Polymer Composites Reinforced with Residues from Amazonian Agro-Extractivism and Timber Industries: A Sustainable Approach to Enhancing Material Properties and Promoting Bioeconomy
Abstract
:1. Introduction
2. Amazonian Timber and Agro-Extractivism Bioindustries
2.1. General Description of Bioindustry in the Amazon
2.2. Production and Economic Impact
2.3. Impact of Chemical Composition on Polymeric Composite Properties
3. Types of Polymer Matrices Applicable in Composites with Residues
4. Polymer Composites with Amazonian Timber Industry Residues
4.1. Types and Sources of Timber Residues
4.2. Residue Availability and Environmental Impact of Timber Industry
4.3. Applications of Residues from Amazon Timber Industry in Polymer Composites
5. Polymer Composites with Agro-Extractivism Industry Residues from the Amazon
5.1. Types and Sources of Agro-Extractivism Residues
5.2. Residue Availability and Environmental Impact in the Agro-Extractivism Industry
5.3. Applications of Agro-Extractivism Industry Residues in Polymer Composites
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nepstad, D.; Azevedo-Ramos, C.; Lima, E.; Mcgrath, D.; Pereira, C.; Merry, F. Managing the Amazon Timber Industry. Conserv. Biol. 2004, 18, 575–577. Available online: https://conbio.onlinelibrary.wiley.com/doi/pdf/10.1111/j.1523-1739.2004.00551.x (accessed on 26 September 2024). [CrossRef]
- Zaman, K. Environmental cost of deforestation in Brazil’s Amazon Rainforest: Controlling biocapacity deficit and renewable wastes for conserving forest resources. For. Ecol. Manag. 2022, 504, 119854. [Google Scholar] [CrossRef]
- Azevedo, F.P.M.; Oliveira, M.A.d.; Rocha, L.L.; Cardoso, A.; Veroneze, G.d.M. The circular economy in the perspective of sustainable joinery: A case study in the Amazon/A economia circular na perspectiva da carpintaria sustentável: Um estudo de caso na Amazônia. Braz. J. Dev. 2022, 8, 45482–45504. [Google Scholar] [CrossRef]
- Väisänen, T.; Haapala, A.; Lappalainen, R.; Tomppo, L. Utilization of agricultural and forest industry waste and residues in natural fiber-polymer composites: A review. Waste Manag. 2016, 54, 62–73. [Google Scholar] [CrossRef] [PubMed]
- Das, O.; Babu, K.; Shanmugam, V.; Sykam, K.; Tebyetekerwa, M.; Neisiany, R.E.; Försth, M.; Sas, G.; Gonzalez-Libreros, J.; Capezza, A.J.; et al. Natural and industrial wastes for sustainable and renewable polymer composites. Renew. Sustain. Energy Rev. 2022, 158, 112054. [Google Scholar] [CrossRef]
- Shanmugam, V.; Mensah, R.A.; Försth, M.; Sas, G.; Restás, Á.; Addy, C.; Xu, Q.; Jiang, L.; Neisiany, R.E.; Singha, S.; et al. Circular economy in biocomposite development: State-of-the-art, challenges and emerging trends. Compos. Part C Open Access 2021, 5, 100138. [Google Scholar] [CrossRef]
- Lopes, E.; Soares-Filho, B.; Souza, F.; Rajão, R.; Merry, F.; Carvalho Ribeiro, S. Mapping the socio-ecology of Non-Timber Forest Products (NTFP) extraction in the Brazilian Amazon: The case of açaí (Euterpe precatoria Mart) in Acre. Landsc. Urban Plan. 2019, 188, 110–117. [Google Scholar] [CrossRef]
- Ribeiro, M.B.N.; Jerozolimski, A.; de Robert, P.; Magnusson, W.E. Brazil nut stock and harvesting at different spatial scales in southeastern Amazonia. For. Ecol. Manag. 2014, 319, 67–74. [Google Scholar] [CrossRef]
- Andrade, F.W.C.; Pinto, T.I.; Moreira, L.d.S.; da Ponte, M.J.M.; Lobato, T.d.C.; de Sousa, J.T.R.; Moutinho, V.H.P. The Legal Roundwood Market in the Amazon and Its Impact on Deforestation in the Region between 2009–2015. Forests 2022, 13, 558. [Google Scholar] [CrossRef]
- Satyanarayana, K.G.; Arizaga, G.G.; Wypych, F. Biodegradable composites based on lignocellulosic fibers—An overview. Prog. Polym. Sci. 2009, 34, 982–1021. [Google Scholar] [CrossRef]
- Samaniego-Aguilar, K.; Sánchez-Safont, E.; Rodríguez, A.; Marín, A.; Candal, M.V.; Cabedo, L.; Gamez-Perez, J. Valorization of Agricultural Waste Lignocellulosic Fibers for Poly(3-Hydroxybutyrate-Co-Valerate)-Based Composites in Short Shelf-Life Applications. Polymers 2023, 15, 4507. [Google Scholar] [CrossRef] [PubMed]
- Platnieks, O.; Barkane, A.; Ijudina, N.; Gaidukova, G.; Thakur, V.K.; Gaidukovs, S. Sustainable tetra pak recycled cellulose/Poly (Butylene succinate) based woody-like composites for a circular economy. J. Clean. Prod. 2020, 270, 122321. [Google Scholar] [CrossRef]
- Vallejos, M.E.; Felissia, F.E.; Area, M.C.; Ehman, N.V.; Tarrés, Q.; Mutjé, P. Nanofibrillated cellulose (CNF) from eucalyptus sawdust as a dry strength agent of unrefined eucalyptus handsheets. Carbohydr. Polym. 2016, 139, 99–105. [Google Scholar] [CrossRef] [PubMed]
- Shinoj, S.; Visvanathan, R.; Panigrahi, S.; Kochubabu, M. Oil palm fiber (OPF) and its composites: A review. Ind. Crops Prod. 2011, 33, 7–22. [Google Scholar] [CrossRef]
- Fávaro, S.L.; Lopes, M.S.; Vieira de Carvalho Neto, A.G.; Rogério de Santana, R.; Radovanovic, E. Chemical, morphological, and mechanical analysis of rice husk/post-consumer polyethylene composites. Compos. Part A Appl. Sci. Manuf. 2010, 41, 154–160. [Google Scholar] [CrossRef]
- Low, J.H.; Andenan, N.; Rahman, W.A.W.A.; Rusman, R.; Majid, R.A. Evaluation of rice straw as natural filler for injection molded high density polyethylene bio-composite materials. Chem. Eng. Trans. 2017, 56, 1081–1086. [Google Scholar] [CrossRef]
- Singh, Y.; Singh, J.; Sharma, S.; Lam, T.D.; Nguyen, D.N. Fabrication and characterization of coir/carbon-fiber reinforced epoxy-based hybrid composite for helmet shells and sports-good applications: Influence of fiber surface modifications on the mechanical, thermal and morphological properties. J. Mater. Res. Technol. 2020, 9, 15593–15603. [Google Scholar] [CrossRef]
- Monteiro, S.N.; Candido, V.S.; Braga, F.O.; Bolzan, L.T.; Weber, R.P.; Drelich, J.W. Sugarcane bagasse waste in composites for multilayered armor. Eur. Polym. J. 2016, 78, 173–185. [Google Scholar] [CrossRef]
- Ghaffar, S.H.; Fan, M. An aggregated understanding of physicochemical properties and surface functionalities of wheat straw node and internode. Ind. Crops Prod. 2017, 95, 207–215. [Google Scholar] [CrossRef]
- Branciforti, M.C.; Marinelli, A.L.; Kobayashi, M.; Ambrosio, J.D.; Monteiro, M.R.; Nobre, A.D. Wood Polymer Composites Technology Supporting the Recovery and Protection of Tropical Forests: The Amazonian Phoenix Project. Sustainability 2009, 1, 1431–1443. [Google Scholar] [CrossRef]
- Marques, M.; Nascimento, C.C.d.; Araujo, R.D.d. Ecological panels as an alternative for waste from mechanical processing of Amazonian species. Int. J. Innov. Educ. Res. 2020, 8, 458–470. [Google Scholar] [CrossRef]
- Thoppul, S.D.; Finegan, J.; Gibson, R.F. Mechanics of mechanically fastened joints in polymer–matrix composite structures—A review. Compos. Sci. Technol. 2009, 69, 301–329. [Google Scholar] [CrossRef]
- Dang, Z.M.; Yuan, J.K.; Zha, J.W.; Zhou, T.; Li, S.T.; Hu, G.H. Fundamentals, processes and applications of high-permittivity polymer–matrix composites. Prog. Mater. Sci. 2012, 57, 660–723. [Google Scholar] [CrossRef]
- U.S. Congress, Office of Technology Assessment. Advanced Materials by Design; Number OTA-E-351 in OTA Reports; U.S. Government Printing Office: Washington, DC, USA, 1988.
