An Environmentally Friendly Superhydrophobic Wood Sponge with Photo/Electrothermal Effects Prepared from Natural Wood for All-Weather High-Viscosity Oil–Water Separation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of WS
2.3. Preparation of PDA@WS
2.4. Preparation of P-P@WS
2.5. Preparation of Fe3O4@P-P@WS
2.6. Sample Characterization and Methods
2.7. Oil–Water Separation Experiment
3. Results
3.1. Preparation and Characterization Regarding of NW, DW, and WS
3.2. Hydrophobic Modification of Fe3O4
3.3. Preparation and Wettability Performance of Fe3O4@P-P@WS
3.4. Self-Heating Performance of Fe3O4@P-P@WS
3.5. Oil Absorption Properties of Fe3O4@P-P@WS
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dou, Y.; Tian, D.; Sun, Z.; Liu, Q.; Zhang, N.; Kim, J.H.; Dou, S. Fish gill inspired crossflow for efficient and continuous collection of spilled oil. ACS Nano 2017, 11, 2477–2485. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.H.; Tiwari, B.; Zhang, D.; Yap, Y. Water purification: Oil–water separation by nanotechnology and environmental concerns. Environ. Sci. Nano 2017, 4, 514–525. [Google Scholar] [CrossRef]
- Sun, J.; Xu, Y.; Pan, W.; Hu, Y.; He, Z.; Xu, W.; Song, J. Oily wastewater detector based on superhydrophobic liquid marbles. Colloids Surf. A Physicochem. Eng. Asp. 2024, 692, 134030. [Google Scholar] [CrossRef]
- Li, E.; Pan, Y.; Wang, C.; Liu, C.; Shen, C.; Pan, C.; Liu, X. Asymmetric superhydrophobic textiles for electromagnetic interference shielding, photothermal conversion, and solar water evaporation. ACS Appl. Mater. Interfaces 2021, 13, 28996–29007. [Google Scholar] [CrossRef]
- Shi, Y.; Zhang, C.; Wang, Y.; Cui, Y.; Wang, Q.; Liu, G.; Yuan, Y. Plasmonic silver nanoparticles embedded in flexible three-dimensional carbonized melamine foam with enhanced solar-driven water evaporation. Desalination 2021, 507, 115038. [Google Scholar] [CrossRef]
- Zhang, Y.; Xing, Q.; Chen, A.; Li, M.; Qin, G.; Zhang, J.; Lei, C. Turning hierarchically micro-/nanostructured polypropylene surfaces robustly superhydrophobic via tailoring contact line density of mushroom-shaped nanostructure. Chem. Eng. Sci. 2022, 262, 118027. [Google Scholar] [CrossRef]
- Fang, R.; Liu, R.; Xie, Z.H.; Wu, L.; Ouyang, Y.; Li, M. Corrosion-resistant and superhydrophobic nickel-phosphorus/nickel/PFDTMS triple-layer coating on magnesium alloy. Surf. Coat. Technol. 2022, 432, 128054. [Google Scholar] [CrossRef]
- Parvate, S.; Dixit, P.; Chattopadhyay, S. Superhydrophobic surfaces: Insights from theory and experiment. J. Phys. Chem. B 2020, 124, 1323–1360. [Google Scholar] [CrossRef]
- Lin, Y.; Zhang, A.; Sun, J.; Wang, L. Properties of natural rubber vulcanizates/nanosilica composites prepared based on the method of in-situ generation and coagulation. J. Macromol. Sci. Part B 2013, 52, 1494–1507. [Google Scholar] [CrossRef]
- Yin, J.; Deng, T.; Zhang, G. Preparation and size control of highly monodisperse vinyl functionalized silica spheres. Appl. Surf. Sci. 2012, 258, 1910–1914. [Google Scholar] [CrossRef]
- Huang, F.; Li, Q.; Ji, G.; Tu, J.; Ding, N.; Qu, Q.; Liu, G. Oil/water separation using a lauric acid-modified, superhydrophobic cellulose composite membrane. Mater. Chem. Phys. 2021, 266, 124493. [Google Scholar] [CrossRef]
- Wei, Z.; Jin, Y.; Li, J.; Jia, L.; Ma, Y.; Chen, M. Preparation of superhydrophobic PVDF composite membrane via catechol/polyamine co-deposition and Ag nanoparticles in-situ growth for membrane distillation. Desalination 2022, 529, 115649. [Google Scholar] [CrossRef]
