Synthesis of Highly Porous Graphene Oxide–PEI Foams for Enhanced Sound Absorption in High-Frequency Regime
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Graphene Oxide Synthesis
2.3. Graphene Oxide–PEI Porous Foam Synthesis
2.4. Instrumental Characterization
2.5. Sound Absorption in an Impedance Tube
3. Results and Discussion
3.1. Characterization and Sound Absorption Properties of Highly Porus GO-PEI
3.2. Theoretical Modeling for Acoustic Properties of Highly Porous GO-PEI Foams Using JCA, Delany–Bazley, and Miki Models
4. Conclusions
5. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Cao, L.; Fu, Q.; Si, Y.; Ding, B.; Yu, J. Porous materials for sound absorption. Compos. Commun. 2018, 10, 25–35. [Google Scholar] [CrossRef]
- World Health Organization. Burden of Disease from Environmental Noise: Quantification of Healthy Life Years Lost in Europe; WHO Regional Office for Europe: Copenhagen, Denmark, 2011. [Google Scholar]
- Hahad, O.; Kuntic, M.; Al-Kindi, S.; Kuntic, I.; Gilan, D.; Petrowski, K.; Daiber, A.; Münzel, T. Noise and mental health: Evidence, mechanisms, and consequences. J. Expo. Sci. Environ. Epidemiol. 2024. [Google Scholar] [CrossRef] [PubMed]
- UNEP; World Health Organization; WHO Task Group on Environmental Health Criteria for Noise (Eds.) Noise; Environmental Health Criteria; World Health Organization: Geneva, Switzerland, 1980. [Google Scholar]
- Chang, T.-Y.; Liu, C.-S.; Huang, K.-H.; Chen, R.-Y.; Lai, J.-S.; Bao, B.-Y. High-frequency hearing loss, occupational noise exposure and hypertension: A cross-sectional study in male workers. Environ. Health 2011, 10, 35. [Google Scholar] [CrossRef] [PubMed]
- Internal Combustion Engine Market Size, Share & Trends Analysis Report by Fuel Type (Gasoline, Diesel), by End-Use (Automotive, Marine), by Region (North America, Europe), and Segment Forecasts, 2020–2027. Available online: https://www.grandviewresearch.com/industry-analysis/internal-combustion-engine-market (accessed on 28 September 2024).
- Electric Motor Market by Type (AC, DC, Hermetic Motors), Power Output, Voltage Range, End-User (Industrial, Commercial, Residential, Agriculture, Transportation), and Region—Global Forecast to 2027. Available online: https://www.marketsandmarkets.com/Market-Reports/electric-motor-market-alternative-fuel-vehicles-717.html (accessed on 28 September 2024).
- Dimiev, A.M.; Shukhina, K.; Khannanov, A. Mechanism of the graphene oxide formation: The role of water, “reversibility” of the oxidation, and mobility of the C–O bonds. Carbon 2020, 166, 1–14. [Google Scholar] [CrossRef]
- Kakaei, K.; Esrafili, M.D.; Ehsani, A. Chapter 3—Synthesis and Surface Modification. In Interface Science and Technology; Elsevier: Amsterdam, The Netherlands, 2019; Volume 27, pp. 67–108. [Google Scholar]
- Sui, Z.Y.; Cui, Y.; Zhu, J.H.; Han, B.H. Preparation of three-dimensional graphene oxide-polyethylenimine porous materials as dye and gas adsorbents. ACS Appl. Mater. Interfaces 2013, 5, 9172–9179. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Wang, K.; Zhao, Y. Enhanced interfacial interactions of carbon fiber reinforced PEEK composites by regulating PEI and graphene oxide complex sizing at the interface. Compos. Sci. Technol. 2018, 154, 175–186. [Google Scholar] [CrossRef]
- Huber, D. Synthesis, Properties, and Applications of Iron Nanoparticles. Small 2005, 1, 482–501. [Google Scholar] [CrossRef]