- Rajak, D.K.; Pagar, D.D.; Kumar, R.; Pruncu, C.I. Recent progress of reinforcement materials: A comprehensive overview of composite materials. J. Mater. Res. Technol. 2019, 8, 6354–6374. [Google Scholar] [CrossRef]
- Huang, S.; Fu, Q.; Yan, L.; Kasal, B. Characterization of interfacial properties between fibre and polymer matrix in composite materials—A critical review. J. Mater. Res. Technol. 2021, 13, 1441–1484. [Google Scholar] [CrossRef]
- Rahman, M.A.; Haque, S.; Athikesavan, M.M.; Kamaludeen, M.B. A review of environmentally friendly green composites: Production methods, current progresses, and challenges. Environ. Sci. Pollut. Res. 2023, 30, 16905–16929. [Google Scholar] [CrossRef]
- Taurino, R.; Bondioli, F.; Messori, M. Use of different kinds of waste in the construction of new polymer composites: Review. Mater. Today Mater. Today Sustain. 2023, 21, 100298. [Google Scholar] [CrossRef]
- Todorov, S.D.; Pieri, F.A. Tropical Fruits: From Cultivation to Consumption and Health Benefits, Fruits from the Amazon; Nova Publishers: New York, NY, USA, 2017. [Google Scholar]
- Almeida, N.A. Óleos essenciais e desenvolvimento sustentável na Amazônia: Uma aplicação da matriz de importância e desempenho. Reflexões Econômicas 2016, 2, 136–158. [Google Scholar]
- da, S. Santos, A. Óleos Essenciais: Uma Abordagem Econômica e Industrial; Interciências: Rio de Janeiro, RJ, Brazil, 2011. [Google Scholar]
- Galúcio, A.V.; Prudente, A.L. Museu Goeldi: 150 Anos de Ciências na Amazônia; Museu Paraense Emílio Goeldi: Belém, PA, Brazil, 2019. [Google Scholar]
- Mafra, R.Z.; Medeiros, R.L. Estudos da Bioindústria Amazonense: Sustentabilidade, Mercado e Tecnologia; Edua: Manaus, AM, Brazil, 2017. [Google Scholar]
- dos Santos, J.D.; Medeiros, R.L.; Kuwahara, N.; Pauly, P.R.; Pierre Filho, M.d.Q.; Ferreira, M.A.C.; da Rocha, S.D.; da Costa, E.B.S. Selection of suppliers in a bioindustry in the Amazon using the saw, topsis and promethee II methods combined with fuzzy logic. Rev. Gestão Secr. 2023, 14, 20863–20890. [Google Scholar] [CrossRef]
- Oliveira, R.; Lasmar, D.; Mafra, R.; Kieling, A.; Albuquerque, A.; Oliveira, L.; Oliveira, S. Mapeamento das empresas e institutos de pesquisas que utilizam a biotecnologia Industrial no Estado do Amazonas. Peer Rev. 2023, 5, 157–176. [Google Scholar] [CrossRef]
- Souza, N.S. Boletim Científico ESMPU. Bol. Científico ESMPU 2010, 9, 199–235. [Google Scholar]
- Guayasamin, J.M.; Ribas, C.C.; Carnaval, A.C.; Carrillo, J.D.; Hoorn, C.; Lohmann, L.G.; Riff, D.; Ulloa Ulloa, C.; Albert, J.S. Evolution of Amazonian biodiversity: A review. Acta Amaz. 2024, 54, e54bc21360. [Google Scholar] [CrossRef]
- Brandão, D.O. Desmatamento na Amazônia e Influência Nos Produtos Florestais Não-Madeireiros de Uso Econômico Local. Doctor’s Thesis, Instituto Nacional de Pesquisas Espaciais (INPE), São José dos Campos, SP, Brasil, 2023. [Google Scholar]
- Rocha, M.I.; Benkendorf, S.; Gern, R.M.M.; Riani, J.C.; Wisbeck, E. Desenvolvimento de biocompósitos fúngicos utilizando resíduos industriais. Matéria 2020, 25, e-12840. [Google Scholar] [CrossRef]
- de Sousa Matos, T.; de Sousa de Matos, T.; da Silva, A.C.R.; Monteiro, S.N.; Candido, V.S. Obtenção e Caracterização de Biocompósitos de Resíduo de Amido Mandioca Reforçados com Fibra de Tururi. In Proceedings of the 76° Congresso Anual da ABM—Internacional, São Paulo, SP, Brazil, 1–3 August 2023; pp. 1750–1763. [Google Scholar] [CrossRef]
- de Araújo Ribeiro, K.C.; da Silva, C.A.; Freire, L.H.C. Ecodesign via Biocompósitos Poliméricos: Envelhecimento, ANÁLISE Estrutural e Reciclagem. Mix Sustentável 2019, 5, 35–42. [Google Scholar] [CrossRef]
- de Aragão, D.I.; Cardoso, P.H.M.; Lima, E.M.B.; da S., M. Thiré, R.M. Caracterização de biocompósitos de poli(3-hidroxibutirato-co-3-hidroxivalerato) (PHBV)/coproduto da agroindústria do suco de manga. J. Agric. Food Ind. Technol. 2016, 5, 123–130. [Google Scholar]
- Meazza, K. Avaliação do Beneficiamento de Resíduos do Pirarucu Para a Produção de Biocompósitos a Base de Hidroxiapatita e Fibra de Colágeno. Doctor’s Thesis, Universidade Federal do Amazonas, Manaus, AM, Brazil, 2019. [Google Scholar] [CrossRef]
- Vinod, U.; Sanjay, M.; Siengchin, S.; Parameswaranpillai, J. A comprehensive review on the sustainable approach for recycling of textiles and apparel for production of biocomposites. J. Clean. Prod. 2020, 248, 120978. [Google Scholar] [CrossRef]
- Manu, T.; Nazmi, A.R.; Shahri, B.; Emerson, N.; Huber, T. Mechanical and morphological properties of banana fiber reinforced polylactic acid biocomposites. Mater. Today Mater. Today Commun. 2022, 32, 103308. [Google Scholar] [CrossRef]
- Rodrigues, G.d.M.; Filgueiras, C.T.; Garcia, V.A.d.S.; Carvalho, R.A.d.; Velasco, J.I.; Fakhouri, F.M. Antimicrobial activity and GC-MS profile of copaiba oil for incorporation in Xanthosoma mafaffa Schott starch-based films. Polymers 2020, 12, 2883. [Google Scholar] [CrossRef]
- Silva, T.R.d.; Matos, P.R.d.; Tambara Júnior, L.U.D.; Marvila, M.T.; Azevedo, A.R.G.d. Development of a biomimetic material for wound healing using poly(e-caprolactone) and andiroba seed oil. J. Build. Eng. 2021, 35, 106481. [Google Scholar] [CrossRef]
- Santos, R.P.d.O.; Castro, D.O.; Ruvolo-Filho, A.C.; Frollini, E. Preparation and properties of curaua fiber-reinforced polypropylene composites. J. Appl. Polym. Sci. 2014, 132, 40386. [Google Scholar] [CrossRef]
- Reddy, N.; Jiang, J.; Yang, Y. Biodegradable composites containing chicken feathers as matrix and jute fibers as reinforcement. J. Polym. Environ. 2014, 22, 310–317. [Google Scholar] [CrossRef]
- Costa, U.O.; Nascimento, L.F.C.; Garcia, J.M.; Bezerra, W.B.A.; Monteiro, S.N. Development and characterization of wood-plastic composite produced with high wood residue content. J. Mater. Res. Technol. 2020, 8, 6350–6358. [Google Scholar] [CrossRef]
- Rojas-Bringas, P.M.; De-la-Torre, G.E.; Torres, F.G. Influence of the Source of Starch and Plasticizers on the Environmental Burden of Starch-Brazil Nut Fiber Biocomposite Production: A Life Cycle Assessment Approach. Sci. Total Environ. 2021, 769, 144869. [Google Scholar] [CrossRef] [PubMed]
- Inamura, P.Y.; Shimazaki, K.; Colombo, M.A.; Rosa, R.; Moura, E.A.B.; del Mastro, N.L. Effect of Electron Beam Irradiation on Mechanical Properties of Gelatin/Brazil Nut Shell Fiber Composites. Matéria 2010, 15. [Google Scholar] [CrossRef]
- Souza, L.; Souza, L.; Silva, F. Autogenous self-healing capacity of curauá fiber-reinforced cement biocomposite. Procedia Eng. 2017, 200, 123–129. [Google Scholar] [CrossRef]
- Castro, D.; Ruvolo-Filho, A.; Frollini, E. Preparation and characterization of a biocomposite using hydroxylated polybutadiene, high-density bio-polyethylene and curauá fiber. Polym. Test. 2012, 31, 628–634. [Google Scholar] [CrossRef]
- Frollini, E.; Bartolucci, N.; Sisti, L.; Celli, A. Mechanical properties, water absorption, and morphology of a biocomposite using poly (butylene succinate) (PBS) and curauá fiber. Polym. Test. 2015, 43, 51–57. [Google Scholar] [CrossRef]
- Andrade, M.; dos Santos, H.; Nunes, F.; Costa, J.; Lentini, M. Produção de Madeira e Diversidade de Espécies Arbóreas Exploradas na Amazônia Brasileira: Situação Atual e Recomendações para o Setor Florestal. IMAFLORA. 2022. No. 08. Available online: https://oeco.org.br/wp-content/uploads/2022/08/Boletim_Timberflow_oito-2022-1.pdf (accessed on 26 September 2024).
