Development of Antibacterial Thermoplastic Starch with Natural Oils and Extracts: Structural, Mechanical and Thermal Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sheet Composition
2.3. Sheet Preparation by Extrusion and Compression Molding
2.4. Starch and Sheet Characterization
2.4.1. XRD
2.4.2. Fourier Transform Infrared Spectroscopy (FTIR)
2.4.3. Thermogravimetric Analysis (TGA)
2.4.4. Scanning Electron Microscopy (SEM)
2.4.5. Mechanical Properties
2.4.6. Antimicrobial Activity Using the Disk Diffusion Method
2.4.7. Biodegradability in Vegetable Compost
3. Results and Discussion
3.1. XRD
3.2. FTIR Spectroscopy
3.3. Thermogravimetric Analysis
3.4. Scanning Electronic Microscopy
3.5. Mechanical Properties
3.6. Antimicrobial Assay
3.7. Biodegradability in Compost
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Active Components | Characterization by GC/MS |
---|---|
Eucalyptus globulus Labill. (EO) | Cineol or eucalyptol, monoterpenes: α-pinene, p-cymene, limonene; aldehydes: butyraldehyde, capronaldehyde. Azulene, tannins, resin, flavone: eucalyptin; triterpenes derived from ursolic acid. |
Melaleuca alternifoliae. (TT) | Terpinene-4-ol, γ-terpine, α-terpine, 1,8-cineole, α-pinene, p-cymene, terpinolene, α-terpineol. |
Rosmarinus officinalis. (RO) | α-Pinene, β-pinene, camphene and terpenic esters such as 1,8-cineole, camphor, linalool, verbinol, terpineol, carnosol, rosmanol, isorosmanol, 3-octanone, isobanyl-acetate and β-caryophyllene; vanillic, caffeic, chlorogenic, rosmarinic, carnosic, ursolic, oleanolic, butylinic, betulinic, betulin, α-amyrin, β-amyrin, borneol and bornyl acetate. |
Kalanchoe pinnata. Chiriyuyo extract (CE) | Hexadecanoic acid, Phytol, 9,12,15-Octadecatrienoic acid, Eicosanoic acid, Diisoctylphthalate, Tetracosanal, Heptacosane, Squalene, Hexacosanal, δ-Tocopherol, Vitamin E, (E)-24-Propylidenecholesterol, β-Amyrin acetate, γ-Sitosterol. |
References
- European Bioplastics Market Development. Available online: http://www.european-bioplastics.org/news/publications/ (accessed on 7 March 2023).
- Emadian, M.; Turgut, T.; Onay, D. Biodegradation of bioplastics in natural environment. Waste Manag. 2017, 59, 526–536. [Google Scholar] [CrossRef] [PubMed]
- Xie, F.; Luckman, P.; Milne, J.; McDonald, L.; Young, C.; Tu, C.Y.; Di Pasquale, T.; Faveere, R.; Halley, P. Thermoplastic Starch: Current Development and Future Trends. J. Renew. Mater. 2014, 2, 95–106. [Google Scholar] [CrossRef]
- Directive Europe. 2019. Available online: https://www.boe.es/buscar/doc.php?id=DOUE-L-2019-81016 (accessed on 12 March 2023).