- Li, H.; Zhang, H.; Luo, Y.; Shi, H.; Peng, L. Fabrication of durable and sustainable superhydrophobic-superoleophilic paper for efficient oil/water separation. Cellulose 2021, 28, 5033–5053. [Google Scholar] [CrossRef]
- Yang, R.L.; Zhu, Y.J.; Chen, F.F.; Qin, D.D.; Xiong, Z.C. Superhydrophobic photothermal paper based on ultralong hydroxyapatite nanowires for controllable light-driven self-propelled motion. ACS Sustain. Chem. Eng. 2019, 7, 13226–13235. [Google Scholar] [CrossRef]
- Li, D.; Fu, J.; Jiang, X.; Zhang, Y.; Xue, W. A dual-functional superhydrophobic PDMS@ZnO@MS sponge for highly efficient oil–water separation and photocatalytic degradation. New J. Chem. 2023, 47, 17142–17153. [Google Scholar] [CrossRef]
- Li, Y.; Li, X.; Xu, L.; Yang, Y.; Gao, Z.; Zhou, Y.; Chen, T. Facile construction of superhydrophobic/superoleophilic melamine sponges with durability and antifouling for selective oil absorption and effective oil/water separation. J. Environ. Chem. Eng. 2024, 12, 111919. [Google Scholar] [CrossRef]
- Li, H.; Huang, J.; Shen, S.; Meng, C.; Wang, H.; Fu, J. Superhydrophobic sodium alginate/cellulose aerogel for dye adsorption and oil–water separation. Cellulose 2023, 30, 7157–7175. [Google Scholar] [CrossRef]
- Wei, X.; Xu, X.; Liu, Z.; Zhao, X.; Zhang, L. Versatile superhydrophobic magnetic biomass aerogel for oil/water separation and removal of multi-class emerging pollutants. Sep. Purif. Technol. 2024, 345, 127371. [Google Scholar] [CrossRef]
- Zhang, Y.; Fu, J.; Xue, W.; Liu, G.; Wu, R. Fluorine-Functionalized Covalent Organic Framework Superhydrophobic Modified Melamine Sponge for Efficient oil–water Separation. Langmuir 2024, 40, 6413–6423. [Google Scholar] [CrossRef]
- Bahraminia, S.; Anbia, M. Efficient oil/water separation using a superhydrophobic polyurethane sponge fabricated by a facile dip-coating method. Int. J. Environ. Anal. Chem. 2024, 1–20. [Google Scholar] [CrossRef]
- Jia, C.; Chen, C.; Kuang, Y.; Fu, K.; Wang, Y.; Yao, Y.; Hu, L. From wood to textiles: Top-down assembly of aligned cellulose nanofibers. Adv. Mater. 2018, 30, 1801347. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Wang, S.; Fu, X.; Du, X.; Wang, H.; Zhou, M.; Du, Z. Fabrication of a Bio-Based Superhydrophobic and Flame-Retardant Cotton Fabric for Oil–Water Separation. Macromol. Mater. Eng. 2021, 306, 2000624. [Google Scholar] [CrossRef]
- Chao, W.; Wang, S.; Li, Y.; Cao, G.; Zhao, Y.; Sun, X.; Ho, S.H. Natural sponge-like wood-derived aerogel for solar-assisted adsorption and recovery of high-viscous crude oil. Chem. Eng. J. 2020, 400, 125865. [Google Scholar] [CrossRef]
- Chen, Z.; Su, X.; Wu, W.; Chen, S.; Zhang, X.; Wu, Y.; Li, K. Superhydrophobic PDMS@ TiO2 wood for photocatalytic degradation and rapid oil–water separation. Surf. Coat. Technol. 2022, 434, 128182. [Google Scholar] [CrossRef]
- Ma, T.; Li, L.; Mei, C.; Wang, Q.; Guo, C. Construction of sustainable, fireproof and superhydrophobic wood template for efficient oil/water separation. J. Mater. Sci. 2021, 56, 5624–5636. [Google Scholar] [CrossRef]
- Zhu, Y.; Li, H.; Huang, W.; Lai, X.; Zeng, X. Facile fabrication of superhydrophobic wood aerogel by vapor deposition method for oil–water separation. Surf. Interfaces 2023, 37, 102746. [Google Scholar] [CrossRef]
- Huang, W.; Zhang, L.; Lai, X.; Li, H.; Zeng, X. Highly hydrophobic F-rGO@ wood sponge for efficient clean-up of viscous crude oil. Chem. Eng. J. 2020, 386, 123994. [Google Scholar] [CrossRef]
- Du, B.; Li, B.; Yang, K.; Chao, Y.; Luo, R.; Zhou, S.; Li, H. Superhydrophobic wood sponge with intelligent pH responsiveness for efficient and continuous oil–water separation. Mater. Res. Express 2023, 10, 055101. [Google Scholar] [CrossRef]
