Preparation and Properties of Cyano-Functionalized Graphitic Nanoplatelets for High-Performance Acrylonitrile Butadiene Styrene Resin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Cyano-Functionalized Graphitic Nanoplatelets (CyGN)
2.3. Preparation of CyGN&ABS-X Film
2.4. Instrumentation
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Hsissou, R.; Seghiri, R.; Benzekri, Z.; Hilali, M.; Rafik, M.; Elharfi, A. Polymer composite materials: A comprehensive review. Compos. Struct. 2021, 262, 113640. [Google Scholar] [CrossRef]
- Guo, Y.; Ruan, K.; Shi, X.; Yang, X.; Gu, J. Factors affecting thermal conductivities of the polymers and polymer composites: A review. Compos. Sci. Technol. 2020, 193, 108134. [Google Scholar] [CrossRef]
- Pandey, A.K.; Kumar, R.; Kachhavah, V.S.; Kar, K.K. Mechanical and thermal behaviours of graphite flake-reinforced acrylonitrile–butadiene–styrene composites and their correlation with entanglement density, adhesion, reinforcement and C factor. RSC Adv. 2016, 6, 50559–50571. [Google Scholar] [CrossRef]
- Tan, Q.C.; Shanks, R.A.; Hui, D.; Kong, I. Functionalised graphene-multiwalled carbon nanotube hybrid poly(styrene-b-butadiene-b-styrene) nanocomposites. Compos. B Eng. 2016, 90, 315–325. [Google Scholar] [CrossRef]
- Georgakilas, V.; Otyepka, M.; Bourlinos, A.B.; Chandra, V.; Kim, N.; Kemp, K.C.; Hobza, P.; Zboril, R.; Kim, K.S. Functionalization of Graphene: Covalent and Non-Covalent Approaches, Derivatives and Applications. Chem. Rev. 2012, 112, 6156–6214. [Google Scholar] [CrossRef]
- Mittal, G.; Dhand, V.; Rhee, K.Y.; Park, S.-J.; Lee, W.R. A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites. J. Ind. Eng. Chem. 2015, 21, 11–25. [Google Scholar] [CrossRef]
- Waheed, Q.; Khan, A.N.; Jan, R. Investigating the reinforcement effect of few layer graphene and multi-walled carbon nanotubes in acrylonitrile-butadiene-styrene. Polymer 2016, 97, 496–503. [Google Scholar] [CrossRef]
- Khan, A.N.; Waheed, Q.; Jan, R.; Yaqoob, K.; Ali, Z.; Gul, I.H. Experimental and theoretical correlation of reinforcement trends in acrylonitrile butadiene styrene/single-walled carbon nanotubes hybrid composites. Polym. Compos. 2018, 39, E902–E908. [Google Scholar] [CrossRef]
- Feng, Y.; He, C.; Wen, Y.; Ye, Y.; Zhou, X.; Xie, X.; Mai, Y.-W. Superior flame retardancy and smoke suppression of epoxy-based composites with phosphorus/nitrogen co-doped graphene. J. Hazard. Mater. 2018, 346, 140–151. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef]
- Geim, A.K.; Novoselov, K.S. The rise of graphene. Nat. Mater. 2007, 6, 183–191. [Google Scholar] [CrossRef]
- Jindal, P.; Sain, M.; Kumar, N. Mechanical Characterization of PMMA/MWCNT Composites Under Static and Dynamic Loading Conditions. Mater. Today Proc. 2015, 2, 1364–1372. [Google Scholar] [CrossRef]