- Vilela, C.; Kurek, M.; Hayouka, Z.; Röcker, B.; Yildirim, M.; Julie Nilsen-Nygaard, A.; Pettersen, M.; Freire, C.A. Concise guide to active agents for active food packaging. Trends Food Sci. Technol. 2018, 80, 212–222. [Google Scholar] [CrossRef]
- Satyanarayana, K.G.; Wypych, F.; Woehl, M.A.; Ramos, L.P.; Marangoni, R. Nanocomposites Based on Starch and Fibers of Natural Origin. In Handbook of Bioplastics and Biocomposites Engineering Applications; Pilla, S., Ed.; Wiley: Hoboken, NJ, USA, 2011; pp. 471–509. [Google Scholar] [CrossRef]
- Westlake, J.; Tran, M.W.; Jiang, Y.; Zhang, X.; Burrows, A.D.; Xie, M. Biodegradable biopolymers for active packaging: Demand, development, and directions. Sustain. Food. Technol. 2023, 1, 50–72. [Google Scholar] [CrossRef]
- Dufresne, A.; Castaño, J. Polysaccharide nanomaterial reinforced starch nanocomposites: A review. Starch 2017, 69, 1500307. [Google Scholar] [CrossRef]
- Gadhave, R.V.; Das, A.; Mahanwar, P.A.; Gadekar, P.T. Starch Based Bio-Plastics: The Future of Sustainable Packaging. Open J. Polym. Chem. 2018, 8, 21–33. [Google Scholar] [CrossRef]
- Jumaidin, R.; Mohd Zainel, S.N.; Sapuan, S.M. Processing of Thermoplastic Starch. In Advanced Processing, Properties, and Applications of Starch and Other Bio-Based Polymers; Al-Oqla, F.M., Sapuan, S.M., Eds.; Elsevier: New York, NY, USA, 2020; pp. 11–19. [Google Scholar] [CrossRef]
- Firouz, M.S.; Mohi-Alden, K.; Omid, M. A critical review on intelligent and active packaging in the food industry: Research and development. Food Res. Int. 2021, 141, 110113. [Google Scholar] [CrossRef]
- Global Starch Industry; Report ID: 5485911. Global Industry Analysts. Available online: https://www.reportlinker.com/p05485911/Global-Starch-Industry.html (accessed on 7 March 2023).
- Farooq, S.; Mir, S.; Shah, M.; Manickavasagan, A.; Sunooj, K.; Siddiqui, M.; Mousavi-Khaneghah, A. Incorporation of Plants Extracts and Essential Oils into Starch-Based Films: A Comprehensive Review. Starch 2023, 75, 2200098. [Google Scholar] [CrossRef]
- Atarés, L.; Chiralt, A. Essential oils as additives in biodegradable films and coatings for active food packaging. Trends Food Sci. 2016, 48, 51–62. [Google Scholar] [CrossRef]
- Azevedo, V.; Carvalho, R.; Borges, S.; Claro, P.; Hasegawa, F.; Yoshida, M.; Marconcini, J. Thermoplastic starch/whey protein isolate/rosemary essential oil nanocomposites obtained by extrusion process: Antioxidant polymers. Appl. Polym. Sci. 2019, 136, 1–12. [Google Scholar] [CrossRef]
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological effects of essential oils. A review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef] [PubMed]
- do Evangelho, J.A.; da Silva Dannenberg, G.; Biduski, B.; el Halal, S.L.M.; Kringel, D.H.; Gularte, M.A.; Fiorentini, A.M.; da Rosa Zavareze, E. Antibacterial activity, optical, mechanical, and barrier properties of corn starch films containing orange essential oil. Carbohydr. Polym. 2019, 222, 114981. [Google Scholar] [CrossRef] [PubMed]
- Quihui-Cota, L.; Morales-Figueroa, G.G.; Valbuena-Gregorio, E.; Campos-García, J.C.; Silva-Beltrán, N.P.; López-Mata, M.A. Membrana de Quitosano con Aceites Esenciales de Romero y Árbol de Té: Potencial como Biomaterial. Rev. Mex. de Ing. Biomed. 2017, 38, 255–264. [Google Scholar] [CrossRef]
- Medina-Jaramillo, C.; Ochoa-Yepes, O.; Bernal, C.; Famá, L. Active and smart biodegradable packaging based on starch and natural extracts. Carbohydr. Polym. 2017, 176, 187–194. [Google Scholar] [CrossRef] [PubMed]