- Dionisio, L.F.S. Efeitos a médio prazo da exploração seletiva no crescimento, mortalidade e recrutamento de Manilkara huberi (Ducke) A. Chev. em uma floresta amazônica. Sci. For. 2020, 48, e3154. [Google Scholar] [CrossRef]
- Castro, T.d.C.; Carvalho, J.O.P.d. Dinâmica da População de Manilkara huberi (Ducke) A. Chev. Durante 26 Anos após a Exploração Florestal em Uma Área de Terra Firme na Amazônia Brasileira. Ciência Florest. 2014, 24, 161–169. [Google Scholar] [CrossRef]
- Melo, R.R.d.; Dacroce, J.M.F.; Rodolfo Junior, F.; Lisboa, G.d.S.; França, L.C.d.J. Lumber Yield of Four Native Forest Species of the Amazon Region. Floresta E Ambiente 2019, 26, e20160311. [Google Scholar] [CrossRef]
- Siliprandi, N.C.; Nogueira, E.M.; Toledo, J.J.; Fearnside, P.M.; Nascimento, H.E.M. Inter-site variation in allometry and wood density of Goupia glabra Aubl. in Amazonia. Braz. J. Biol. 2016, 76, 268–276. [Google Scholar] [CrossRef]
- IBAMA. Report on Timber Industry Waste in the Amazon; Brazilian Institute of Environment and Natural Resources: Brasília, DF, Brazil, 2024. [Google Scholar]
- IBGE. Systematic Survey of Agricultural Production. Available online: https://sidra.ibge.gov.br (accessed on 15 August 2024).
- Figueira, J.; Almeida, M.; Silva, R. Waste Production in Amazonian Sawmills. J. Environ. Manag. 2020, 254, 109837. [Google Scholar] [CrossRef]
- Muñiz-Miret, N.; Vamos, R.; Hiraoka, M.; Montagnini, F.; Mendelsohn, R.O. The economic value of managing the açaí palm (Euterpe oleracea Mart.) in the floodplains of the Amazon estuary, Pará, Brazil. For. Ecol. Manag. 1996, 87, 163–173. [Google Scholar] [CrossRef]
- Kainer, K.A.; Wadt, L.H.O.; Staudhammer, C.L. The evolving role of Bertholletia excelsa in Amazonia: Contributing to local livelihoods and forest conservation. Desenvolv. E Meio Ambiente 2018, 48, 477–497. [Google Scholar] [CrossRef]
- Santos, A.; Guerra, F. Aspectos econômicos da cadeia produtiva dos óleos de andiroba (Carapa guianensis Aubl.) e copaíba (Copaifera multijuga Hayne) na Floresta Nacional do Tapajós—Pará. Floresta 2010, 40, 23–28. [Google Scholar] [CrossRef]
- Ferreira, S.F.; Buller, L.S.; Maciel-Silva, F.W.; Sganzerla, W.G.; Berni, M.D.; Forster-Carneiro, T. Waste management and bioenergy recovery from açaí processing in the Brazilian Amazonian region: A perspective for a circular economy. Biofuels Bioprod. Biorefining 2021, 15, 37–46. [Google Scholar] [CrossRef]
- da Silva, A.S.O.; de Campos Paraense, V. Production chain for brazil-nuts (Bertholletia excelsa Bonpl.) at Ipaú-Anilzinho extractive reserve, municipality of Baião, Pará, Amazonian Brazil. Rev. Agro@Mbiente-Line 2019, 13, 68–80. [Google Scholar] [CrossRef]
- International Nut and Dried Fruit Council (INC). INC Nuts & Dried Fruits Statistical Yearbook 2022/23. 2023. Available online: https://inc.nutfruit.org/wp-content/uploads/2023/05/Statistical-Yearbook-2022-2023.pdf (accessed on 23 August 2024).
- Mafra, R.Z.; Lasmar, D.J.; Vilela, D.C. Relacionamentos Interorganizacionais na Bioindústria Amazonense na Percepção dos Empresários. Rev. De Adm. Contemp. 2019, 23, 672–695. [Google Scholar] [CrossRef]
- Machado, M.; Rocha, A.; Tartarotti, N. Sustainable Development as a Wicked Problem: The Case of the Brazilian Amazon Region. Eur. J. Sustain. Dev. 2023, 12, 1. [Google Scholar] [CrossRef]
- Rao, J.; Lv, Z.; Chen, G.; Peng, F. Hemicellulose: Structure, chemical modification, and application. Prog. Polym. Sci. 2023, 140, 101675. [Google Scholar] [CrossRef]
- Abolore, R.S.; Jaiswal, S.; Jaiswal, A.K. Green and sustainable pretreatment methods for cellulose extraction from lignocellulosic biomass and its applications: A review. Carbohydr. Polym. Technol. Appl. 2024, 7, 100396. [Google Scholar] [CrossRef]
- Zhang, C.W.; Nair, S.S.; Chen, H.; Yan, N.; Farnood, R.; Li, F.Y. Thermally stable, enhanced water barrier, high strength starch bio-composite reinforced with lignin containing cellulose nanofibrils. Carbohydr. Polym. 2020, 230, 115626. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Xue, J.; Yang, X.; Ke, Y.; Ou, R.; Wang, Y.; Madbouly, S.A.; Wang, Q. From plant phenols to novel bio-based polymers. Prog. Polym. Sci. 2022, 125, 101473. [Google Scholar] [CrossRef]
- Belgacem, M.N.; Gandini, A. The surface modification of cellulose fibres for use as reinforcing elements in composite materials. Compos. Interfaces 2005, 12, 41–75. [Google Scholar] [CrossRef]
- Colson, J.; Pettersson, T.; Asaadi, S.; Sixta, H.; Nypelö, T.; Mautner, A.; Konnerth, J. Adhesion properties of regenerated lignocellulosic fibres towards poly (lactic acid) microspheres assessed by colloidal probe technique. J. Colloid Interface Sci. 2018, 532, 819–829. [Google Scholar] [CrossRef] [PubMed]
- Murillo-Franco, S.L.; Galvis-Nieto, J.D.; Orrego, C.E. Physicochemical characterization of açaí seeds (Euterpe oleracea) from Colombian pacific and their potential of mannan-oligosaccharides and sugar production via enzymatic hydrolysis. Biomass Convers. Biorefin. 2023. [Google Scholar] [CrossRef]
- Buratto, R.T.; Cocero, M.J.; Martín, Á. Characterization of industrial açaí pulp residues and valorization by microwave-assisted extraction. Chem. Eng. Process. Process Intensif. 2021, 160, 108269. [Google Scholar] [CrossRef]
- Monteiro, A.F.; Miguez, I.S.; Silva, J.P.R.B.; Silva, A.S. High concentration and yield production of mannose from açaí (Euterpe oleracea Mart.) seeds via mannanase-catalyzed hydrolysis. Sci. Rep. 2019, 9, 10939. [Google Scholar] [CrossRef]
- Rambo, M.K.D.; Schmidt, F.L.; Ferreira, M.M.C. Analysis of the lignocellulosic components of biomass residues for biorefinery opportunities. Talanta 2015, 144, 696–703. [Google Scholar] [CrossRef]
- Millane, R.P.; Hendrixson, T.L. Crystal structures of mannan and glucomannans. Carbohydr. Polym. 1994, 25, 245–251. [Google Scholar] [CrossRef]
- Várdai, R.; Schäffer, Á.; Ferdinánd, M.; Lummerstorfer, T.; Jerabek, M.; Gahleitner, M.; Faludi, G.; Móczó, J.; Pukánszky, B. Crystalline structure and reinforcement in hybrid PP composites. J. Therm. Anal. Calorim. 2022, 147, 145–154. [Google Scholar] [CrossRef]
- Fuadi, N.A.; Ibrahim, A.S.; Ismail, K.N. Review study for activated carbon from palm shell used for treatment of waste water. In Proceedings of the Conference on Waste Water Treatment, Kuala Lumpur, Malaysia, 21–23 June 2012; Available online: https://api.semanticscholar.org/CorpusID:136130824 (accessed on 23 October 2024).