- Cherukupally, P.; Sun, W.; Williams, D.R.; Ozin, G.A.; Bilton, A.M. Wax-wetting sponges for oil droplets recovery from frigid waters. Sci. Adv. 2021, 7, eabc7926. [Google Scholar] [CrossRef]
- Chu, Z.; Feng, Y.; Xu, T.; Zhu, C.; Li, K.; Li, Y.; Yang, Z. Magnetic, self–heating and superhydrophobic sponge for solar–driven high–viscosity oil–water separation. J. Hazard. Mater. 2023, 445, 130553. [Google Scholar] [CrossRef]
- Wu, Z.; Zheng, K.; Cheng, Z.; Zhou, S. Solar-assisted superhydrophobic MoS2/PDMS/MS sponge for the efficient cleanup of viscous oil. Langmuir 2022, 38, 10902–10914. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Shi, L.A.; Xing, H.; Jiang, K.; Ge, J.; Dong, L.; Yu, S.H. A magneto-heated ferrimagnetic sponge for continuous recovery of viscous crude oil. Adv. Mater. 2021, 33, 2100074. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Li, L.; Li, B.; Zhang, J.; Wang, A. Magnetic, durable, and superhydrophobic polyurethane@ Fe3O4@ SiO2@ fluoropolymer sponges for selective oil absorption and oil/water separation. ACS Appl. Mater. Interfaces 2015, 7, 4936–4946. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yao, S.; Yan, S.; Xu, M.; Zheng, L.; Pan, F.; Yin, X. Biomimetic, fire-resistant, ultralight and porous carbon fiber sponges enabling safe and efficient remediation of crude oil spills in harsh environments. J. Mater. Sci. Technol. 2023, 158, 77–85. [Google Scholar] [CrossRef]
- Seki, Y.; Kılınç, A.Ç.; Dalmis, R.; Köktaş, S.; Göktaş, A.A.; Önay, A.B. Surface modification of new cellulose fiber extracted from Conium maculatum plant: A comparative study. Cellulose 2018, 25, 3267–3280. [Google Scholar] [CrossRef]
- Cai, Y.; Wu, Y.; Yang, F.; Gan, J.; Wang, Y.; Zhang, J. Wood sponge reinforced with polyvinyl alcohol for sustainable oil–water separation. ACS Omega 2021, 6, 12866–12876. [Google Scholar] [CrossRef]
- Orue, A.; Jauregi, A.; Peña-Rodriguez, C.; Labidi, J.; Eceiza, A.; Arbelaiz, A. The effect of surface modifications on sisal fiber properties and sisal/poly (lactic acid) interface adhesion. Compos. Part B Eng. 2015, 73, 132–138. [Google Scholar] [CrossRef]
- Rajkumar, R.; Manikandan, A.; Saravanakumar, S.S. Physicochemical properties of alkali-treated new cellulosic fiber from cotton shell. Int. J. Polym. Anal. Charact. 2016, 21, 359–364. [Google Scholar] [CrossRef]
- Frey, M.; Widner, D.; Segmehl, J.S.; Casdorff, K.; Keplinger, T.; Burgert, I. Delignified and densified cellulose bulk materials with excellent tensile properties for sustainable engineering. ACS Appl. Mater. Interfaces 2018, 10, 5030–5037. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, Y.; Lu, C.; Deng, Y. Aerogels from crosslinked cellulose nano/micro-fibrils and their fast shape recovery property in water. J. Mater. Chem. 2012, 22, 11642–11650. [Google Scholar] [CrossRef]
- Guan, H.; Cheng, Z.; Wang, X. Highly compressible wood sponges with a spring-like lamellar structure as effective and reusable oil absorbents. ACS Nano 2018, 12, 10365–10373. [Google Scholar] [CrossRef] [PubMed]
- Rafiee, E.; Ataei, A.; Joshaghani, M. Palladium Supported on Oleic Acid-coated Magnetic Nanoparticle as an Efficient Catalyst for Heck Coupling Reaction in Aqueous Media. Lett. Org. Chem. 2014, 11, 707–712. [Google Scholar] [CrossRef]
- Javidparvar, A.A.; Ramezanzadeh, B.; Ghasemi, E. Effect of various spinel ferrite nanopigments modified by amino propyl trimethoxy silane on the corrosion inhibition properties of the epoxy nanocomposites. Corrosion 2016, 72, 761–774. [Google Scholar] [CrossRef]