- Noumi, E.; Mejdi, S.; Hajlaoui, H.; Trabelsi, N.; Riadh, K.; Valentin, E.; Bakhrouf, A. Chemical composition, antioxidant, and antifungal potential of Melaleuca alternifolia (Tea Tree) and Eucalyptus globulus essential oils against oral Candida species. J. Med. Plant Res. 2011, 5, 4147–4156. [Google Scholar]
- Silveira, M.P.; Silva, H.C.; Pimentel, I.C.; Poitevin, C.G.; da Costa Stuart, A.K.; Carpiné, D.; de Matos Jorge, L.M.; Jorge, R.M.M. Development of active cassava starch cellulose nanofiber-based films incorporated with natural antimicrobial tea tree essential oil. J. Appl. Polym. Sci. 2020, 137, 48726. [Google Scholar] [CrossRef]
- Li, W.R.; Li, H.L.; Shi, Q.S.; Sun, T.L.; Xie, X.B.; Song, B. The dynamics and mechanism of the antimicrobial activity of tea tree oil against bacteria and fungi. Appl. Microbiol. Biotechnol. 2016, 100, 8865–8875. [Google Scholar] [CrossRef]
- Brun, P.; Bernabè, G.; Filippini, R.; Piovan, A. In vitro antimicrobial activities of commercially available tea tree (Melaleuca alternifolia) essential oils. Curr. Microbiol. 2019, 76, 108–116. [Google Scholar] [CrossRef]
- Espinel Jara, V.M.; Castillo Andrade, R.E.; Tapia Paguay, M.X.; Tito Pineda, A.P.; Baquero Cadena, S.M.; López Aguilar, E.C. Prevención de Infecciones Puerperales con Churiyuyo (Kalanchoe pinnata), una experiencia de las Parteras Tradicionales en Napo Ecuador. Lauinvestiga 2016, 3, 89–96. Available online: https://revistasojs.utn.edu.ec/index.php/lauinvestiga/article/view/22 (accessed on 23 December 2023).
- Radwan-Pragłowska, J.; Janus, Ł.; Piątkowski, M.; Sierakowska, A.; Galek, T.; Szajna, E.; Bogdał, D.; Tupaj, M. Fungal Chitosan-Derived Biomaterials Modified with Kalanchoe pinnata as Potential Hemostatic Agents—Development and Characterization. Polymer 2021, 13, 1300. [Google Scholar] [CrossRef]
- Rahman, R.; Al-Sabahi, J.N.; Ghaffar, A.; Nadeem, F.; Umar, A. Phytochemical, morphological, botanical, and pharmacological aspects of a medicinal plant: Kalanchoe pinnata–A review article. IJCBS 2019, 16, 5–10. Available online: https://www.iscientific.org/volume-16-2019/ (accessed on 23 December 2023).
- Hou, T.; Sana, S.S.; Li, H.; Xing, Y.; Nanda, A.; Netala, V.R.; Zhang, Z. Essential oils, and its antibacterial, antifungal, and anti-oxidant activity applications: A review. Food Biosci. 2022, 47, 101716. [Google Scholar] [CrossRef]
- Montero-Recalde, M.A.; Martínez-Jiménez, J.A.; Avilés-Esquivel, D.F.; Valle-Velástegui, E.L.; Pazmiño-Miranda, N. Efecto antimicrobiano del extracto crudo oleoso de Rosmarinus Officinalis sobre cepa de Escherichia coli. J. Selva Andina biosph. 2017, 5, 168–175. Available online: http://www.scielo.org.bo/scielo.php?script=sci_arttext&pid=S2308-38592017000200012 (accessed on 23 December 2023). [CrossRef]
- Valencia-Sullca, C.; Vargas, M.; Atarés, L.; Chiralt, A. Thermoplastic cassava starch-chitosan bilayer films containing essential oils. Food Hydrocoll. 2018, 75, 107–115. [Google Scholar] [CrossRef]
- Syafiq, R.; Sapuan, S.M.; Zuhri, M.Y.M.; Ilyas, R.A.; Nazrin, A.; Sherwani, S.F.K.; Khalina, A. Antimicrobial Activities of Starch-Based Biopolymers and Biocomposites Incorporated with Plant Essential Oils: A Review. Polymer 2020, 19, 2403. [Google Scholar] [CrossRef] [PubMed]
- González-Seligra, P.; Guz, L.; Ochoa-Yépez, O.; Goyanes, S.; Famá, L. Influence of extrusion process conditions on starch film morphology. LWT 2017, 84, 520–528. [Google Scholar] [CrossRef]
- ASTM D882-12; Standard Test Method for Tensile Properties of Thin Plastic Sheeting. ASTM International: West Conshohocken, PA, USA, 2012. Available online: https://www.astm.org/DATABASE.CART/HISTORICAL/D882-02.htm (accessed on 7 March 2023).