- Okoroigwe, E.C.; Saffron, C.M.; Kamdem, P.D. Characterization of palm kernel shell for materials reinforcement and water treatment. Chem. Eng. J. Chem. Eng. 2014, 5, 1–6. [Google Scholar]
- Zhao, J.; Duan, K.; Zhang, J.W.; Lu, X.; Weng, J. The influence of polymer concentrations on the structure and mechanical properties of porous polycaprolactone-coated hydroxyapatite scaffolds. Appl. Surf. Sci. 2010, 256, 4586–4590. [Google Scholar] [CrossRef]
- Costa, W.A.; Bezerra, F.W.F.; Oliveira, M.S.; Andrade, E.H.A.; Santos, A.P.M.; Cunha, V.M.B.; Santos, D.C.S.; Banna, D.A.D.S.; Teixeira, E.; Carvalho Junior, R.N. Supercritical CO2 extraction and transesterification of the residual oil from industrial palm kernel cake with supercritical methanol. J. Supercrit. Fluids 2019, 147, 179–187. [Google Scholar] [CrossRef]
- Dominici, F.; Samper, M.D.; Carbonell-Verdu, A.; Luzi, F.; López-Martínez, J.; Torre, L.; Puglia, D. Improved toughness in lignin/natural fiber composites plasticized with epoxidized and maleinized linseed oils. Materials 2020, 13, 600. [Google Scholar] [CrossRef] [PubMed]
- Nobre, J.; Napoli, A.; Bianchi, M.; Silva, M.; Numazawa, S. Use of residues of Manilkara huberi from the state of Pará in the production of activated carbon. In Proceedings of the XIV EBRAMEM, Natal, RN, Brazil, 28–30 April 2014. [Google Scholar]
- Sonego, M.; Fleck, C.; Pessan, L.A. Mesocarp of Brazil nut (Bertholletia excelsa) as inspiration for new impact resistant materials. Bioinspir. Biomim. 2019, 14, 056002. [Google Scholar] [CrossRef]
- Leandro, R.I.M.; Abreu, J.J.C.; Martins, C.S.; Santos, I.S.; Bianchi, M.L.; Nobre, J.R.C. Elementary, Chemical and Energy Characteristics of Brazil Nuts Waste (Bertholletia excelsa) in the State of Pará. Floresta Ambiente 2019, 26, e20180436. [Google Scholar] [CrossRef]
- Marasca, N.; Brito, M.R.; Rambo, M.C.D.; Pedrazzi, C.; Scapin, E.; Rambo, M.K.D. Analysis of the potential of cupuaçu husks (Theobroma grandiflorum) as raw material for the synthesis of bioproducts and energy generation. Food Sci. Technol. 2022, 42, e48421. [Google Scholar] [CrossRef]
- Medeiros, D.T. Avaliação de Propriedades Tecnológicas da Madeira de Quatro Espécies da Amazônia. Bachelor’s Thesis, Universidade Federal Rural do Semi-Árido, Mossoró, RN, Brazil, 2020. Available online: https://repositorio.ufersa.edu.br/handle/prefix/8280 (accessed on 23 October 2024).
- Bimestre, T.A.; Silva, F.S.; Tuna, C.E.; dos Santos, J.C.; de Carvalho, J.A.; Canettieri, E.V. Physicochemical Characterization and Thermal Behavior of Different Wood Species from the Amazon Biome. Energies 2023, 16, 2257. [Google Scholar] [CrossRef]
- Almeida, A.P.S.; Rodrigues, D.A.; Castelo, P.A.R. Determination of Chemical Properties of Woods from Southern Amazon. Sci. Electron. Arch. 2014, 8, 1–4. [Google Scholar] [CrossRef]
- Brahmakumar, M.; Pavithran, C.; Pillai, R.M. Coconut fibre reinforced polyethylene composites: Effect of natural waxy surface layer of the fibre on fibre/matrix interfacial bonding and strength of composites. Compos. Sci. Technol. 2005, 65, 563–569. [Google Scholar] [CrossRef]
- Yue, H.; Zheng, Y.; Zheng, P.; Guo, J.; Fernández-Blázquez, J.P.; Clark, J.H.; Cui, Y. On the improvement of properties of bioplastic composites derived from wasted cottonseed protein by rational cross-linking and natural fiber reinforcement. Green Chem. 2020, 22, 8642–8655. [Google Scholar] [CrossRef]
- La Mantia, F.; Morreale, M. Green composites: A brief review. Compos. Part A Appl. Sci. Manuf. 2011, 42, 579–588. [Google Scholar] [CrossRef]
- Maraveas, C. Production of Sustainable and Biodegradable Polymers from Agricultural Waste. Polymers 2020, 12, 1127. [Google Scholar] [CrossRef] [PubMed]
- Hsissou, R.; Seghiri, R.; Benzekri, Z.; Hilali, M.; Rafik, M.; Elharfi, A. Polymer composite materials: A comprehensive review. Compos. Struct. 2021, 262, 113640. [Google Scholar] [CrossRef]
- Khatami, M.; Bairwan, R.; Khalil, H. The Role of Natural Fiber Reinforcement in Thermoplastic Elastomers Biocomposites. Fibers Polym. 2024, 25, 3061–3077. [Google Scholar] [CrossRef]
- Wu Klingler, W.; Bifulco, A.; Polisi, C.; Huang, Z.; Gaan, S. Recyclable inherently flame-retardant thermosets: Chemistry, properties and applications. Compos. Part B Eng. 2023, 258, 110667. [Google Scholar] [CrossRef]
- Song, J.H.; Murphy, R.J.; Narayan, R.; Davies, G.B.H. Biodegradable and compostable alternatives to conventional plastics. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 2127–2139. [Google Scholar] [CrossRef]
- Samir, A.; Ashour, F.; Hakim, A. Recent advances in biodegradable polymers for sustainable applications. NPJ Mater. Degrad. 2022, 6, 68. [Google Scholar] [CrossRef]
- Gopanna, A.; Rajan, K.P.; Thomas, S.P.; Chavali, M. Chapter 6—Polyethylene and polypropylene matrix composites for biomedical applications. In Materials for Biomedical Engineering; Grumezescu, V., Grumezescu, A.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 175–216. [Google Scholar] [CrossRef]
- Potrykus, M.; Redko, V.; Głowacka, K.; Piotrowicz-Cieślak, A.; Szarlej, P.; Janik, H.; Wolska, L. Polypropylene structure alterations after 5 years of natural degradation in a waste landfill. Sci. Total Environ. 2021, 758, 143649. [Google Scholar] [CrossRef]
- Alsabri, A.; Tahir, F.; Al-Ghamdi, S.G. Life-Cycle Assessment of Polypropylene Production in the Gulf Cooperation Council (GCC) Region. Polymers 2021, 13, 3793. [Google Scholar] [CrossRef]
- Danyluk, C.; Erickson, R.; Burrows, S.; Auras, R. Industrial Composting of Poly (Lactic Acid) Bottles. J. Test. Eval. 2010, 38, 717–723. [Google Scholar] [CrossRef]
- Taylor, R.; Nattrass, L.; Alberts, G.; Robson, P.; Chudziak, C.; Bauen, A.; Libelli, I.M.; Lotti, G.; Prussi, M.; Nistri, R.; et al. From the Sugar Platform to Biofuels and Biochemicals: Final Report for the European Commission Directorate-General Energy; European Commission: Luxembourg, 2015; Available online: https://edepot.wur.nl/360244 (accessed on 23 October 2024).
- Khan, R.A.; Khan, M.A.; Sultana, S.; Nuruzzaman Khan, M.; Shubhra, Q.T.H.; Noor, F.G. Mechanical, Degradation, and Interfacial Properties of Synthetic Degradable Fiber Reinforced Polypropylene Composites. J. Reinf. Plast. Compos. 2010, 29, 466–476. [Google Scholar] [CrossRef]
- Yin, S.; Tuladhar, R.; Shanks, R.A.; Collister, T.; Combe, M.; Jacob, M.; Tian, M.; Sivakugan, N. Fiber preparation and mechanical properties of recycled polypropylene for reinforcing concrete. J. Appl. Polym. Sci. 2015, 132, 41866. [Google Scholar] [CrossRef]
- Gigante, V.; Canesi, I.; Cinelli, P.; Coltelli, M.B.; Lazzeri, A. Rubber Toughening of Polylactic Acid (PLA) with Poly (butylene adipate-co-terephthalate) (PBAT): Mechanical Properties, Fracture Mechanics and Analysis of Ductile-to-Brittle Behavior while Varying Temperature and Test Speed. Eur. Polym. J. 2019, 115, 125–137. [Google Scholar] [CrossRef]
- Tsou, C.-H.; Chen, Z.-J.; Yuan, S.; Ma, Z.-L.; Wu, C.-S.; Yang, T.; Jia, C.-F.; De Guzman, M.R. The preparation and performance of poly (butylene adipate) terephthalate/corn stalk composites. Curr. Res. Green Sustain. Chem. 2022, 5, 100329. [Google Scholar] [CrossRef]
- Bourban, P.E.; Bögli, A.; Bonjour, F.; Månson, J.-A.E. Integrated processing of thermoplastic composites. Compos. Sci. Technol. 1998, 58, 633–637. [Google Scholar] [CrossRef]
- Chan, C.M.; Vandi, L.J.; Pratt, S.; Halley, P.; Richardson, D.; Werker, A.; Laycock, B. Composites of Wood and Biodegradable Thermoplastics: A Review. Polym. Rev. 2018, 58, 444–494. [Google Scholar] [CrossRef]
- Arif, Z.U.; Khalid, M.Y.; Sheikh, M.F.; Zolfagharian, A.; Bodaghi, M. Biopolymeric sustainable materials and their emerging applications. J. Environ. Chem. Eng. 2022, 10, 108159. [Google Scholar] [CrossRef]
- Pedras, X.; Piñeiro, G.; Castilla, M. Application of agroforestry residues in polymeric composite materials. Mater. Compuestos 2020, 04, 119. [Google Scholar]
- Oladele, I.O.; Okoro, C.J.; Taiwo, A.S.; Onuh, L.N.; Agbeboh, N.I.; Balogun, O.P.; Olubambi, P.A.; Lephuthing, S.S. Modern Trends in Recycling Waste Thermoplastics and Their Prospective Applications: A Review. J. Compos. Sci. 2023, 7, 198. [Google Scholar] [CrossRef]
- Vaidya, U.K.; Chawla, K.K. Processing of fibre reinforced thermoplastic composites. Int. Mater. Rev. 2008, 53, 185–218. [Google Scholar] [CrossRef]
- Norizan, M.N.; Rahmah, M. A Review: Fibres, Polymer Matrices and Composites. Pertanika J. Sci. Technol. 2017, 25, 1085–1102. [Google Scholar]
