Effect of Superabsorbent Polymer (SAP) Size on Microstructure and Compressive Strength of Concrete
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Sample Preparation
2.2. Experimental Procedure
2.2.1. Evaluation of Hydration
2.2.2. Porosity Measurement
2.2.3. Compressive Strength Measurement
3. Results and Discussions
3.1. Hydration
3.2. Porosity
3.3. Compressive Strength
4. Conclusions
- ➢
- Incorporating SAPs into cement paste results in heightened hydration levels within the C2S phase, thereby increasing the initial strength. The size of SAP particles plays a pivotal role in determining the degree of hydration augmentation, with larger SAP particles demonstrating a diminishing impact on enhancing hydration. Among all sizes, the 400 µm SAP showcases the most extensive scope of promoting hydration influence at the 105 µm range.
- ➢
- The introduction of SAPs effectively diminishes the porosity within small pores (4 nm–10 μm) in cement paste. SAPs with sizes of 200 μm and 400 μm exhibit superior effectiveness compared to 80 μm and 1000 μm SAPs. However, the inclusion of SAPs can instigate the creation of larger pores (>10 μm) due to the release of water and subsequent shrinkage of the SAPs themselves. While the average size of these larger pores correlates with the larger sizes of SAPs, the overall porosity of these samples with larger SAPs gradually decreases, notably in samples containing 400 μm SAPs. This occurrence can be attributed to the range of promotion hydration effects exerted by SAPs.
- ➢
- The addition of SAPs into cement paste initially causes a notable decrease in compressive strength due to the introduction of release-shrinkage pores. However, this effect lessens over time, since the internal curing conditions provided by SAPs improve hydration, curb shrinkage, and reduce small pore formation. The compressive strength of SAP-introduced cement paste notably varied based on curing moisture levels. Samples cured in RH60%, with lower moisture content, exhibited a positive effect. In contrast, adding SAPs to concrete enhanced compressive strength, particularly in shorter curing periods and drier environments. Among the various SAP sizes, the 400 µm SAPs significantly bolstered the compressive strength of concrete samples, most notably in the early hydration stages.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mignon, A.; Belie, N.D.; Dubruel, P.; Vlierberghe, S.V. Superabsorbent polymers: A review on the characteristics and applications of synthetic, polysaccharide-based, semi-synthetic and ‘smart’ derivatives. Eur. Polym. J. 2019, 117, 165–178. [Google Scholar] [CrossRef]
- Kabiri, K.; Omidian, H.; Zohuriaan-Mehr, M.J.; Doroudiani, S. Superabsorbent Hydrogel Composites and Nanocomposites: A Review. Polym. Compos. 2010, 32, 277–289. [Google Scholar] [CrossRef]
- Mignon, A.; Snoeck, D.; Dubruel, P.; Van Vlierberghe, S.; De Belie, N. Crack mitigation in concrete: Superabsorbent polymers as key to success? Materials 2017, 10, 237. [Google Scholar] [CrossRef] [PubMed]
- Jensen, O.M.; Hansen, P.F. Water-entrained cement-based materials I. Principles and theoretical background. Cem. Concr. Res. 2001, 31, 647–654. [Google Scholar] [CrossRef]
- Hamzah, N.; Mohd Saman, H.; Baghban, M.H.; Mohd Sam, A.R.; Faridmehr, I.; Muhd Sidek, M.N.; Huseien, G.F. A Review on the Use of Self-Curing Agents and Its Mechanism in High-Performance Cementitious Materials. Buildings 2022, 12, 152. [Google Scholar] [CrossRef]
- He, Z.; Shen, A.; Guo, Y.; Lyu, Z.; Li, D.; Qin, X.; Zhao, M.; Wang, Z. Cement-based materials modified with superabsorbent polymers: A review. Constr. Build. Mater. 2019, 225, 569–590. [Google Scholar] [CrossRef]