- Velasco, J.; Rojas, J.; Salazar, P.; Rodríguez, M.; Díaz, T.; Morales, A.; Rondón, M. Antibacterial activity of the essential oil of Lippia oreganoides against multiresistant bacterial strains of nosocomial origin. Nat. Prod. Commun. 2007, 2, 85–88. [Google Scholar] [CrossRef]
- International Standards Organization ISO 20200; Plastics Determination of the Degree of Disintegration of Plastic Materials under Simulated Composting Conditions in a Laboratory-Scale Test. International Standards Organization: Geneva, Switzerland, 2023. Available online: https://www.iso.org/obp/ui/#iso:std:iso:20200:ed-3:v1:en (accessed on 23 December 2023).
- Arrieta, M.P.; López, J.; Rayón, E.; Jiménez, A. Disintegrability under Composting Conditions of Plasticized PLA–PHB Blends. Polym. Degrad. Stab. 2014, 108, 307–318. [Google Scholar] [CrossRef]
- Sessini, V.; Arrieta, M.P.; Raquez, J.M.; Dubois, P.; Kenny, J.M.; Peponi, L. Thermal and composting degradation of EVA/Thermoplastic starch blends and their nanocomposites. Polym. Degrad. Stab. 2019, 159, 184–198. [Google Scholar] [CrossRef]
- Zain, A.H.M.; Ab Wahab, M.K.; Ismail, H. Biodegradation Behaviour of Thermoplastic Starch: The Roles of Carboxylic Acids on Cassava Starch. J. Polym. Environ. 2018, 26, 691–700. [Google Scholar] [CrossRef]
- Domene-López, D.; García-Quesada, J.C.; Martin-Gullon, I.; Montalbán, M.G. Influence of Starch Composition and Molecular Weight on Physicochemical Properties of Biodegradable Films. Polymer 2019, 11, 1084. [Google Scholar] [CrossRef] [PubMed]
- Altayan, M.M.; Al Darouich, T.; Karabet, F. Thermoplastic starch from corn and wheat: A comparative study based on amylose content. Polym. Bull. 2021, 78, 3131–3147. [Google Scholar] [CrossRef]
- Paluch, M.; Ostrowska, J.; Tyński, P.; Sadurski, W.; Konkol, M. Structural and Thermal Properties of Starch Plasticized with Glycerol/Urea Mixture. J. Polym. Environ. 2022, 30, 728–740. [Google Scholar] [CrossRef]
- Luchese, C.L.; Garrido, T.; Spada, J.C.; Tessaro, I.C.; de la Caba, K. Development and characterization of cassava starch films incorporated with blueberry pomace. Int. J. Biol. Macromol. 2018, 106, 834–839. [Google Scholar] [CrossRef] [PubMed]
- Shivaraju, V.K.; Vallayil Appukuttan, S.; Sunny, K. The Influence of Bound Water on the FTIR Characteristics of Starch and Starch Nanocrystals Obtained from Selected Natural Sources. Starch 2019, 71, 1700026. [Google Scholar] [CrossRef]
- Combrzyński, M.; Oniszczuk, T.; Kupryaniuk, K.; Wójtowicz, A.; Mitrus, M.; Milanowski, M.; Soja, J.; Budziak-Wieczorek, I.; Karcz, D.; Kamiński, D. Physical Properties, Spectroscopic, Microscopic, X-ray, and Chemometric Analysis of Starch Films Enriched with Selected Functional Additives. Materials 2021, 14, 2673. [Google Scholar] [CrossRef] [PubMed]