- Li, P.; Miao, C.; Gao, K.; Xie, H.; Chen, K.; Xie, T.; Zhao, S.; Sun, H.; Yang, X.; Hou, Y.; et al. Efficient preparation of hydrogen barrier films by ultrasonic-assisted layer-by-layer assembly. J. Appl. Polym. Sci. 2023, 140, e53568. [Google Scholar] [CrossRef]
- Soman, V.; Vishwakarma, K.; Poddar, M.K. Ultrasound assisted synthesis of polymer nanocomposites: A review. J. Polym. Res. 2023, 30, 406. [Google Scholar] [CrossRef]
- Guo, H.; Jiao, T.; Zhang, Q.; Guo, W.; Peng, Q.; Yan, X. Preparation of Graphene Oxide-Based Hydrogels as Efficient Dye Adsorbents for Wastewater Treatment. Nanoscale Res. Lett. 2015, 10, 272. [Google Scholar] [CrossRef]
- Moline, S.W.; Glenner, G.G. Ultrarapid tissue freezing in liquid nitrogen. J. Histochem. Cytochem. 1964, 12, 777–783. [Google Scholar] [CrossRef] [PubMed]
- Ardévol, A.; Cañas, X.; Remesar, X.; Alemany, M. Cooling rates of tissue samples during freezing with liquid nitrogen. J. Biochem. Biophys. Methods 1993, 27, 77–86. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Yang, C.; Wu, P.; Ma, Z.; Shang, Y.; Bai, G.; Liu, X.; Chang, G.; Li, N.; Dai, J.; et al. Precise control of versatile microstructure and properties of graphene aerogel via freezing manipulation. Nanoscale 2020, 12, 4882–4894. [Google Scholar] [CrossRef] [PubMed]
- Ham, H.; Khai, T.V.; Park, N.-H.; So, D.S.; Lee, J.-W.; Na, H.G.; Kwon, Y.J.; Cho, H.Y.; Kim, H.W. Freeze-drying-induced changes in the properties of graphene oxides. Nanotechnology 2014, 25, 235601. [Google Scholar] [CrossRef] [PubMed]
- Bessa, A.; Henriques, B.; Gonçalves, G.; Irurueta, G.; Pereira, E.; Marques, P.A.A.P. Graphene oxide/polyethyleneimine aerogel for high-performance mercury sorption from natural waters. Chem. Eng. J. 2020, 398, 125587. [Google Scholar] [CrossRef]
- Zhao, R.; Kong, W.; Sun, M.; Yang, Y.; Liu, W.; Lv, M.; Song, S.; Wang, L.; Song, H.; Hao, R. Highly stable graphene-based nanocomposite (GO–PEI–Ag) with broad-spectrum, long-term antimicrobial activity and antibiofilm effects. ACS Appl. Mater. Interfaces 2018, 10, 17617–17629. [Google Scholar] [CrossRef]
- Kuang, Y.; Zhang, Z.; Wu, D. Synthesis of graphene oxide/polyethyleneimine sponge and its performance in the sustainable removal of Cu(II) from water. Sci. Total Environ. 2022, 806 Pt 3, 151258. [Google Scholar] [CrossRef]
- N’Diaye, J.; Poorahong, S.; Hmam, O.; Jiménez, G.C.; Izquierdo, R.; Siaj, M. Reduced Graphene Oxide-Based Foam as an Endocrine Disruptor Adsorbent in Aqueous Solutions. Membranes 2020, 10, 340. [Google Scholar] [CrossRef]
- Tang, C.; Wang, Y.S.; Guo, H. Acoustical design for public address announcements in an underground subway station. Noise Control Eng. J. 2014, 62, 275–282. [Google Scholar] [CrossRef]
- Pedrero, A.; Navacerrada, M.Á.; de la Prida, D.; Iglesias, L.; Díaz-Chyla, A. On the accuracy of the sound absorption measurement with an impedance gun. Appl. Acoust. 2020, 158, 107039. [Google Scholar] [CrossRef]
- Kim, H.; Kim, W.J. Photothermally controlled gene delivery by reduced graphene oxide-polyethylenimine nanocomposite. Small 2014, 10, 117–126. [Google Scholar] [CrossRef] [PubMed]
- Abbas, Y. Surface Acoustic Waves (SAW) Mediated Crumpled Polyethyleneimine-Labelled Graphene Oxide (CGO-PEI) Synthesis as Nanotherapeutic Delivery Platform. Master’s Thesis, German University in Cairo, Cairo, Egypt, 2018. Available online: https://researchrepository.rmit.edu.au/esploro/outputs/9921864161101341 (accessed on 20 October 2024).