- Kim, M.H.; Kang, Y.A.; Noh, H.-J.; Baek, J.-B.; Jeon, I.-Y. Direct preparation of edge-propylene graphitic nanoplatelets and its reinforcing effects in polypropylene. Compos. Commun. 2021, 27, 100896. [Google Scholar] [CrossRef]
- Liu, H.; Huang, W.; Yang, X.; Dai, K.; Zheng, G.; Liu, C.; Shen, C.; Yan, X.; Guo, J.; Guo, Z. Organic vapor sensing behaviors of conductive thermoplastic polyurethane–graphene nanocomposites. J. Mater. Chem. C 2016, 4, 4459–4469. [Google Scholar] [CrossRef]
- Huang, X.; Qi, X.; Boey, F.; Zhang, H. Graphene-based composites. Chem. Soc. Rev. 2012, 41, 666–686. [Google Scholar] [CrossRef]
- Jeon, I.-Y.; Shin, Y.-R.; Sohn, G.-J.; Choi, H.-J.; Bae, S.-Y.; Mahmood, J.; Jung, S.-M.; Seo, J.-M.; Kim, M.-J.; Wook Chang, D.; et al. Edge-carboxylated graphene nanosheets via ball milling. Proc. Natl. Acad. Sci. USA 2012, 109, 5588–5593. [Google Scholar] [CrossRef]
- Jeon, I.-Y.; Choi, H.-J.; Jung, S.-M.; Seo, J.-M.; Kim, M.-J.; Dai, L.; Baek, J.-B. Large-Scale Production of Edge-Selectively Functionalized Graphene Nanoplatelets via Ball Milling and Their Use as Metal-Free Electrocatalysts for Oxygen Reduction Reaction. J. Am. Chem. Soc. 2013, 135, 1386–1393. [Google Scholar] [CrossRef]
- Noh, H.-J.; Liu, S.; Yu, S.-Y.; Fan, Q.; Xiao, F.; Xu, J.; Jeon, I.-Y.; Baek, J.-B. Edge-NFx (x=1 or 2) Protected Graphitic Nanoplatelets as a Stable Lithium Storage Material. Batter. Supercaps 2020, 3, 928–935. [Google Scholar] [CrossRef]
- Song, H.D.; Im, Y.-K.; Baek, J.-B.; Jeon, I.-Y. Heptene-functionalized graphitic nanoplatelets for high-performance composites of linear low-density polyethylene. Compos. Sci. Technol. 2020, 199, 108380. [Google Scholar] [CrossRef]
- Kim, M.H.; Kweon, D.H.; Yoon, S.J.; Baek, J.-B.; Jeon, I.-Y. Pt nanoparticles on activated phosphorus-doped graphitic nanoplatelets for high performance hydrogen evolution reaction. Mater. Today Sustain. 2023, 24, 100598. [Google Scholar] [CrossRef]
- Dos Santos, T.C.; Ronconi, C.M. Self-assembled 3D mesoporous graphene oxides (MEGOs) as adsorbents and recyclable solids for CO2 and CH4 capture. J. CO2 Util. 2017, 20, 292–300. [Google Scholar] [CrossRef]
- Deng, B.; Zhang, S.; Liu, C.; Li, W.; Zhang, X.; Wei, H.; Gong, C. Synthesis and properties of soluble aromatic polyimides from novel 4,5-diazafluorene-containing dianhydride. RSC Adv. 2018, 8, 194–205. [Google Scholar] [CrossRef]
- Durairaju, P.; Umarani, C.; Rajabather, J.R.; Alanazi, A.M.; Periyasami, G.; Wilson, L.D. Synthesis and Characterization of Pyridine-Grafted Copolymers of Acrylic Acid–Styrene Derivatives for Antimicrobial and Fluorescence Applications. Micromachines 2021, 12, 672. [Google Scholar] [CrossRef]
- Jeon, I.-Y.; Shin, S.-H.; Choi, H.-J.; Yu, S.-Y.; Jung, S.-M.; Baek, J.-B. Heavily aluminated graphene nanoplatelets as an efficient flame-retardant. Carbon 2017, 116, 77–83. [Google Scholar] [CrossRef]