- Kizil, R.; Irudayaraj, J.; Seetharaman, K. Characterization of irradiated starches by using FT-Raman and FTIR spectroscopy. J. Agric. Food Chem. 2002, 50, 3912–3918. [Google Scholar] [CrossRef]
- Gallart-Mateu, D.; Largo-Arango, C.D.; Larkman, T.; Garrigues, S.; de la Guardia, M. Fast authentication of tea tree oil through spectroscopy. Talanta 2018, 189, 404–410. [Google Scholar] [CrossRef]
- Kustrin, S.; Ristivojevic, P.; Gegechkori, V.; Litvinova, T.; Morton, D. Essential Oil Quality and Purity Evaluation via FT-IR Spectroscopy and Pattern Recognition Techniques. Appl. Sci. 2020, 10, 7294. [Google Scholar] [CrossRef]
- Liu, Y.; Liao, L.; Xiong, J.; Liang, Z. Thermal degradation behavior and structures of thermoplastic cassava starch/sisal fiber composites. Polym. Compos. 2022, 4, 2022–2033. [Google Scholar] [CrossRef]
- Zhu, X.; He, Q.; Hu, Y.; Huang, R.; Shao, N.; Gao, Y. A comparative study of structure, thermal degradation, and combustion behavior of starch from different plant sources. J. Therm. Anal. Calorim. 2018, 132, 927–935. [Google Scholar] [CrossRef]
- Jamróz, E.; Juszczak, L.; Kucharek, M. Development of starch-furcellaran-gelatin films containing tea tree essential oil. J. Appl. Polym. Sci. 2018, 135, 2–9. [Google Scholar] [CrossRef]
- Guinesi, L.S.; Da Róz, A.L.; Corradini, E.; Mattoso, L.H.C.; Teixeira, E.d.M.; Curvelo, A.A.d.S. Kinetics of thermal degradation applied to starches from different botanical origins by non-isothermal procedures. Thermochim. Acta 2006, 447, 190–196. [Google Scholar] [CrossRef]
- Marcilla, A.; Beltran, M. Mechanisms of plasticizers action. In Handbook of Plasticizers, 3rd ed.; Wypych, G., Ed.; ChemTec Publishing: Toronto, Canada, 2017; pp. 119–134. [Google Scholar]
- de Souza, A.G.; Agostinho dos Santos, N.M.; Ferreira da Silva, R.; Derval dos Santos, R. Synergic antimicrobial properties of Carvacrol essential oil and montmorillonite in biodegradable starch films. Int. J. Biol. Macromol. 2020, 164, 1737–1747. [Google Scholar] [CrossRef]
- Esquivel-Alvarado, D.; Porras-Brenes, G.; Madrigal-Carballo, S.; Rodríguez Rodríguez, G. Estudio de la actividad antibacteriana de los extractos orgánicos liquénicos obtenidos de Lobaria subdissecta y Parmotrema latissimum. Uniciencia 2015, 29, 39–45. [Google Scholar] [CrossRef]
- Gutierrez, T.J.; Alvarez, V.A. Bionanocomposite films developed from corn starch and natural and modified nano-clays with or without added blueberry extract. Food Hydrocoll. 2018, 77, 407–420. [Google Scholar] [CrossRef]
Nomenclature | Starch (g) | Glycerol (g) | Water (g) | Essential Oil/Extract (g) |
---|---|---|---|---|
70TPS | 70 | 18 | 12 | -- |
70TPS-0.5EO | 70 | 18 | 12 | 0.5 |
70TPS-0.5TT | 70 | 18 | 12 | 0.5 |