- Bentz, D.; Jensen, O. Mitigation strategies for autogenous shrinkage cracking. Cem. Concr. Compos. 2004, 26, 677–685. [Google Scholar] [CrossRef]
- Schröfl, C.; Mechtcherine, V.; Gorges, M. Relation between the molecular structure and the efficiency of superabsorbent polymers (SAP) as concrete admixture to mitigate autogenous shrinkage. Cem. Concr. Res. 2012, 42, 865–873. [Google Scholar] [CrossRef]
- Xu, Y.; Yuan, Q.; Dai, X.; Xiang, G. Improving the freeze-thaw resistance of mortar by a combined use of superabsorbent polymer and air entraining agent. J. Build. Eng. 2022, 52, 104471. [Google Scholar] [CrossRef]
- Jensen, O.M.; Hansen, P.F. Water-entrained cement-based materials: II. Experimental observations. Cem. Concr. Res. 2002, 32, 973–978. [Google Scholar] [CrossRef]
- Assmann, A.; Reinhardt, H. Tensile creep and shrinkage of SAP modified concrete. Cem. Concr. Res. 2014, 58, 179–185. [Google Scholar] [CrossRef]
- Xuan, M.-Y.; Wang, Y.-S.; Wang, X.-Y.; Lee, H.-S.; Kwon, S.-J. Effect of Cement Types and Superabsorbent Polymers on the Properties of Sustainable Ultra-High-Performance Paste. Materials 2021, 14, 1497. [Google Scholar] [CrossRef] [PubMed]
- De Meyst, L.; Mannekens, E.; Araújo, M.; Snoeck, D.; Van Tittelboom, K.; Van Vlierberghe, S.; De Belie, N. Parameter Study of Superabsorbent Polymers (SAPs) for Use in Durable Concrete Structures. Materials 2019, 12, 1541. [Google Scholar] [CrossRef] [PubMed]
- Mignon, A.; Snoeck, D.; D’Halluin, K.; Balcaen, L.; Vanhaecke, F.; Dubruel, P.; Van Vlierberghe, S.; De Belie, N. Alginate biopolymers: Counteracting the impact of superabsorbent polymers on mortar strength. Constr. Build. Mater. 2016, 110, 169–174. [Google Scholar] [CrossRef]
- Reinhardt, H.W.; Assmann, A.; Mönnig, S. Superabsorbent polymers (SAPs)-an admixture to increase the durability of concrete. In Proceedings of the 1st International Conference on Microstructure Related Durability of Cementitious Composites, Nanjing, China, 13–15 October 2008; Volume 10, pp. 313–323. [Google Scholar]
- Tan, Y.; Lu, X.; He, R.; Chen, H.; Wang, Z. Influence of superabsorbent polymers (SAPs) type and particle size on the performance of surrounding cement-based materials. Constr. Build. Mater. 2021, 270, 121442. [Google Scholar] [CrossRef]
- Jensen, O.M. Use of superabsorbent polymers in concrete. Concr. Int. 2013, 35, 48–52. [Google Scholar]
- Riyazi, S.; Kevern, J.T.; Mulheron, M. Super absorbent polymers (SAPs) as physical air entrainment in cement mortars. Constr. Build. Mater. 2017, 147, 669–676. [Google Scholar] [CrossRef]
- Snoeck, D.; Schaubroeck, D.; Dubruel, P.; De Belie, N. Effect of high amounts of superabsorbent polymers and additional water on the workability, microstructure and strength of mortars with a water-to-cement ratio of 0.50. Constr. Build. Mater. 2014, 72, 148–157. [Google Scholar] [CrossRef]
- Morinaga, Y.; Akao, Y.; Fukuda, D.; Elakneswaran, Y. Delayed Absorption Superabsorbent Polymer for Strength Development in Concrete. Materials 2022, 15, 2727. [Google Scholar] [CrossRef]
- Bentz, D.; Geiker, M.; Jensen, O. On the mitigation of early age clacking. In Proceedings of the Third International Research Seminar on Self-Desiccation and Its Importance in Concrete Technology, Lund, Sweden, 14–15 June 2002; pp. 195–204. [Google Scholar]
- Song, C.; Choi, Y.C.; Choi, S. Effect of internal curing by superabsorbent polymers—Internal relative humidity and autogenous shrinkage of alkali-activated slag mortars. Constr. Build. Mater. 2016, 123, 198–206. [Google Scholar] [CrossRef]
