Analysis of the Effects of Neutron Radiation on Cellulose Linen Fabrics Using Non-Destructive Testing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Linen Samples
2.2. Samples Irradiation
2.3. Ultraviolet Fluorescence Setup
2.4. ATR-FTIR
2.5. Raman Spectroscopy
2.6. Nuclear Magnetic Resonance
3. Results and Discussion
3.1. Ultraviolet Fluorescence Study
3.2. ATR-FTIR Characterization
3.3. Raman Spectroscopy Characterization
3.4. NMR Characterization
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- List, R.; Gonzalez-Lopez, L.; Ashfaq, A.; Zaouak, A.; Driscoll, M.; Al-Sheikhly, M. On the Mechanism of the Ionizing Radiation-Induced Degradation and Recycling of Cellulose. Polymers 2023, 15, 4483. [Google Scholar] [CrossRef] [PubMed]
- Gilfillan, E.S.; Linden, L. Effects of Nuclear Radiation on the Strength of Yarns. Text. Res. J. 1955, 25, 773–777. [Google Scholar] [CrossRef]
- Prasher, S.; Kumar, M. Effects of Neutron Irradiation on Polymer. In Radiation Effects in Polymeric Materials; Kumar, V., Chaudhary, B., Sharma, V., Verma, K., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 351–368. [Google Scholar] [CrossRef]
- Porter, B.R.; Tripp, V.W.; deGruy, I.V.; Rollins, M.L. Effects of Gamma, High-Energy Electron, and Thermal Neutron Radiations on the Fibrillar Structure of Cotton Fibers. Text. Res. J. 1960, 30, 510–520. [Google Scholar] [CrossRef]
- Sasaki, T.; Hayashi, K.; Okamura, S. Neutron Irradiation Effect on Cellulose. Kobunshi Kagaku 1964, 21, 637–641. [Google Scholar] [CrossRef]
- Mitchell, J.W.; Addagada, A. Chemistry of proton track registration in cellulose nitrate polymers. Radiat. Phys. Chem. 2007, 76, 691–698. [Google Scholar] [CrossRef]
- Bovey, F.A. The Effects of Ionizing Radiation on Natural and Synthetic High Polymers; Polymer Reviews; Interscience Publishers: New York, NY, USA, 1958; Volume 1, Available online: https://hdl.handle.net/2027/mdp.39015003432336?urlappend=%3Bseq=7 (accessed on 31 August 2024).
- NIST. Neutron Scattering Lengths List. 2017. Available online: https://www.nist.gov/ncnr/neutron-scattering-lengths-list (accessed on 10 October 2024).
- Bobeth, W.; Heter, A.; Weihs, A. The Modification of Fibers by Nuclear Radiation. Part I. Faserforsch. Textiltech. 1961, 12. Available online: https://www.osti.gov/biblio/4805633 (accessed on 3 September 2024).