- Allouche, A.; Ferro, Y. Dissociative adsorption of small molecules at vacancies on the graphite (0001) surface. Carbon 2006, 44, 3320–3327. [Google Scholar] [CrossRef]
- Lesiak, B.; Kövér, L.; Tóth, J.; Zemek, J.; Jiricek, P.; Kromka, A.; Rangam, N. C sp2/sp3 hybridisations in carbon nanomaterials—XPS and (X)AES study. Appl. Surf. Sci. 2018, 452, 223–231. [Google Scholar] [CrossRef]
- Mohtasebi, A.; Chowdhury, T.; Hsu, L.H.H.; Biesinger, M.C.; Kruse, P. Interfacial Charge Transfer between Phenyl-Capped Aniline Tetramer Films and Iron Oxide Surfaces. J. Phys. Chem. C 2016, 120, 29248–29263. [Google Scholar] [CrossRef]
- Yang, J.; Cao, Q.; He, Z.; Pu, X.; Li, T.; Gao, B.; Li, X. The poly(styrene-co-acrylonitrile) polymer assisted preparation of high-performance inverted perovskite solar cells with efficiency exceeding 22%. Nano Energy 2021, 82, 105731. [Google Scholar] [CrossRef]
- Thommes, M. Physical Adsorption Characterization of Nanoporous Materials. Chem. Ing. Tech. 2010, 82, 1059–1073. [Google Scholar] [CrossRef]
- Williams, J.H.; Gbadomosi, M.; Greytak, A.B.; Myrick, M.L. Measuring the Surface Area of Carbon Black Using BET Isotherms: An Experiment in Physical Chemistry. J. Chem. Educ. 2023, 100, 4838–4844. [Google Scholar] [CrossRef]
Tensile Strength (MPa) | Young’s Modulus (MPa) | Tensile Toughness (MPa) | Elongation (%) | |
---|---|---|---|---|
Pure ABS | 11.1 ± 0.4 | 832 ± 65 | 13.9 ± 1.3 | 8.5 ± 0.2 |
CyGN&ABS-1 | 25.7 ± 0.6 | 992 ± 71 | 22.2 ± 3.2 | 7.5 ± 0.4 |
CyGN&ABS-2 | 18.4 ± 1.0 | 968 ± 21 | 15.6 ± 0.7 | 6.5 ± 0.3 |
CyGN&ABS-5 | 11.9 ± 0.9 | 897 ± 52 | 5.7 ± 0.8 | 3.7 ± 0.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoon, S.-J.; Lee, S.-J.; Baek, J.-H.; Kim, T.-H.; Jeon, I.-Y. Preparation and Properties of Cyano-Functionalized Graphitic Nanoplatelets for High-Performance Acrylonitrile Butadiene Styrene Resin. Polymers 2024, 16, 2859. https://doi.org/10.3390/polym16202859
Yoon S-J, Lee S-J, Baek J-H, Kim T-H, Jeon I-Y. Preparation and Properties of Cyano-Functionalized Graphitic Nanoplatelets for High-Performance Acrylonitrile Butadiene Styrene Resin. Polymers. 2024; 16(20):2859. https://doi.org/10.3390/polym16202859
Chicago/Turabian StyleYoon, Seo-Jeong, Se-Jung Lee, Jae-Hoon Baek, Tae-Hee Kim, and In-Yup Jeon. 2024. "Preparation and Properties of Cyano-Functionalized Graphitic Nanoplatelets for High-Performance Acrylonitrile Butadiene Styrene Resin" Polymers 16, no. 20: 2859. https://doi.org/10.3390/polym16202859
APA StyleYoon, S. -J., Lee, S. -J., Baek, J. -H., Kim, T. -H., & Jeon, I. -Y. (2024). Preparation and Properties of Cyano-Functionalized Graphitic Nanoplatelets for High-Performance Acrylonitrile Butadiene Styrene Resin. Polymers, 16(20), 2859. https://doi.org/10.3390/polym16202859