- Hwang, N.; Barron, A.R. The Connexions Project. 2011. Available online: https://www.researchgate.net (accessed on 28 September 2024).
- Bhambhani, M.R.; Cutting, P.A.; Sing, K.S.W.; Turk, D.H. Analysis of nitrogen adsorption isotherms on porous and nonporous silicas by the BET and αs methods. J. Colloid Interface Sci. 1972, 38, 109–117. [Google Scholar] [CrossRef]
- Datar, A.; Chung, Y.G.; Lin, L.-C. Beyond the BET Analysis: The Surface Area Prediction of Nanoporous Materials Using a Machine Learning Method. J. Phys. Chem. Lett. 2020, 11, 5412–5417. [Google Scholar] [CrossRef] [PubMed]
- Koptri. Available online: http://www.polymer.co.kr/kor/02_service/equipment_6_4.jsp (accessed on 28 September 2024).
- Zdravkov, B.; Čermák, J.; Šefara, M.; Janků, J. Pore classification in the characterization of porous materials: A perspective. Open Chem. 2007, 5, 385–395. [Google Scholar] [CrossRef]
- Liu, D.; Bian, Q.; Li, Y.; Wang, Y.; Xiang, A.; Tian, H. Effect of oxidation degrees of graphene oxide on the structure and properties of poly (vinyl alcohol) composite films. Compos. Sci. Technol. 2016, 129, 146–152. [Google Scholar] [CrossRef]
- Guan, L.-Z.; Wan, Y.-J.; Gong, L.-X.; Yan, D.; Tang, L.-C.; Wu, L.-B.; Jiang, J.-X.; Lai, G.-Q. Toward effective and tunable interphases in graphene oxide/epoxy composites by grafting different chain lengths of polyetheramine onto graphene oxide. J. Mater. Chem. A 2014, 2, 15058–15069. [Google Scholar] [CrossRef]
- Medhekar, N.V.; Ramasubramaniam, A.; Ruoff, R.S.; Shenoy, V.B. Hydrogen Bond Networks in Graphene Oxide Composite Paper: Structure and Mechanical Properties. ACS Nano 2010, 4, 2300–2306. [Google Scholar] [CrossRef]
- Mututu, V.; Sunitha, A.K.; Thomas, R.; Pandey, M.; Manoj, B. An Investigation on Structural, Electrical and Optical properties of GO/ZnO Nanocomposite. Int. J. Electrochem. Sci. 2019, 14, 3752–3763. [Google Scholar] [CrossRef]
- Liu, H.; Ji, S.; Zheng, Y.; Li, M.; Yang, H. Porous TiO2-coated Magnetic Core-Shell Nanocomposites: Preparation and Enhanced Photocatalytic Activity. Chin. J. Chem. Eng. 2013, 21, 569–576. [Google Scholar] [CrossRef]
- KS F 2814-2:2022; Acoustics-Determination of Sound Absorption Coefficient and Impedance in Impedance Tubes–Part 2:Transfer-Function Method. Korean Agency for Technology and Standards (KATS): Eumseong, Republic of Korea, 2022.