- Laude, J.-P. Hypothetical photo-nuclear effects, dating and imaging on the Shroud of Turin. In Proceedings of the Unconventional Optical Imaging III, Strasbourg, France, 3 April–23 May 2022; pp. 268–275. [Google Scholar] [CrossRef]
- Teszler, O.; Kiser, L.H.; Campbell, P.W.; Rutherford, H.A. The Effect of Nuclear Radiation on Fibrous Materials: Part III: Relative Order of Stability of Cellulosic Fibers. Text. Res. J. 1958, 28, 456–462. [Google Scholar] [CrossRef]
- Teszler, O.; Wiehart, H.; Rutherford, H.A. The Effect of Nuclear Radiation on Fibrous Materials: Part II: Dyeing Characteristics of Irradiated Cotton and Rayon. Text. Res. J. 1958, 28, 131–135. [Google Scholar] [CrossRef]
- McAvoy, T. On Radiocarbon Dating of the Shroud of Turin. IJA 2021, 9, 34. [Google Scholar] [CrossRef]
- Takács, E.; Wojnárovits, L.; Borsa, J.; Földváry, C.S.; Hargittai, P.; Zöld, O. Effect of γ-irradiation on cotton-cellulose. Radiat. Phys. Chem. 1999, 55, 663–666. [Google Scholar] [CrossRef]
- Blouin, F.A.; Arthur, J.C.; Orr, R.S.; Ott, V.J. Thermal Neutron Irradiation of Cotton’. Text. Res. J. 1961, 31, 597–602. [Google Scholar] [CrossRef]
- Bleyen, N.; Van Gompel, V.; Smets, S.; Eyley, S.; Verwimp, W.; Thielemans, W.; Valcke, E. Radiolytic degradation of cellulosic materials in nuclear waste: Effect of oxygen and absorbed dose. Radiat. Phys. Chem. 2023, 212, 111177. [Google Scholar] [CrossRef]
- Peets, P.; Kaupmees, K.; Vahur, S.; Leito, I. Reflectance FT-IR spectroscopy as a viable option for textile fiber identification. Herit. Sci. 2019, 7, 93. [Google Scholar] [CrossRef]
- Baccaro, S.; Cemmi, A. Radiation activities and application of ionizing radiation on cultural heritage at ENEA Calliope gamma facility (Casaccia R.C., Rome, Italy). Nukleonika 2017, 62, 261–267. [Google Scholar] [CrossRef]
- Borla, O.; Lacidogna, G.; Carpinteri, A. Piezonuclear Neutron Emissions from Earthquakes and Volcanic Eruptions. In Acoustic, Electromagnetic, Neutron Emissions from Fracture and Earthquakes; Carpinteri, A., Lacidogna, G., Manuello, A., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 135–151. [Google Scholar] [CrossRef]
- Colella, M.; Parkinson, A.; Evans, T.; Robertson, J.; Roux, C. The Effect of Ionizing Gamma Radiation on Natural and Synthetic Fibers and Its Implications for the Forensic Examination of Fiber Evidence. J. Forensic Sci. 2011, 56, 591–605. [Google Scholar] [CrossRef]
- Phillips, T.J. Shroud irradiated with neutrons? Nature 1989, 337, 594. [Google Scholar] [CrossRef]
- Fonseca, S.; Rebelo, J. Economic Valuation of Cultural Heritage: Application to a museum located in the Alto Douro Wine Region¿ World Heritage Site. PASOS 2010, 8, 339–350. [Google Scholar] [CrossRef]
- Anderson, D.A. The Aggregate Burden of Crime; Social Science Research Network: Rochester, NY, USA, 1999. [Google Scholar] [CrossRef]
- Huang, J.; Yu, C. Determination of cellulose, hemicellulose and lignin content using near-infrared spectroscopy in flax fiber. Text. Res. J. 2019, 89, 4875–4883. [Google Scholar] [CrossRef]
- Sohn, M.; Himmelsbach, D.S.; Morrison, W.H.; Akin, D.E.; Barton, F.E. Partial Least Squares Regression Calibration for Determining Wax Content in Processed Flax Fiber by Near-Infrared Spectroscopy. Appl. Spectrosc. 2006, 60, 437–440. [Google Scholar] [CrossRef]