- Campos, R.D.; Sotenko, M.; Hosur, M.; Jeelani, S.; Díaz, F.R.V.; Moura, E.A.B.; Kirwan, K. Effect of Mercerization and Electron-Beam Irradiation on Mechanical Properties of High-Density Polyethylene (HDPE)/Brazil Nut Pod Fiber (BNPF) Bio-Composites. Charact. Miner. Met. Mater. 2015, 2016, 637–644. [Google Scholar] [CrossRef]
- Souza, P.; Rodrigues, E.; Prêta, J.; Goulart, S.; Mulinari, D. Mechanical properties of HDPE/textile fibers composites. Procedia Eng. 2011, 10, 2040–2045. [Google Scholar] [CrossRef]
- Gomes, D.A.C.; de Novais Miranda, E.H.; de Araújo Veloso, M.C.R.; da Silva, M.G.; Ferreira, G.C.; Mendes, L.M.; Júnior, J.B.G. Production and characterization of recycled low-density polyethylene/amazon palm fiber composites. Ind. Crops Prod. 2023, 201, 116833. [Google Scholar] [CrossRef]
- Ortega, F.; Versino, F.; López, O. Biobased composites from agro-industrial wastes and by-products. Emergent Mater. 2022, 5, 873–921. [Google Scholar] [CrossRef]
- Yadav, R.; Singh, M.; Shekhawat, D.; Lee, S.Y.; Park, S.J. The role of fillers to enhance the mechanical, thermal, and wear characteristics of polymer composite materials: A review. Compos. Part A Appl. Sci. Manuf. 2023, 175, 107775. [Google Scholar] [CrossRef]
- Zhao, X.; Long, Y.; Xu, S.; Liu, X.; Chen, L.; Wang, Y.Z. Recovery of epoxy thermosets and their composites. Mater. Today 2023, 64, 72–97. [Google Scholar] [CrossRef]
- Mendes, C.P.; Fleming, R.; Goncalves, A.M.B.; da Silva, M.J.; Prataviera, R.; Cena, C. Mechanical and microstructural characterization of epoxy/sawdust (Pinus elliottii) composites. Polym. Compos. Polym. Compos. 2021, 29, 1135–1142. [Google Scholar] [CrossRef]
- Rajeshkumar, G.; Arvindh Seshadri, S.; Devnani, G.; Sanjay, M.; Siengchin, S.; Prakash Maran, J.; Al-Dhabi, N.A.; Karuppiah, P.; Mariadhas, V.A.; Sivarajasekar, N.; et al. Environment friendly, renewable and sustainable poly lactic acid (PLA) based natural fiber reinforced composites—A comprehensive review. J. Clean. Prod. 2021, 310, 127483. [Google Scholar] [CrossRef]
- Moshood, T.D.; Nawanir, G.; Mahmud, F.; Mohamad, F.; Ahmad, M.H.; AbdulGhani, A. Sustainability of biodegradable plastics: New problem or solution to solve the global plastic pollution? Curr. Res. Green Sustain. Chem. 2022, 5, 100273. [Google Scholar] [CrossRef]
- Scaffaro, R.; Maio, A.; Sutera, F.; Gulino, E.F.; Morreale, M. Degradation and Recycling of Films Based on Biodegradable Polymers: A Short Review. Polymers 2019, 11, 651. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, F.V.; Pinheiro, I.F.; Mariano, M.; Cividanes, L.S.; Costa, J.C.; Nascimento, N.R.; Kimura, S.P.; Neto, J.C.; Lona, L.M. Environmentally friendly polymer composites based on PBAT reinforced with natural fibers from the amazon forest. Polym. Compos. 2019, 40, 3351–3360. [Google Scholar] [CrossRef]
- Pinheiro, I.; Morales, A.; Mei, L. Polymeric biocomposites of poly (butylene adipate-co-terephthalate) reinforced with natural Munguba fibers. Cellulose 2014, 21, 4381–4391. [Google Scholar] [CrossRef]
- Zhong, X.; Zhao, X.; Qian, Y.; Zou, Y. Polyethylene plastic production process. Insight Mater. Sci. 2018, 1, 1. [Google Scholar] [CrossRef]
- Dem, K. Polyethylene vs. Polypropylene: When to Choose What? Available online: https://omnexus.specialchem.com/tech-library/article/polyethylene-versus-polypropylene (accessed on 10 November 2024).
- Shubhra, Q.; Alam, A.K.M.M.; Quaiyyum, M.A. Mechanical properties of polypropylene composites: A review. J. Thermoplast. Compos. Mater. 2011, 26, 362–391. [Google Scholar] [CrossRef]
- Alsabri, A.; Tahir, F.; Al-Ghamdi, S.G. Environmental impacts of polypropylene (PP) production and prospects of its recycling in the GCC region. Mater. Today Proc. 2022, 56, 2245–2251. [Google Scholar] [CrossRef]
- Cambridge University Engineering Department. Materials Data Book; Cambridge University: Cambridge, UK, 2003. [Google Scholar]
- Samper, M.D.; Garcia-Sanoguera, D.; Parres, F.; López, J. Recycling of Expanded Polystyrene from Packaging. Prog. Rubber Plast. Recycl. Technol. 2010, 26, 83–92. [Google Scholar] [CrossRef]
- Samaras, N.N.T.; Perry, E. Commercial production of polystyrene. J. Appl. Chem. 1951, 1, 243–248. [Google Scholar] [CrossRef]
- Cregut, M.; Bedas, M.; Durand, M.-J.; Thouand, G. New insights into polyurethane biodegradation and realistic prospects for the development of a sustainable waste recycling process. Biotechnol. Adv. 2013, 31, 1634–1647. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, J.; Fang, X.; Liao, J.; Zhou, X.; Zhou, S.; Bai, F.; Peng, S. High solid content production of environmentally benign ultra-thin lignin-based polyurethane films: Plasticization and degradation. Polymer 2019, 178, 121572. [Google Scholar] [CrossRef]
- Comaniţă, E.-D.; Ghinea, C.; Roşca, M.; Simion, I.M.; Petraru, M.; Gavrilescu, M. Environmental impacts of polyvinyl chloride (PVC) production process. In Proceedings of the 2015 E-Health and Bioengineering Conference, Iasi, Romania, 19–21 November 2015; p. 1. [Google Scholar] [CrossRef]
- Rahmatabadi, D.; Soltanmohammadi, K.; Aberoumand, M.; Soleyman, E.; Ghasemi, I.; Baniassadi, M.; Abrinia, K.; Bodaghi, M.; Baghani, M. Development of Pure Poly Vinyl Chloride (PVC) with Excellent 3D Printability and Macro- and Micro-Structural Properties. Macromol. Mater. Eng. 2023, 308, 2200568. [Google Scholar] [CrossRef]
- Akovali, G. Plastic materials: Polyvinyl chloride (PVC). In Toxicity of Building Materials; Pacheco-Torgal, F., Jalali, S., Fucic, A., Eds.; Woodhead Publishing: Sawston, UK, 2012; pp. 23–53. [Google Scholar] [CrossRef]
- Yang, J.-P.; Chen, Z.-K.; Yang, G.; Fu, S.-Y.; Ye, L. Simultaneous improvements in the cryogenic tensile strength, ductility and impact strength of epoxy resins by a hyperbranched polymer. Polymer 2008, 49, 3168–3175. [Google Scholar] [CrossRef]
- Engelberg, P.I.; Tesoro, G.C. Mechanical and thermal properties of epoxy resins with reversible crosslinks. Polym. Eng. Sci. 1990, 30, 303–307. [Google Scholar] [CrossRef]
- Luo, T.; Zhao, Y.; Fu, K.; Cui, X.; Chen, B. High-efficiency manufacturing of epoxy resins through two-point initiation of frontal polymerization. Chem. Eng. J. 2024, 496, 154148. [Google Scholar] [CrossRef]
- Jin, F.-L.; Li, X.; Park, S.-J. Synthesis and application of epoxy resins: A review. J. Ind. Eng. Chem. 2015, 29, 1–11. [Google Scholar] [CrossRef]
- Eliaz, N.; Ron, E.Z.; Gozin, M.; Younger, S.; Biran, D.; Tal, N. Microbial Degradation of Epoxy. Materials 2018, 11, 2123. [Google Scholar] [CrossRef]
- Luoma, G.A.; Rowland, R.D. Environmental degradation of an epoxy resin matrix. J. Appl. Polym. Sci. 1986, 32, 5777–5790. [Google Scholar] [CrossRef]
- Changwichan, K.; Silalertruksa, T.; Gheewala, S.H. Eco-Efficiency Assessment of Bioplastics Production Systems and End-of-Life Options. Sustainability 2018, 10, 952. [Google Scholar] [CrossRef]
- Saeed, U.; Taimoor, A.A.; Rather, S.; Al-Zaitone, B.; Al-Turaif, H. Characterization of cellulose nanofibril reinforced polybutylene succinate biocomposite. J. Thermoplast. Compos. Mater. 2023, 36, 1529–1544. [Google Scholar] [CrossRef]
- Saffian, H.A.; Yamaguchi, M.; Ariffin, H.; Abdan, K.; Kassim, N.K.; Lee, S.H.; Lee, C.H.; Shafi, A.R.; Alias, A.H. Thermal, Physical and Mechanical Properties of Poly (Butylene Succinate)/Kenaf Core Fibers Composites Reinforced with Esterified Lignin. Polymers 2021, 13, 2359. [Google Scholar] [CrossRef] [PubMed]
- Aliotta, L.; Seggiani, M.; Lazzeri, A.; Gigante, V.; Cinelli, P. A Brief Review of Poly (Butylene Succinate) (PBS) and Its Main Copolymers: Synthesis, Blends, Composites, Biodegradability, and Applications. Polymers 2022, 14, 844. [Google Scholar] [CrossRef] [PubMed]
- Ivanov, V.; Stabnikov, V.; Ahmed, Z.; Dobrenko, S.; Saliuk, A. Production and Applications of Crude Polyhydroxyalkanoate-Containing Bioplastic from the Organic Fraction of Municipal Solid Waste. Int. J. Environ. Sci. Technol. 2015, 12, 725–738. [Google Scholar] [CrossRef]
- Saratale, R.G.; Cho, S.-K.; Saratale, G.D.; Kadam, A.A.; Ghodake, G.S.; Kumar, M.; Bharagava, R.N.; Kumar, G.; Kim, D.S.; Mulla, S.I.; et al. A comprehensive overview and recent advances on polyhydroxyalkanoates (PHA) production using various organic waste streams. Bioresour. Technol. 2021, 325, 124685. [Google Scholar] [CrossRef]
- Ten, E.; Jiang, L.; Zhang, J.; Wolcott, M.P. Mechanical performance of polyhydroxyalkanoate (PHA)-based biocomposites. In Biocomposites; Misra, M., Pandey, J.K., Mohanty, A.K., Eds.; Woodhead Publishing: Sawston, UK, 2015; pp. 39–52. [Google Scholar] [CrossRef]
- BASF. ecoflex® F Blend C1200. Available online: https://www.Plasticsportal.Net/Wa/PlasticsEU~en_GB/Function/Conversions:/Publish/Common/Upload/Biodegradable_plastics/Ecoflex_F_Blend_C1200.Pdf (accessed on 10 November 2024).
