b]pyridine (PhIP) Formation by Alkoxy Radical Scavenging of Flavonoids and Their Quantitative Structure–Activity Relationship in a Model System. J. Food Sci. 2016, 81, C1908–C1913. [Google Scholar] [CrossRef]
- Arregui, L.; Ayala, M.; Gómez-Gil, X.; Gutiérrez-Soto, G.; Hernández-Luna, C.E.; Herrera De Los Santos, M.; Levin, L.; Rojo-Domínguez, A.; Romero-Martínez, D.; Saparrat, M.C.N.; et al. Laccases: Structure, function, and potential application in water bioremediation. Microb. Cell Factories 2019, 18, 200. [Google Scholar] [CrossRef]
- Oliveira, A.R.; Mota, C.; Mourato, C.; Domingos, R.M.; Santos, M.F.A.; Gesto, D.; Guigliarelli, B.; Santos-Silva, T.; Romão, M.J.; Cardoso Pereira, I.A. Toward the Mechanistic Understanding of Enzymatic CO2 Reduction. ACS Catal. 2020, 10, 3844–3856. [Google Scholar] [CrossRef]
- Metcalf, L.; Eddy, H.P.; Tchobanoglous, G. Wastewater Engineering: Treatment, Disposal, Reuse, 2nd ed.; McGraw-Hill: New York, NY, USA, 1979. [Google Scholar]
Method | Category | Particle Size Regime | Sample Preparation | Advantages | Disadvantages |
---|---|---|---|---|---|
FTIR | Identification | MPLs | Dry | Adequate resolution and well-reported method. Identifies polymers, additives, and adsorbents. Spectral libraries available. Resolution: ~10 µm [32] | Sensitive to confounding chemical noise from additives/adsorbents. |
Raman | Identification/Quantification | MPLs/NPLs | Dry (Wet: Raman Tweezers) | Higher spatial resolution, well-reported method. Identifies polymers, additives, and adsorbents. Spectral libraries available. Resolution: ~1 nm [39] | Sensitive to confounding chemical noise from additives/adsorbents. Fluorescence from the material can be an issue. |
H-NMR | Identification | MPLs | Wet | Possible confirmatory technique for structural analysis. Identifies the structure of oxidized species. LOD: 1 µg/mL/6 µg [46,47,48] | Extensive sample preparation. |
Pyrolysis | Identification/Quantification | MPLs/NPLs | Wet | LoD is low for the concentration and size of particles. Great application for biological samples. LOD: 1.6/2.31 µg/g [29,50] | Sample destruction. Extensive sample preparation. |
FFF-MALS | Identification/Quantification | MPLs/NPLs | Wet | Various size regimes can be studied based on applied mode (field/pore shape nature and size 0.38 µg/g) [50]. | Not well studied. Largely proprietary. |
Counting/Weighing | Quantification | MPLs (counting)/MPLs and NPL weighing | Dry | Mainly benefits larger MPLs and mesoplastics. | NPL and lower MPL regime more challenging to weigh/count. |
Method | Category | Particle Size Regime | Sample Preparation | Advantages | Disadvantages |
---|---|---|---|---|---|
DLS | Quantification | MPLs/NPLs | Wet (colloid) | Gives the average diameter in addition to the concentration of MPLs and NPLs. LOD: 0.005 µm [56] | Engineered MPL and NPL colloids with adequate serial dilutions for calibration needed. Samples tested must be within range of calibration. |
Turbidimetry | Quantification | MPLs | Wet/Dry | Facile: Measures opacity. LOD: 0.0011 NTU [61] | Turbidimetry is not as common as DLS in literature for nanoparticles. |
AFM/SEM/TEM | Identification | MPLs/NPLs | Dry | Elucidates morphological nature of particles. Resolution: 1/0.1/1 nm [74,75,77] | AFM is not well-studied for MPLs. |
STXM | Identification | MPLs/NPLs/Microfibrils | Dry | Offers spatial determination of material type present in a given sample. Resolution: 1 nm (Step size: 5 mm) [78] | Extensive preparation for particle type and size. Grid needed for centrifugal capture. |
NTA | Quantification | MPLs/NPLs (by particle conc.) | Wet | Fairly facile and quick method for particle concentration determination. Resolution 10 nm [64] | Limited to specific ranges of particle concentrations. |
TGA | Identification | MPLs (heterogeneous sample may contain NPLs/Mesoplastic, etc.) | Dry | Concentration of PE/PP is determined in a heterogeneous sample. LOD: 1 mg [69] | No clear determination of MPL and NPL presence (general plastic concentration). |
DSC | Identification | MPLs (specific extraction for higher regime MPLs) | Dry | Heating steps improve SNR. Resolution: 0.1 mJ [70] | Sample not heterogenous. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Williams, W.A.; Aravamudhan, S. Micro-Nanoparticle Characterization: Establishing Underpinnings for Proper Identification and Nanotechnology-Enabled Remediation. Polymers 2024, 16, 2837. https://doi.org/10.3390/polym16192837
Williams WA, Aravamudhan S. Micro-Nanoparticle Characterization: Establishing Underpinnings for Proper Identification and Nanotechnology-Enabled Remediation. Polymers. 2024; 16(19):2837. https://doi.org/10.3390/polym16192837
Chicago/Turabian StyleWilliams, Wesley Allen, and Shyam Aravamudhan. 2024. "Micro-Nanoparticle Characterization: Establishing Underpinnings for Proper Identification and Nanotechnology-Enabled Remediation" Polymers 16, no. 19: 2837. https://doi.org/10.3390/polym16192837
APA StyleWilliams, W. A., & Aravamudhan, S. (2024). Micro-Nanoparticle Characterization: Establishing Underpinnings for Proper Identification and Nanotechnology-Enabled Remediation. Polymers, 16(19), 2837. https://doi.org/10.3390/polym16192837