- Mohapatra, H.; Malik, R. Effect of Microorganism on Flax and Linen. J. Text. Sci. Eng. 2015, 6, 1000229. [Google Scholar] [CrossRef]
- Szymańska-Chargot, M.; Cybulska, J.; Zdunek, A. Sensing the Structural Differences in Cellulose from Apple and Bacterial Cell Wall Materials by Raman and FT-IR Spectroscopy. Sensors 2011, 11, 5543–5560. [Google Scholar] [CrossRef] [PubMed]
- Su, X.-J.; Zhang, C.-Y.; Li, W.-J.; Wang, F.; Wang, K.-Q.; Liu, Y.; Li, Q.-M. Radiation-Induced Structural Changes of Miscanthus Biomass. Appl. Sci. 2020, 10, 1130. [Google Scholar] [CrossRef]
- Garside, P.; Wyeth, P. Polarised ATR-FTIR Characterisation of Cellulosic Fibres in Relation to Historic Artefacts. Restaurator 2004, 25, 249–259. [Google Scholar] [CrossRef]
- Kljun, A.; Benians, T.A.S.; Goubet, F.; Meulewaeter, F.; Knox, J.P.; Blackburn, R.S. Comparative Analysis of Crystallinity Changes in Cellulose I Polymers Using ATR-FTIR, X-ray Diffraction, and Carbohydrate-Binding Module Probes. Biomacromolecules 2011, 12, 4121–4126. [Google Scholar] [CrossRef] [PubMed]
- Široký, J.; Blackburn, R.S.; Bechtold, T.; Taylor, J.; White, P. Attenuated total reflectance Fourier-transform Infrared spectroscopy analysis of crystallinity changes in lyocell following continuous treatment with sodium hydroxide. Cellulose 2010, 17, 103–115. [Google Scholar] [CrossRef]
- Chaudhary, N.; Singh, A.; Debnath, A.K.; Acharya, S.; Aswal, D.K. Electron Beam Modified Organic Materials and their Applications. Solid State Phenom. 2015, 239, 72–97. [Google Scholar] [CrossRef]
- Arthur, J.C.; Mares, T.; Hinojosa, O. ESR Spectra of Gamma-Irradiated Cotton Cellulose I and II. Text. Res. J. 1966, 36, 630–635. [Google Scholar] [CrossRef]
- Krumeich, F. Properties of Electrons, Their Interactions with Matter and Applications in Electron Microscopy; ETH Zur: Zürich, Switzerland, 2015; Available online: https://www.semanticscholar.org/paper/Properties-of-Electrons%2C-their-Interactions-with-in-Krumeich/9734e14c884f022ae2afdb725918a88531735f58 (accessed on 18 September 2024).
- Leavitt, F.C. Crosslinking of cellulosics by high energy radiation. J. Polym. Sci. 1960, 45, 536–538. [Google Scholar] [CrossRef]
- Bobeth, W.; Heger, A.; Weihs, A. On the Influence of Radioactive Radiation upon the Properties of Fibrous Materials, Part II. Faserforsch. Textiltech. 1961, 12. Available online: https://www.osti.gov/biblio/4818381 (accessed on 22 August 2024).
- Tripp, V.W.; Moore, A.T.; de Gruy, I.V.; Rollins, M.L. Location of Areas of Reaction in Chemically Treated Cotton Cellulose. Text. Res. J. 1960, 30, 140–147. [Google Scholar] [CrossRef]
- Donaldson, L. Softwood and Hardwood Lignin Fluorescence Spectra of Wood Cell Walls in Different Mounting Media. IAWA J. 2013, 34, 3–19. [Google Scholar] [CrossRef]
- Qin, X.; Zhang, Z.; Yang, T.; Yuan, L.; Guo, Y.; Yang, X. Auto-fluorescence of cellulose paper with spatial solid phrase dispersion-induced fluorescence enhancement behavior for three heavy metal ions detection. Food Chem. 2022, 389, 133093. [Google Scholar] [CrossRef] [PubMed]
- Łojewska, J.; Rabin, I.; Pawcenis, D.; Bagniuk, J.; Aksamit-Koperska, M.A.; Sitarz, M.; Missori, M.; Krutzsch, M. Recognizing ancient papyri by a combination of spectroscopic, diffractional and chromatographic analytical tools. Sci. Rep. 2017, 7, 46236. [Google Scholar] [CrossRef] [PubMed]