- Bai, J.; Pei, H.; Zhou, X.; Xie, X. Reactive compatibilization and properties of low-cost and high-performance PBAT/thermoplastic starch blends. Eur. Polym. J. 2021, 143, 110198. [Google Scholar] [CrossRef]
- Souza, P.M.S.; Sommaggio, L.R.D.; Marin-Morales, M.A.; Morales, A.R. PBAT biodegradable mulch films: Study of ecotoxicological impacts using Allium cepa, Lactuca sativa and HepG2/C3A cell culture. Chemosphere 2020, 256, 126985. [Google Scholar] [CrossRef]
- Azlin, M.N.M.; Sapuan, S.M.; Zuhri, M.Y.M.; Zainudin, E.S. Mechanical, Morphological and Thermal Properties of Woven Polyester Fiber Reinforced Polylactic Acid (PLA) Composites. Fibers Polym. 2022, 23, 234–242. [Google Scholar] [CrossRef]
- Jonoobi, M.; Harun, J.; Mathew, A.P.; Oksman, K. Mechanical properties of cellulose nanofiber (CNF) reinforced polylactic acid (PLA) prepared by twin screw extrusion. Compos. Sci. Technol. 2010, 70, 1742–1747. [Google Scholar] [CrossRef]
- Yu, J.-M.; Xu, S.; Liu, B.; Wang, H.; Qiao, F.; Ren, X.; Wei, Q. PLA bioplastic production: From monomer to the polymer. Eur. Polym. J. 2023, 193, 112076. [Google Scholar] [CrossRef]
- Campos, E.; Punhagui, K.; John, V. CO2 footprint of Amazon lumber: A meta-analysis. Resour. Conserv. Recycl. 2021, 167, 105380. [Google Scholar] [CrossRef]
- Richardson, V.; Peres, C. Temporal Decay in Timber Species Composition and Value in Amazonian Logging Concessions. PLoS ONE 2016, 11, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Morais, P.; Reis, A.; Moraes, M.; Christoforo, A.; Nascimento, M.; Lahr, F.; Silva, M. Determinação do processo produtivo de painéis homogêneos de partículas com resíduos amazônicos com identificação anatômica da biomassa. Cad. Pedagógico 2024, 21, e4389. [Google Scholar] [CrossRef]
- Ramos, W.; Ruivo, M.; Jardim, M.; Sousa, L. Geração de resíduos madeireiros do setor de base florestal na região metropolitana de Belém, Pará. Ciência Florest. 2018, 28, 1823–1830. [Google Scholar] [CrossRef]
- Mendoza, Z.M.d.S.H.d.; Evangelista, W.V.; Araújo, S.d.O.; Souza, C.C.d.; Ribeiro, F.D.L.; Silva, J.d.C. Análise dos resíduos madeireiros gerados nas marcenarias do município de Viço—Minas Gerais. Rev. Árvore 2010, 34, 755–760. [Google Scholar] [CrossRef]
- Grantham, J.; Ellis, T. Potentials of Wood for Producing Energy. J. For. 1974, 72, 552–556. [Google Scholar] [CrossRef]
- Manhães, J. Uso da Biomassa Florestal como Fonte de Energia. Floresta Ambiente 1994, 1, 108–115. [Google Scholar]
- Sommerhuber, P.; Welling, J.; Krause, A. Substitution potentials of recycled HDPE and wood particles from post-consumer packaging waste in Wood–Plastic Composites. Waste Manag. 2015, 46, 76–85. [Google Scholar] [CrossRef]
- Dias, J.M.C.d.S.; dos Santos, D.T.; Braga, M.; Onoyama, M.M.; Miranda, C.H.B.; Barbosa, P.F.D.; Rocha, J.D. Produção de Briquetes e Péletes a Partir de Resíduos Agrícolas, Agroindustriais E Florestais, 1st ed.; Embrapa Agroenergia: Brasília, DF, Brazil, 2012; Documentos/Embrapa Agroenergia; ISSN 2177-4439. 130p, Available online: https://ainfo.cnptia.embrapa.br/digital/bitstream/item/78690/1/DOC-13.pdf (accessed on 10 November 2024).
- Cárdenas-Zapata, R.; Palma-Ramírez, D.; Flores-Vela, A.; Romero-Partida, J.; Paredes-Rojas, J.; Márquez-Rocha, F.; Bravo-Díaz, B. Structural and thermal study of hemicellulose and lignin removal from two types of sawdust to isolate cellulose. MRS Adv. 2022, 7, 49–55. [Google Scholar] [CrossRef]
- Venkatarajan, S.; Subbu, C.; Athijayamani, A.; Muthuraja, R. Mechanical properties of natural cellulose fibers reinforced polymer composites—2015–2020: A review. Mater. Today Proc. 2021, 47, 1017–1024. [Google Scholar] [CrossRef]
- Tuoto, M. Levantamento sobre a geração de resíduos provenientes da atividade madeireira e proposição de diretrizes para políticas, normas e condutas técnicas para promover o seu uso adequado. Ministério Meio Ambiente Curitiba 2009. [Google Scholar]
- da Silva Luz, E.; Soares, A.A.V.; Goulart, S.L.; Carvalho, A.G.; Monteiro, T.C.; de Paula Protásio, T. Challenges of the lumber production in the Amazon region: Relation between sustainability of sawmills, process yield and logs quality. Environ. Dev. Sustain. 2021, 23, 4924–4948. [Google Scholar] [CrossRef]
- United Nations. UN Comtrade Database. 2016. Available online: https://comtradeplus.un.org (accessed on 23 August 2024).