70TPS-0.5RO | 70 | 18 | 12 | 0.5 |
70TPS-0.5CE | 70 | 18 | 12 | 0.5 |
60TPS | 60 | 24 | 16 | -- |
60TPS-0.5TT | 60 | 24 | 16 | 0.5 |
60TPS-1TT | 60 | 24 | 16 | 1 |
60TPS-2TT | 60 | 24 | 16 | 2 |
60TPS-7TT | 60 | 24 | 16 | 7 |
TPS Sheets | Young’s Modulus (MPa) | Tension at Break (MPa) | Deformation at Break (%) |
---|---|---|---|
60TPS | 16.5 ± 1.5 | 2.5 ± 0.5 | 53.5 ± 6.7 |
70TPS | 28.4 ± 0.5 | 3.5 ± 0.4 | 68.7 ± 5.8 |
70TPS-0.5EO | 95.9 ± 3.0 | 7.3 ± 0.3 | 106.1 ± 6.8 |
70TPS-0.5TT | 34.8 ± 4.7 | 5.0 ± 0.3 | 96.7 ± 9.0 |
70TPS-0.5RO | 47.6 ± 2.8 | 6.7 ± 0.2 | 98.2 ± 7.8 |
70TPS-0.5CE | 35.6 ± 3.5 | 6.0 ± 0.4 | 136.2 ± 13.1 |
60TPS-0.5TT | 3.0 ± 0.3 | 2.6 ± 0.1 | 202.6 ± 16.6 |
60TPS-1TT | 4.6 ± 0.7 | 2.7 ± 0.2 | 218.1 ± 13.9 |
60TPS-2TT | 9.5 ± 1.2 | 3.9 ± 0.3 | 226.1 ± 17.8 |
60TPS-P 7TT | 14.0 ± 1.2 | 4.0 ± 0.4 | 152.7 ± 8.5 |
TPS Sheets | Inhibition Zone S. aureus (mm) | Inhibition Zone P. aeruginosa (mm) |
---|---|---|
70TPS | -- | -- |
70TPS-0.5EO | 14.3 ± 0.7 | 6.3 ± 0.9 |
70TPS-0.5TT | 12.2 ± 0.8 | 18.1 ± 0.7 |
70TPS-0.5RO | 11.7 ± 2.4 | 12.5 ± 4.3 |
70TPS-0.5CE | 11.5 ± 0.8 | 19.3 ± 1.2 |
60TPS | -- | -- |
60TPS-0.5TT | 15.0 ± 1.9 | 17.8 ± 0.6 |
60TPS-1TT | 15.7 ± 3.2 | 20.3 ± 1.9 |
60TPS-2TT | 14.3 ± 2.3 | 11.0 ± 1.1 |
60TPS-7TT | 15.3 ± 7.5 | 19.5 ± 4.1 |
Positive control | ||
Eritromicina (15 µg) | 22.0 ± 7.0 | -- |
Oxacilina (5 µg) | 33.0 ± 7.0 | -- |
Ceftazidime (30 µg) | --- | 35.0 ± 7.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López Terán, J.L.; Cabrera Maldonado, E.V.; Araque Rangel, J.d.C.; Poveda Otazo, J.; Beltrán Rico, M.I. Development of Antibacterial Thermoplastic Starch with Natural Oils and Extracts: Structural, Mechanical and Thermal Properties. Polymers 2024, 16, 180. https://doi.org/10.3390/polym16020180
López Terán JL, Cabrera Maldonado EV, Araque Rangel JdC, Poveda Otazo J, Beltrán Rico MI. Development of Antibacterial Thermoplastic Starch with Natural Oils and Extracts: Structural, Mechanical and Thermal Properties. Polymers. 2024; 16(2):180. https://doi.org/10.3390/polym16020180
Chicago/Turabian StyleLópez Terán, Jorge Luis, Elvia Victoria Cabrera Maldonado, Judith del Carmen Araque Rangel, José Poveda Otazo, and María Isabel Beltrán Rico. 2024. "Development of Antibacterial Thermoplastic Starch with Natural Oils and Extracts: Structural, Mechanical and Thermal Properties" Polymers 16, no. 2: 180. https://doi.org/10.3390/polym16020180
APA StyleLópez Terán, J. L., Cabrera Maldonado, E. V., Araque Rangel, J. d. C., Poveda Otazo, J., & Beltrán Rico, M. I. (2024). Development of Antibacterial Thermoplastic Starch with Natural Oils and Extracts: Structural, Mechanical and Thermal Properties. Polymers, 16(2), 180. https://doi.org/10.3390/polym16020180