- Johnson, D.L.; Koplik, J.; Dashen, R. Theory of dynamic permeability and tortuosity in fluid saturated porous media. J. Fluid Mech. 1987, 176, 379–402. [Google Scholar] [CrossRef]
- Allard, J.F.; Champoux, Y. New empirical equations for sound propagation in rigid frame fibrous materials. J. Acoust. Soc. Am. 1992, 91, 3346–3353. [Google Scholar] [CrossRef]
- Allard, J.F.; Castagnede, B.; Henry, M.; Lauriks, W. Evaluation of tortuosity in acoustic porous materials saturated by air. Rev. Sci. Instrum. 1994, 65, 754–755. [Google Scholar] [CrossRef]
- Chevillotte, F.; Perrot, C. Effect of the three-dimensional microstructure on the sound absorption of foams: A parametric study. J. Acoust. Soc. Am. 2017, 142, 1130–1140. [Google Scholar] [CrossRef] [PubMed]
- Sujon, M.A.S.; Islam, A.; Nadimpalli, V.K. Damping and Sound Absorption Properties of Polymer Matrix Composites: A Review. Polym. Test. 2021, 104, 107388. [Google Scholar] [CrossRef]
- Delany, M.E.; Bazley, E.N. Acoustical properties of fibrous absorbent materials. Appl. Acoust. 1970, 3, 105–116. [Google Scholar] [CrossRef]
- Miki, Y. Acoustical properties of porous materials-Modifications of Delany-Bazley models. J. Acoust. Soc. Jpn. 1990, 11, 19–24. [Google Scholar] [CrossRef]
- Abbink, V.; Landes, D.; Altinsoy, M.E. Experimental Determination of the Masking Threshold for Tonal Powertrain Noise in Electric Vehicles. Acoustics 2023, 5, 882–897. [Google Scholar] [CrossRef]
GO-to-PEI Ratio in GPF (w/w) | Snapshot of Hydrogel | Snapshot of Foam | SEM Image of Foam |
---|---|---|---|
GPF 1:1 | |||
GPF 1:2 | |||
GPF 1:3 | |||
GPF 1:4 | |||
GPF 1:30 |
Wavenumbers (cm−1) | Peak of GO (Blue Dashed Line) | Peak of GPF 1:3 (Red Dashed Line) | Types of Bonding |
---|---|---|---|
(a) 3400 | O-H stretching | N-H and O-H stretching | O-H and N-H stretching (hydroxyl of GO and amine of PEI) |
(b) 2950 | - | C-H stretching (asymmetric) | C-H stretching (asymmetric) (alkyl chains of PEI) |
(c) 2800 | - | C-H stretching (symmetric) | C-H stretching (symmetric) (alkyl chains of PEI) |
(d) 1720 | C=O stretching | - | C=O stretching (carbonyl group in GO) |
(e) 1570 | - | N-H bending C-N stretching | N-H bending, C-N stretching (GO interacting with PEI) |
(f) 1460 | - | C-H bending | C-H bending (vibration from alkyl groups in PEI) |
(g) 1120 | - | C-N stretching | C-N stretching (C-N bonds from GPF) |
(h) 1060 | C-O stretching (relatively strong) | C-O stretching (relatively weak) | C-O stretching (oxidized groups from GO) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jung, S.-C.; Jang, W.; Beom, B.; Won, J.-K.; Jeong, J.; Choi, Y.-J.; Moon, M.-K.; Cho, E.-S.; Chang, K.-A.; Han, J.-H. Synthesis of Highly Porous Graphene Oxide–PEI Foams for Enhanced Sound Absorption in High-Frequency Regime. Polymers 2024, 16, 2983. https://doi.org/10.3390/polym16212983
Jung S-C, Jang W, Beom B, Won J-K, Jeong J, Choi Y-J, Moon M-K, Cho E-S, Chang K-A, Han J-H. Synthesis of Highly Porous Graphene Oxide–PEI Foams for Enhanced Sound Absorption in High-Frequency Regime. Polymers. 2024; 16(21):2983. https://doi.org/10.3390/polym16212983
Chicago/Turabian StyleJung, Seung-Chan, Wonjun Jang, Byeongji Beom, Jong-Keon Won, Jihoon Jeong, Yu-Jeong Choi, Man-Ki Moon, Eou-Sik Cho, Keun-A Chang, and Jae-Hee Han. 2024. "Synthesis of Highly Porous Graphene Oxide–PEI Foams for Enhanced Sound Absorption in High-Frequency Regime" Polymers 16, no. 21: 2983. https://doi.org/10.3390/polym16212983
APA StyleJung, S.-C., Jang, W., Beom, B., Won, J.-K., Jeong, J., Choi, Y.-J., Moon, M.-K., Cho, E.-S., Chang, K.-A., & Han, J.-H. (2024). Synthesis of Highly Porous Graphene Oxide–PEI Foams for Enhanced Sound Absorption in High-Frequency Regime. Polymers, 16(21), 2983. https://doi.org/10.3390/polym16212983