- Phiri, R.; Mavinkere Rangappa, S.; Siengchin, S.; Oladijo, O.P.; Dhakal, H.N. Development of sustainable biopolymer-based composites for lightweight applications from agricultural waste biomass: A review. Adv. Ind. Eng. Polym. Res. 2023, 6, 436–450. [Google Scholar] [CrossRef]
- dos Santos, G.M.; de Araújo, A.B.S.; Giacon, V.M.; Faez, R. Does the moisture content of mercerized wood influence the modulus of rupture of thermopressed polyurethane-based composites? Ind. Crops Prod. 2023, 206, 117585. [Google Scholar] [CrossRef]
- Surdi, P.G.; Bortoletto Júnior, G.; Castro, V.R.d.; Brito, F.M.S.; Berger, M.d.S.; Zanuncio, J.C. Particleboard Production with Residues from Mechanical Processing of Amazonian Woods. Rev. Árvore 2019, 43, e430102. [Google Scholar] [CrossRef]
- Ramli, R.A. A comprehensive review on utilization of waste materials in wood plastic composite. Mater. Today Mater. Today Sustain. 2024, 27, 100889. [Google Scholar] [CrossRef]
- Cintra, S.C.; Braga, N.F.; Morgado, G.F.d.M.; Montanheiro, T.L.d.A.; Marini, J.; Passador, F.R.; Montagna, L.S. Development of new biodegradable composites materials from polycaprolactone and wood flour. Wood Mater. Sci. Eng. 2021, 17, 586–597. [Google Scholar] [CrossRef]
- Rocha, D.B.; de Souza, A.G.; Szostak, M.; Rosa, D.d.S. Polylactic acid/Lignocellulosic residue composites compatibilized through a starch coating. Polym. Compos. 2020, 41, 3250–3259. [Google Scholar] [CrossRef]
- da Costa, D.S.; Banna, W.R.E.; Fujiyama, R.T. Wood Residue of Jatobá (Hymenaea courbaril) and Short Fiber of Malva in Composites. Rev. De Gestão Soc. E Ambient. 2023, 18, e04194. [Google Scholar] [CrossRef]
- Ferreira, E.S.B.; Luna, C.B.B.; Araújo, E.M.; Siqueira, D.D.; Wellen, R.M.R. Polypropylene/wood powder composites: Evaluation of PP viscosity in thermal, mechanical, thermomechanical, and morphological characters. J. Thermoplast. Compos. Mater. 2019, 35, 71–92. [Google Scholar] [CrossRef]
- Ferreira-Leitão, V.; Gottschalk, L.M.F.; Ferrara, M.A.; Nepomuceno, A.L.; Molinari, H.B.C.; Bon, E.P.S. Biomass Residues in Brazil: Availability and Potential Uses. Waste Biomass Valorization 2010, 1, 65–76. [Google Scholar] [CrossRef]
- Sun, J.; Pang, Y.; Yang, Y.; Zhao, J.; Xia, R.; Li, Y.; Liu, Y.; Guo, H. Improvement of Rice Husk/HDPE Bio-Composites Interfacial Properties by Silane Coupling Agent and Compatibilizer Complementary Modification. Polymers 2019, 11, 1928. [Google Scholar] [CrossRef]
- Lala, S.D.; Deb, P.; Barua, E.; Deoghare, A.B.; Chatterjee, S. A comparative study on mechanical, physico-chemical, and thermal properties of rubber and walnut seed shell reinforced epoxy composites and prominent timber species. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2023, 237, 1165–1177. [Google Scholar] [CrossRef]
- Naduparambath, S.; Sreejith, M.P.; Jinitha, T.V.; Shaniba, V.; Aparna, K.B.; Purushothaman, E. Development of green composites of poly (vinyl alcohol) reinforced with microcrystalline cellulose derived from sago seed shells. Polym. Compos. 2018, 39, 3033–3039. [Google Scholar] [CrossRef]
- Soares, C.; Moura, E.; Arenhardt, V.; Deliza, E.E.V.; Pedro Filho, F.d.S. Biotechnology management in the Amazon and the production of polypropylene/Brazil Nut Shell fiber biocomposite. Rev. Gestão Secr. 2023, 14, 10734–10748. [Google Scholar] [CrossRef]
- de Melo Barbosa, A.; dos Santos, G.M.; de Melo, G.M.M.; Litaiff, H.A.; Martorano, L.G.; Giacon, V.M. Evaluation of the use of açaí seed residue as reinforcement in polymeric composite. Polym. Compos. Polym. Compos. 2022, 30, 09673911221108307. [Google Scholar] [CrossRef]
- Rayssa, S.; Lima, A.P.A.d.C.; Conte-Junior, C.A. Health from Brazilian Amazon food wastes: Bioactive compounds, antioxidants, antimicrobials, and potentials against cancer and oral diseases. Crit. Rev. Food Sci. Nutr. 2023, 63, 12453–12475. [Google Scholar] [CrossRef]
- Fonseca, A.S.; Raabe, J.; Dias, L.M.; Baliza, A.E.R.; Costa, T.G.; Silva, L.E.; Vasconcelos, R.P.; Marconcini, J.M.; Savastano, H.; Mendes, L.M. Main Characteristics of Underexploited Amazonian Palm Fibers for Using as Potential Reinforcing Materials. Waste Biomass Valorization 2019, 10, 3125–3142. [Google Scholar] [CrossRef]
- Lenhani, G.C.; dos Santos, D.F.; Koester, D.L.; Biduski, B.; Deon, V.G.; Machado Junior, M.; Pinto, V.Z. Application of Corn Fibers from Harvest Residues in Biocomposite Films. J. Polym. Environ. 2021, 29, 2813–2824. [Google Scholar] [CrossRef]
- Adeniyi, A.G.; Onifade, D.V.; Ighalo, J.O.; Adeoye, A.S. A review of coir fiber reinforced polymer composites. Compos. Part B Eng. 2019, 176, 107305. [Google Scholar] [CrossRef]
- Cionita, T.; Siregar, J.P.; Shing, W.L.; Hee, C.W.; Fitriyana, D.F.; Jaafar, J.; Junid, R.; Irawan, A.P.; Hadi, A.E. The Influence of Filler Loading and Alkaline Treatment on the Mechanical Properties of Palm Kernel Cake Filler Reinforced Epoxy Composites. Polymers 2022, 14, 3063. [Google Scholar] [CrossRef]
- Lemos, C.; Cardoso, F.; Neumann, F.; Felix, J.; Teixeira, L. Valorização de Resíduos da Indústria do Açaí: Oportunidades e Desafios. Report Prepared by the SENAI Institute for Innovation in Biosynthetics and Fibers, 13 December 2021, Rio de Janeiro, Brazil; Available online: https://senaicetiqt.com/wp-content/uploads/2021/12/Valorizacao-de-residuos-da-cadeia-do-acai.pdf (accessed on 26 September 2024).
- Araújo, S.; Santos, G.; Tolosa, G.; Hiranobe, C.; Budemberg, E.; Cabrera, F.; Silva, M.; Paim, L.; Job, A.; dos Santos, R. Acai Residue as an Ecologic Filler to Reinforcement of Natural Rubber Biocomposites. Mater. Res. 2023, 26, e20220505. [Google Scholar] [CrossRef]
- Silva, T.O.M. Compostos voláteis, perfil de aroma, de ácidos graxos e potencial antioxidante de óleo extraído por prensagem a frio de resíduo agroindustrial de açaí (Euterpe oleracea Mart.). Master’s Thesis, Universidade Federal de Sergipe, São Cristóvão, SE, Brazil, 2017. [Google Scholar]
- Santos, J.P.; Braga, L.F.; Ruedell, C.M.; Seben Júnior, G.d.F.; Ferbonink, G.F.; Caione, G. Caracterização física de substratos contendo resíduos de cascas de amêndoas de castanha-do-brasil (Bertholletia excelsa H.B.K.). Rev. Ciências Ambient. 2018, 12, 2813–2824. [Google Scholar] [CrossRef]
- Santos, M.J.T.d. Aproveitamento de Resíduos da Indústria de óleos Vegetais Produzidos na Amazônia. Master’s Thesis, Federal University of Pará, Belém, BP, Brazil, 2014. [Google Scholar]
- Chavalparit, O.; Rulkens, W.H.; Mol, A.P.J.; Khaodhair, S. Options for Environmental Sustainability of the Crude Palm Oil Industry in Thailand Through Enhancement of Industrial Ecosystems. Environ. Dev. Sustain. 2006, 8, 271–287. [Google Scholar] [CrossRef]
- Machado, N.A.F.; Andrade, H.A.F.d.; Parra-Serrano, L.J.; Furtado, M.B.; Silva-Matos, R.R.S.d.; Farias, M.F.d.; Furtado, J.d.L.B. Technological Characterization and Use of Babassu Residue (Orbygnia phalerata Mart.) in Particleboard. J. Agric. Sci. 2017, 9, 47. [Google Scholar] [CrossRef]
- Kieling, A.C.; Santana, G.P.; Santos, M.C.D.; Neto, J.C.D.M.; Pino, G.G.D.; Santos, M.D.D.; Duvoisin, S.; Panzera, T.H. Wood-plastic Composite Based on Recycled Polypropylene and Amazonian Tucumã (Astrocaryum aculeatum) Endocarp Waste. Fibers Polym. 2021, 22, 2834–2845. [Google Scholar] [CrossRef]
- Wataya, C.H.; Lima, R.A.; Oliveira, R.R.; Moura, E.A.B. Mechanical, Morphological and Thermal Properties of Açaí Fibers Reinforced Biodegradable Polymer Composites. In Characterization of Minerals, Metals, and Materials 2015; Carpenter, J.S., Bai, C., Escobedo, J.P., Hwang, J.-Y., Ikhmayies, S., Li, B., Li, J., Monteiro, S.N., Peng, Z., Zhang, M., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 265–272. [Google Scholar] [CrossRef]