- Stephen Davidson, R.; Dunn, L.A.; Castellan, A.; Nourmamode, A. A study of the photobleaching and photoyellowing of paper containing lignin using fluorescence spectroscopy. J. Photochem. Photobiol. A Chem. 1991, 58, 349–359. [Google Scholar] [CrossRef]
- Melelli, A.; Goudenhooft, C.; Durand, S.; Quiles, A.; Cortopassi, R.; Morgillo, L.; Magueresse, A.; Beaugrand, J.; Jamme, F.; Bourmaud, A. Revealing degradation mechanisms of archaeological flax textiles through the evolution of fibres’ parietal polymers by synchrotron deep-UV fluorescence. Polym. Degrad. Stab. 2024, 226, 110826. [Google Scholar] [CrossRef]
- Ding, Q.; Han, W.; Li, X.; Jiang, Y.; Zhao, C. New insights into the autofluorescence properties of cellulose/nanocellulose. Sci. Rep. 2020, 10, 21387. [Google Scholar] [CrossRef]
- Laude, J.P. Raman and Fluorescence Spectra of UV or Proton Exposed Linens: A Tentative to Evaluate Some Hypotheses on the Shroud of Turin Image Formation. In Proceedings of the 26th International Conference on Raman Spectroscopy (ICORS 2018), Jeju, Republic of Korea, 26–31 August 2018; Available online: https://www.researchgate.net/publication/327394036_Raman_and_Fluorescence_spectra_of_UV_or_proton_exposed_linens_a_tentative_to_evaluate_some_hypotheses_on_the_Shroud_of_Turin_image_formation_26th_International_Conference_On_Raman_Spectroscopy_ICORS_2 (accessed on 27 September 2024).
- Kerr, N.; Capjack, L.; Fedosejevs, R. Ability of Textile Covers to Protect Artifacts from Ultraviolet Radiation. J. Am. Inst. Conserv. 2000, 39, 345–353. [Google Scholar] [CrossRef]
- Bouchard, J.; Méthot, M.; Jordan, B. The effects of ionizing radiation on the cellulose of woodfree paper. Cellulose 2006, 13, 601–610. [Google Scholar] [CrossRef]
- Librando, V.; Minniti, Z.; Lorusso, S. Ancient and modern paper characterization by FTIR and Micro-Raman spectroscopy. Conserv. Sci. Cult. Herit. 2011, 11, 249–268. [Google Scholar] [CrossRef]
- Fernández-Álvarez, M.; Calderón-Perea, N.E.; Bautista, A.; Velasco, F. Weathering effect on the wear performance of epoxy powder coatings reinforced with calcium ion-exchanged amorphous silica. Prog. Org. Coat. 2024, 197, 108837. [Google Scholar] [CrossRef]
- Fernández-Álvarez, M.; Velasco, F.; Bautista, A. Performance of ultraviolet exposed epoxy powder coatings functionalized with silica by hot mixing. J. Mater. Res. Technol. 2021, 10, 1042–1057. [Google Scholar] [CrossRef]
- Botti, S.; Di Lazzaro, P.; Flora, F.; Mezi, L.; Murra, D. Raman spectral mapping reveal molecular changes in cellulose aging induced by ultraviolet and extreme ultraviolet radiation. Cellulose 2024, 31, 749–758. [Google Scholar] [CrossRef]
- Agarwal, U.P.; Ralph, S.A.; Reiner, R.S.; Baez, C. New cellulose crystallinity estimation method that differentiates between organized and crystalline phases. Carbohydr. Polym. 2018, 190, 262–270. [Google Scholar] [CrossRef] [PubMed]
- Fanti, G.; Baraldi, P.; Basso, R.; Tinti, A. Non-destructive dating of ancient flax textiles by means of vibrational spectroscopy. Vib. Spectrosc. 2013, 67, 61–70. [Google Scholar] [CrossRef]