- Khatamian, M.; Divband, B.; Shahi, R. Ultrasound assisted co-precipitation synthesis of Fe3O4/bentonite nanocomposite: Performance for nitrate, BOD and COD water treatment. J. Water Process Eng. 2019, 31, 100870. [Google Scholar] [CrossRef]
- Du, B.; Wang, S.; Yang, K.; Yin, M.; Pei, Y.; Luo, R.; Li, H. Wood sponge with photothermal, magnetically driven, and superhydrophobic characteristics for high-viscosity oil–water separation. Colloids Surf. A Physicochem. Eng. Asp. 2024, 696, 134238. [Google Scholar] [CrossRef]
- Liang, X.; Zhang, M.; Kaiser, M.R.; Gao, X.; Konstantinov, K.; Tandiono, R.; Wang, J. Split-half-tubular polypyrrole@ sulfur@ polypyrrole composite with a novel three-layer-3D structure as cathode for lithium/sulfur batteries. Nano Energy 2015, 11, 587–599. [Google Scholar] [CrossRef]
- Khademsameni, H.; Jafari, R.; Allahdini, A.; Momen, G. Regenerative Superhydrophobic Coatings for Enhanced Performance and Durability of High-Voltage Electrical Insulators in Cold Climates. Materials 2024, 17, 1622. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Lei, Y.; Li, C.; Sun, G.; You, B. Superhydrophobic and multifunctional aerogel enabled by bioinspired salvinia leaf-like structure. Adv. Funct. Mater. 2022, 32, 2110830. [Google Scholar] [CrossRef]
- Zhang, H.; Ou, J.; Fang, X.; Lei, S.; Wang, F.; Li, C.; Wang, P. Robust superhydrophobic fabric via UV-accelerated atmospheric deposition of polydopamine and silver nanoparticles for solar evaporation and water/oil separation. Chem. Eng. J. 2022, 429, 132539. [Google Scholar] [CrossRef]
- Yang, L.; Guo, X.; Jin, Z.; Guo, W.; Duan, G.; Liu, X.; Li, Y. Emergence of melanin-inspired supercapacitors. Nano Today 2021, 37, 101075. [Google Scholar] [CrossRef]
- Fu, Y.; Yang, L.; Zhang, J.; Hu, J.; Duan, G.; Liu, X.; Gu, Z. Polydopamine antibacterial materials. Mater. Horiz. 2021, 8, 1618–1633. [Google Scholar] [CrossRef] [PubMed]
- Geng, H.; Zhuang, L.; Li, M.; Liu, H.; Caruso, F.; Hao, J.; Cui, J. Interfacial assembly of metal–phenolic networks for hair dyeing. ACS Appl. Mater. Interfaces 2020, 12, 29826–29834. [Google Scholar] [CrossRef] [PubMed]
- Ghaedi, M.; Mehranbod, N.; Khorram, M. Facile fabrication of robust superhydrophobic polyurethane sponge modified with polydopamine-silica nanoparticle for effective oil/water separation. React. Funct. Polym. 2023, 191, 105657. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, K.; Wang, S.; Du, B.; Zhou, S. An Environmentally Friendly Superhydrophobic Wood Sponge with Photo/Electrothermal Effects Prepared from Natural Wood for All-Weather High-Viscosity Oil–Water Separation. Polymers 2024, 16, 3256. https://doi.org/10.3390/polym16233256
Yang K, Wang S, Du B, Zhou S. An Environmentally Friendly Superhydrophobic Wood Sponge with Photo/Electrothermal Effects Prepared from Natural Wood for All-Weather High-Viscosity Oil–Water Separation. Polymers. 2024; 16(23):3256. https://doi.org/10.3390/polym16233256
Chicago/Turabian StyleYang, Kenan, Sainan Wang, Bin Du, and Shisheng Zhou. 2024. "An Environmentally Friendly Superhydrophobic Wood Sponge with Photo/Electrothermal Effects Prepared from Natural Wood for All-Weather High-Viscosity Oil–Water Separation" Polymers 16, no. 23: 3256. https://doi.org/10.3390/polym16233256
APA StyleYang, K., Wang, S., Du, B., & Zhou, S. (2024). An Environmentally Friendly Superhydrophobic Wood Sponge with Photo/Electrothermal Effects Prepared from Natural Wood for All-Weather High-Viscosity Oil–Water Separation. Polymers, 16(23), 3256. https://doi.org/10.3390/polym16233256