- Beber, V.C.; De Barros, S.; Banea, M.D.; Brede, M.; De Carvalho, L.H.; Hoffmann, R.; Costa, A.R.M.; Bezerra, E.B.; Silva, I.D.S.; Haag, K.; et al. Effect of Babassu Natural Filler on PBAT/PHB Biodegradable Blends: An Investigation of Thermal, Mechanical, and Morphological Behavior. Materials 2018, 11, 820. [Google Scholar] [CrossRef]
- Portela, T.G.R.; Costa, L.L.; Monteiro, S.N. Resistência à Tração de Compósitos Poliméricos Reforçados com Fibras Alinhadas de Buriti. In Proceedings of the 65° Congresso ABM, Rio de Janeiro, RJ, Brazil, 26–30 July 2010; pp. 3154–3161. [Google Scholar] [CrossRef]
Common Name (Scientific Name) | Cellulose (%) | Hemicellulose (%) | Lignin (%) | Extractives (%) | Ash (%) | Ref. |
---|---|---|---|---|---|---|
Açaí seeds (Euterpe oleracea) | 11.58 | 37.88 | 14.12 | 4.09 | 1.57 | [78] |
Açaí seeds (Euterpe oleracea) | 8.5 | 48.1 | 16.4 | 13.1 | 0.96 | [79] |
Palm kernel shell | 29.7 | 47.7 | 53.4 | - | 1.1 | [85] |
Palm kernel shell | 6.92 | 26.11 | 53.85 | - | 8.68 | [86] |
Maçaranduba sawdust (Manilkara huberi) | 69.41 * | - | 34.68 | 7.36 | 0.33 | [89] |
Brazil nut mesocarp (Bertholletia excelsa) | 15.9 | 15.7 | 56 | 2.5 | 6.2 | [90] |
Brazil nut waste (Bertholletia excelsa) | - | 37.09 | 55.76 | 4.54 | 2.61 | [91] |
Cupuaçu husk (Theobroma grandiflorum) | 49.43 | 10.13 | 11.36 | 13.94 | 2.36 | [92] |
Maçaranduba sawdust (Manilkara huberi) | 66 * | - | 29 | 5 | 0 | [93] |
Mandioqueira wood (Ruizterania albiflora) | 55.9 | 9.23 | 28.71 | 3.29 | 1.12 | [94] |
Cambará wood (Vochysia sp.) | 49.5 | 12.56 | 32.28 | 0.18 | 3.9 | [94] |
Amescla wood (Trattinnickia sp.) | 45.18 | 13.38 | 33.86 | 0.71 | 1.72 | [94] |
Angelim-pedra (Hymenolobium petraeum) | 73.15 * | - | 23.84 | 3.01 | - | [95] |
Polymer Type | Polymer | Mechanical Properties (Tensile Strength) | Manufacturing Efficiency | Environmental Impact | Ref. |
---|---|---|---|---|---|
Conventional | Polyethylene (PE) | (LDPE: 7–15 MPa HDPE: 31–42 MPa) | High efficiency, low cost | High impact, non-biodegradable, moderate recyclability | [106,111,133,134] |
Polypropylene (PP) | (3.45–30 MPa) | Moderate efficiency, low cost | High impact, high toxicity, non-biodegradable | [106,111,135,136] | |
Polystyrene (PS) | (35.9–56.5 MPa) | Moderate efficiency, low cost | High impact, non-biodegradable non-recyclable | [137,138,139] | |
Polyurethane (PU) | (31–62 MPa) | Moderate efficiency, moderate cost | High Impact, non-biodegradable, moderate recyclability | [137,140,141] | |
Polyvinyl chloride (PVC) | (30–65 MPa) | Moderate efficiency, low cost | High impact, High Toxicity, Non-biodegradable, pollutant emissions | [137,142,143,144] | |
Epoxy resins * | (60–115 MPa) | Low efficiency, low cost | High impact, non-biodegradable, non-recyclable | [145,146,147,148,149,150] | |
Biodegradable | Polybutylene succinate (PBS) | (18–25) MPa | Moderate efficiency, high cost | Low impact, biodegradable non-toxic by-products | [151,152,153,154] |
Polyhydroxyalkanoates (PHAs) | (20–40) MPa | Moderate efficiency, high cost | Low impact, biodegradable | [151,155,156,157] | |
Polybutylene Adipate Terephthalate (PBAT) | (30–36) MPa | Moderate efficiency, high cost | Low impact, biodegradable, non-toxic by-products | [157,158,159,160] | |
Polylactic acid (PLA) | (50–70 MPa) | Moderate efficiency, moderate cost | Low impact, biodegradable | [151,161,162,163] |
Timber Residue | Composition | Improved Properties | Original Values | Improvement (%) | Ref. |
---|---|---|---|---|---|
Louro Itaúba, Louro Gamela, Maçaranduba | 5–10% NaOH-treated wood residue | Rupture modulus: Louro Gamela (16 MPa), Louro Itaúba (9 MPa), Maçaranduba (11 MPa) | Louro Gamela (12 MPa), Louro Itaúba (2 MPa), Maçaranduba (3 MPa) | Gamela: +33%, Itaúba: +350%, Maçaranduba: +266% | [179] |
Caryocar villosum, Hymenolobium excelsum, Tachigali myrmecophyla | 8% Phenol-formaldehyde resin with wood residues | Rupture modulus (10.04 MPa), Young’s modulus (1616.74 MPa) | Rupture modulus: 8.5 MPa, Young’s modulus: 1400 MPa | Rupture: +18%, Elasticity: +15% | [180] |
Maçaranduba, Pinus, sugarcane bagasse | PLA with 20% Maçaranduba/ Pinus residues | Young’s modulus: Pinus (+34%), Maçaranduba (+15%). Impact absorption: Maçaranduba (+0.357 J/m) | Young’s modulus: 2.6 GPa, impact absorption: 0.193 J/m | +34% (Pinus), +15% (Maçaranduba) | [183] |
Jatobá + malva fibers | 75% Jatobá wood + 25% malva fibers | Tensile strength: 26.06 MPa | Tensile strength: 25.09 MPa | +4% | [184] |
Jatobá wood powder | 40% Jatobá-wood powder in PP | Young’s modulus: 2000 MPa | Young’s modulus: 800 MPa | +59% | [185] |
Timber Residue | Composition | Improved Properties | Original Values | Improvement (%) | Ref. |
---|---|---|---|---|---|
Açaí seed | Polymer composite with 30% açaí seed | Lower water absorption (21.11%) with larger particles, better bonding strength | Water absorption: 56.65% | −63% water absorption | [191] |
Palm kernel cake | Epoxy with 30% palm kernel cake | Tensile strength: 31.20 MPa, Flexural strength: 39.70 MPa | Tensile strength: 22.90 MPa, Flexural strength: 30.50 MPa | Tensile: +36%, Flexural: +30% | [196] |
Tucumã endocarp | Recycled PP with 0–50 wt.% Tucumã endocarp powder (TEP) | Increased tensile and flexural modulus (+28% to +30%), improved compressive strength (+134%) with 40 wt.% TEP | Tensile modulus: 0.73 GPa (PP100) Flexural modulus: 1.13 GPa (PP100) | Modulus: +28% (0.94 GPa with 50 wt.% TEP) Flexural modulus: +30% (1.48 GPa with 50 wt.% TEP) | [204] |
Açaí seed | Natural rubber with 0–50 phr açaí seed | Increased tensile strength, increased Young’s modulus | Tensile strength: 5.2 MPa (0 phr) Young’s modulus: 0.8 MPa (0 phr) | Tensile strength: +65% (at 50 phr) Young’s modulus: +127.5% (at 50 phr, 1.82 MPa) | [202] |
Açaí seed fiber | PBAT/PLA (50/50 wt.%) with 30% açaí seed fiber | Increased elongation at break (+17%) | Elongation: 12.8% (PBAT/PLA blend) | Elongation: +17% (15.02%) | [205] |
Babassu Mesocarp | PBAT/PHB (25/75, 50/50, 75/25) with 20% Babassu | Increased Young’s modulus (+19.4%), slight increase in stiffness | Young’s modulus: 334 MPa (50/50 blend) | Young’s modulus: +19.4% (for 25/75 blend with Babassu) | [206] |
Buriti fiber | Epoxy (DGEBA/TETA) with 0%, 10%, 20%, 30% buriti fiber | Increased tensile strength (+22.8%), improved modulus (+57%) with 30% fiber content | Tensile strength: 61.94 MPa (0% fiber) Modulus: 0.97 GPa (0% fiber) | Tensile strength: +22.8% (76.07 MPa with 30% fiber) Modulus: +57% (1.52 GPa with 30% fiber) | [207] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leite-Barbosa, O.; Pinto, C.C.d.O.; Leite-da-Silva, J.M.; de Aguiar, E.M.M.M.; Veiga-Junior, V.F. Polymer Composites Reinforced with Residues from Amazonian Agro-Extractivism and Timber Industries: A Sustainable Approach to Enhancing Material Properties and Promoting Bioeconomy. Polymers 2024, 16, 3282. https://doi.org/10.3390/polym16233282
Leite-Barbosa O, Pinto CCdO, Leite-da-Silva JM, de Aguiar EMMM, Veiga-Junior VF. Polymer Composites Reinforced with Residues from Amazonian Agro-Extractivism and Timber Industries: A Sustainable Approach to Enhancing Material Properties and Promoting Bioeconomy. Polymers. 2024; 16(23):3282. https://doi.org/10.3390/polym16233282
Chicago/Turabian StyleLeite-Barbosa, Odilon, Claúdia Carnaval de Oliveira Pinto, Jôse Maria Leite-da-Silva, Erick Max Mourão Monteiro de Aguiar, and Valdir Florencio Veiga-Junior. 2024. "Polymer Composites Reinforced with Residues from Amazonian Agro-Extractivism and Timber Industries: A Sustainable Approach to Enhancing Material Properties and Promoting Bioeconomy" Polymers 16, no. 23: 3282. https://doi.org/10.3390/polym16233282
APA StyleLeite-Barbosa, O., Pinto, C. C. d. O., Leite-da-Silva, J. M., de Aguiar, E. M. M. M., & Veiga-Junior, V. F. (2024). Polymer Composites Reinforced with Residues from Amazonian Agro-Extractivism and Timber Industries: A Sustainable Approach to Enhancing Material Properties and Promoting Bioeconomy. Polymers, 16(23), 3282. https://doi.org/10.3390/polym16233282