- Marín-Cortés, S.; Fernández-Álvarez, M.; Enríquez, E.; Fernández, J.F. Experimental characterization data on aggregates from construction and demolition wastes for the assistance in sorting and recycling practices. Constr. Build. Mater. 2024, 435, 136798. [Google Scholar] [CrossRef]
- Kaszowska, Z.; Malek, K.; Staniszewska-Slezak, E.; Niedzielska, K. Raman scattering or fluorescence emission? Raman spectroscopy study on lime-based building and conservation materials. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2016, 169, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Zhang, Y.; Wei, M.; Shao, H.; Hu, X. Influence of γ-ray radiation on the structure and properties of paper grade bamboo pulp. Carbohydr. Polym. 2010, 81, 114–119. [Google Scholar] [CrossRef]
- Driscoll, M.; Stipanovic, A.; Winter, W.; Cheng, K.; Manning, M.; Spiese, J.; Galloway, R.A.; Cleland, M.R. Electron beam irradiation of cellulose. Radiat. Phys. Chem. 2009, 78, 539–542. [Google Scholar] [CrossRef]
- Kovalev, G.V.; Bugaenko, L.T. On the Crosslinking of Cellulose under Exposure to Radiation. High Energy Chem. 2003, 37, 209–215. [Google Scholar] [CrossRef]
Sample | Neutron Fluence Rate | Neutron Dose | γ Dose | Total Dose | Time | |
---|---|---|---|---|---|---|
n/cm2/s | n/cm2 | kGy | kGy | kGy | s | |
1 | 1012 | 2.5 × 1014 | 2 | 2.15 | 4.15 | 250 |
2 | 1012 | 5.0 × 1014 | 4 | 4.30 | 8.30 | 500 |
3 | 1012 | 7.5 × 1014 | 6 | 6.45 | 12.45 | 750 |
4 | 1012 | 1.0 × 1015 | 8 | 8.60 | 16.60 | 1000 |
5 | 1013 | 2.5 × 1015 | 20 | 21.50 | 41.50 | 250 |
6 | 1013 | 5.0 × 1015 | 40 | 43.00 | 83.00 | 500 |
7 | 1013 | 7.5 × 1015 | 60 | 64.50 | 124.50 | 750 |
8 | 1013 | 1.0 × 1016 | 80 | 86.00 | 166.00 | 1000 |
control | - | 0 | 0 | 0 | 0 | - |
Wavenumber Range (cm−1) | Functional Group |
---|---|
3600–3070 | O-H stretch (hydroxyl) |
2980–2600 | CH stretch/Asymmetric CH2 stretch/lignin [26] |
1760–1700 | C=O tensile strength carbonyl |
C=O carbonyl region/carboxyl (–COOH) | |
1700–1500 | Absorbed water/carbonyl (C=O) |
ν(C=C) (lignin compounds)/carboxyl (–COOH) | |
1500–1390 | δ OH primary and secondary alcohol |
δ CH2 scissoring motion | |
1390–1346 | δ CH deformation |
1346–1325 | δ OH deformation |
1325–1290 | δ CH2 wagging |
1180–1136 | ν antisymmetric ring breathing mode/C-O-C |
1136–1083 | C-O-C ν symmetric glycosidic stretch/ring stretching mode |
1136–800 | CC and CO stretching; HCC and HCO bending |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barta, C.; Fernández-Álvarez, M.; Ruiz-Navas, E.M. Analysis of the Effects of Neutron Radiation on Cellulose Linen Fabrics Using Non-Destructive Testing. Polymers 2024, 16, 3401. https://doi.org/10.3390/polym16233401
Barta C, Fernández-Álvarez M, Ruiz-Navas EM. Analysis of the Effects of Neutron Radiation on Cellulose Linen Fabrics Using Non-Destructive Testing. Polymers. 2024; 16(23):3401. https://doi.org/10.3390/polym16233401
Chicago/Turabian StyleBarta, César, María Fernández-Álvarez, and Elisa María Ruiz-Navas. 2024. "Analysis of the Effects of Neutron Radiation on Cellulose Linen Fabrics Using Non-Destructive Testing" Polymers 16, no. 23: 3401. https://doi.org/10.3390/polym16233401
APA StyleBarta, C., Fernández-Álvarez, M., & Ruiz-Navas, E. M. (2024). Analysis of the Effects of Neutron Radiation on Cellulose Linen Fabrics Using Non-Destructive Testing. Polymers, 16(23), 3401. https://doi.org/10.3390/polym16233401