- Urgessa, G.; Choi, K.-B.; Yeon, J.H. Internal Relative Humidity, Autogenous Shrinkage, and Strength of Cement Mortar Modified with Superabsorbent Polymers. Polymers 2018, 10, 1074. [Google Scholar] [CrossRef] [PubMed]
- Shen, D.; Wang, T.; Chen, Y.; Wang, M.; Jiang, G. Effect of internal curing with super absorbent polymers on the relative humidity of early-age concrete. Constr. Build. Mater. 2015, 99, 246–253. [Google Scholar] [CrossRef]
- Shen, D.; Wang, M.; Chen, Y.; Wang, W.; Zhang, J. Prediction of internal relative humidity in concrete modified with super absorbent polymers at early age. Constr. Build. Mater. 2017, 149, 543–552. [Google Scholar] [CrossRef]
- Liu, C.; Shen, D.; Li, M.; Li, C.; Kang, J.; Wang, M. Investigation on the Internal Relative Humidity of Superabsorbent Polymer–Modified Concrete Exposed to Various Ambient Humidities at Early Age. J. Mater. Civ. Eng. 2023, 35, 04023047. [Google Scholar] [CrossRef]
- Woyciechowski, P.P.; Kalinowski, M. The Influence of Dosing Method and Material Characteristics of Superabsorbent Polymers (SAP) on the Effectiveness of the Concrete Internal Curing. Minerals 2018, 11, 1600. [Google Scholar] [CrossRef] [PubMed]
- Yun, K.K.; Kim, K.K.; Choi, W.; Yeon, J.H. Hygral behavior of superabsorbent polymers with various particle sizes and cross-linking densities. Polymers 2017, 9, 600. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.; Huang, C.; Baah, P.; Nantung, T.; Lu, N. The influence of water-to-cement ratio and superabsorbent polymers (SAPs) on solid-like behaviors of fresh cement pastes. Constr. Build. Mater. 2021, 275, 122160. [Google Scholar] [CrossRef]
- Mechtcherine, V.; Secrieru, E.; Schröfl, C. Effect of superabsorbent polymers (SAPs) on rheological properties of fresh cement-based mortars—Development of yield stress and plastic viscosity over time. Cem. Concr. Res. 2015, 67, 52–65. [Google Scholar] [CrossRef]
- Park, B.; Choi, Y.C. Self-healing capability of cementitious materials with crystalline admixtures and super absorbent polymers (SAPs). Constr. Build. Mater. 2018, 189, 1054–1066. [Google Scholar] [CrossRef]
- Hong, G.; Choi, S. Rapid self-sealing of cracks in cementitious materials incorporating superabsorbent polymers. Constr. Build. Mater. 2017, 143, 366–375. [Google Scholar] [CrossRef]
- Schröfl, C.; Erk, K.A.; Siriwatwechakul, W.; Wyrzykowski, M.; Snoeck, D. Recent progress in superabsorbent polymers for concrete. Cem. Concr. Res. 2022, 151, 106648. [Google Scholar] [CrossRef]
- Baloch, H.; Usman, M.; Rizwan, S.A.; Hanif, A. Properties enhancement of super absorbent polymer (SAP) incorporated self-compacting cement pastes modified by nano silica (NS) addition. Constr. Build. Mater. 2019, 203, 18–26. [Google Scholar] [CrossRef]
- Telesca, A.; Marroccoli, M.; Pace, M.L.; Tomasulo, M.; Valenti, G.L.; Monteiro, P.J.M. A hydration study of various calcium sul-foaluminate cements. Cem. Concr. Compos. 2014, 53, 224–232. [Google Scholar] [CrossRef]
- Huang, G.; Pudasainee, D.; Gupta, R.; Liu, W.V. Hydration reaction and strength development of calcium sulfoaluminate ce-ment-based mortar cured at cold temperatures. Constr. Build. Mater. 2019, 224, 493–503. [Google Scholar] [CrossRef]
- Brough, A.; Atkinson, A. Automated identification of the aggregate—Paste interfacial transition zone in mortars of silica sand with Portland or alkali-activated slag cement paste. Cem. Concr. Res. 2000, 30, 849–854. [Google Scholar] [CrossRef]
- ASTM C457/C457M-12; Standard Test Method for Microscopical Determination of Parameters of the Air-Void System in Hardened Concrete. ASTM International: West Conshohocken, PA, USA, 2012. Available online: www.astm.org (accessed on 7 December 2023).
- Fukuda, D.; Nara, Y.; Kobayashi, Y.; Maruyama, M.; Koketsu, M.; Hayashi, D.; Ogawa, H.; Kaneko, K. Investigation of self-sealing in high-strength and ultra-low-permeability concrete in water using micro-focus X-ray CT. Cem. Concr. Res. 2012, 42, 1494–1500. [Google Scholar] [CrossRef]
- Gartner, E.; Walenta, G.; Morin, V.; Termkhajornkit, P.; Baco, I.; Casabonne, J.M. Hydration of a belite-calciumsulfoaluminate-ferrite cement: AetherTM. In Proceedings of the 13th International Congress on the Chemistry of Cement, Madrid, Spain, 3 July 2011. [Google Scholar]
- Fernando, C.R.A.; Agnieszka, J.K. Efficiency of internal curing by superabsorbent polymers (SAP) in PC-GGBS mortars. Cem. Concr. Compos. 2018, 88, 41–51. [Google Scholar]
- Sidney, D. Mercury porosimetry: An inappropriate method for the measurement of pore size distributions in cement-based materials. Cem. Concr. Res. 2000, 30, 1517–1525. [Google Scholar]
- Li, L.; Wang, R.; Zhang, S. Effect of curing temperature and relative humidity on the hydrates and porosity of calcium sulfoaluminate cement. Constr. Build. Mater. 2019, 213, 627–636. [Google Scholar] [CrossRef]
- Gong, F.; Zhang, D.; Sicat, E.; Ueda, T. Empirical Estimation of Pore Size Distribution in Cement, Mortar, and Concrete. J. Mater. Civ. Eng. 2014, 26, 04014023. [Google Scholar] [CrossRef]
Chemical Composition | Mass (%) |
---|---|
CaO | 67.07 |
SiO2 | 20.38 |
Al2O3 | 5.12 |
Fe2O3 | 3.05 |
SO3 | 1.86 |
MgO | 1.30 |
K2O | 0.36 |
Na2O | 0.30 |
TiO2 | 0.29 |
P2O5 | 0.20 |
MnO | 0.05 |
W/C | SAP Addition (%/Cement) | SAP Size (µm) | AE (%/Cement) | DEF (%/Cement) | Curing Condition |
---|---|---|---|---|---|
0.45 | - | - | 0.012 | 7.7 | Water |
Sealed | |||||
RH60% | |||||
0.3 | 80 | 0.022 | Water | ||
Sealed | |||||
RH60% | |||||
200 | Water | ||||
Sealed | |||||
RH60% | |||||
400 | Water | ||||
Sealed | |||||
RH60% | |||||
1000 | Water | ||||
Sealed | |||||
RH60% |
80 μm | 200 μm | 400 μm | 1000 μm | |
---|---|---|---|---|
Degree of hydration (28 d) | Optimal and similar promotion | Slightly reduced promotion | Reduced promotion | |
Hydration range (28 d) | Around 45 μm | Around 45 μm | 105 μm | Around 45 μm |
Small porosity | −4%~+8% | −15%~−4% | −3%~0% | |
Large porosity | +2.43% | +2.42% | +2.2% | N/A |
Compressive strength | −10%~−1% in cement −4%~+5% in concrete | - | −12%~+1% in cement 0%~+9% in concrete | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niu, X.; Zhang, Y.; Elakneswaran, Y.; Sasaki, M.; Takayama, T.; Kawai, H. Effect of Superabsorbent Polymer (SAP) Size on Microstructure and Compressive Strength of Concrete. Polymers 2024, 16, 197. https://doi.org/10.3390/polym16020197
Niu X, Zhang Y, Elakneswaran Y, Sasaki M, Takayama T, Kawai H. Effect of Superabsorbent Polymer (SAP) Size on Microstructure and Compressive Strength of Concrete. Polymers. 2024; 16(2):197. https://doi.org/10.3390/polym16020197
Chicago/Turabian StyleNiu, Xiaobo, Yile Zhang, Yogarajah Elakneswaran, Miyu Sasaki, Takeshi Takayama, and Hajime Kawai. 2024. "Effect of Superabsorbent Polymer (SAP) Size on Microstructure and Compressive Strength of Concrete" Polymers 16, no. 2: 197. https://doi.org/10.3390/polym16020197
APA StyleNiu, X., Zhang, Y., Elakneswaran, Y., Sasaki, M., Takayama, T., & Kawai, H. (2024). Effect of Superabsorbent Polymer (SAP) Size on Microstructure and Compressive Strength of Concrete. Polymers, 16(2), 197. https://doi.org/10.3390/polym16020197