Biodegradation Assessment of Bioplastic Carrier Bags Under Industrial-Scale Composting Conditions
Abstract
:1. Introduction
- (1)
- Biodegradability: Referring namely to the conversion of organic materials to CO2 by microorganisms. The standard includes a required biodegradation criterion of at least 90% that must be attained in fewer than 6 months (laboratory test method EN 14046 [39]);
- (2)
- Disintegration during biological treatment: Tested through the fragmentation and loss of visibility in the final compost, which is determined in a pilot composting test (EN 14045 [29]) in which specimens of the tested bioplastic material are composed with biowaste for 12 weeks. Following this period, the mass of the test material residues must be less than 10% of the original mass;
- (3)
- Effect on the biological treatment process: There should be no negative effects of the packaging materials on the composting process;
- (4)
- Effect on the quality of the resulting compost: The increased packing material should not degrade the final product’s quality. The standard requires that this be verified using ecotoxicity tests: This entails conducting a study to determine whether composted packaging has a harmful effect on plant germination and biomass output. Moreover, the standard sets limits for volatile matter, heavy metals, and fluorine contents of the final compost.
2. Materials and Methods
2.1. Tested Material
2.2. Composting Experiment and Sampling
2.3. Physicochemical Properties of the Input Material and Monitoring During the Composting Process
2.4. Disintegration Test
2.5. Morphological Changes
2.5.1. Sample Preparation
2.5.2. Optical Microscopy
2.5.3. Scanning Electron Microscopy (SEM)
2.6. Fourier Transform Infrared (FTIR) Spectroscopy
2.7. Gas Chromatography Coupled with Mass Spectrometry (GC-MS)
2.8. Ecotoxicity Tests
3. Results and Discussion
3.1. Carbon-to-Nitrogen Ratio
3.2. Temperature
3.3. Respiration Intensity
3.4. Organic Matter Mineralization
3.5. Disintegration Test
3.6. Morphological Changes
3.6.1. Optical Microscopy
3.6.2. Scanning Electron Microscopy (SEM)
3.7. Fourier Transform Infrared (FTIR) Spectroscopy
3.8. Gas Chromatography Coupled with Mass Spectrometry (GC-MS)
3.9. Ecotoxicity Tests
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Üveges, Z.; Damak, M.; Klátyik, S.; Ramay, M.W.; Fekete, G.; Varga, Z.; Gyuricza, C.; Székács, A.; Aleksza, L. Biomethane potential in anaerobic biodegradation of commercial bioplastic materials. Fermentation 2023, 9, 261. [Google Scholar] [CrossRef]
- Statista. Annual Production of Plastics Worldwide from 1950 to 2023; Statista Research Department: New York, NY, USA, 2024; Available online: https://www.statista.com/statistics/282732/global-production-of-plastics-since-1950 (accessed on 25 November 2024).
- OECD. Policy Scenarios for Eliminating Plastic Pollution by 2040; OECD: Paris, France, 2024; Available online: https://www.oecd.org/en/publications/policy-scenarios-for-eliminating-plastic-pollution-by-2040_76400890-en.html (accessed on 25 November 2024). [CrossRef]
- OECD. Increased Plastic Leakage and Greenhouse Gas Emissions; OECD: Paris, France, 2022; Available online: https://www.oecd.org/environment/plastics/increased-plastic-leakage-and-greenhouse-gas-emissions.htm (accessed on 25 November 2024).
- Cabernard, L.; Pfister, S.; Oberschelp, C.; Hellweg, S. Growing environmental footprint of plastics driven by coal combustion. Nat. Sustain. 2021, 5, 139–148. [Google Scholar] [CrossRef]
- Liu, L.; Xu, M.; Ye, Y.; Zhang, B. On the degradation of (micro)plastics: Degradation methods, influencing factors, environmental impacts. Sci. Total Environ. 2022, 806, 151312. [Google Scholar] [CrossRef] [PubMed]
- Bostan, N.; Ilyas, N.; Akhtar, N.; Mehmood, S.; Saman, R.U.; Sayyed, R.Z.; Shatid, A.A.; Alfaifi, M.Y.; Elbehairi, S.E.I.; Pandiaraj, S. Toxicity assessment of microplastic (MPs); a threat to the ecosystem. Environ. Res. 2023, 234, 116523. [Google Scholar] [CrossRef]
- Zeb, A.; Liu, W.; Ali, N.; Shi, R.; Wang, Q.; Wang, J.; Li, J.; Yin, C.; Liu, J.; Yu, M.; et al. Microplastic pollution in terrestrial ecosystems: Global implications and sustainable solutions. J. Hazard. Mater. 2024, 461, 132636. [Google Scholar] [CrossRef]
- Ali, N.; Khan, M.H.; Ali, M.; Sidra; Ahmad, S.; Khan, A.; Nabi, G.; Ali, F.; Bououdina, M.; Kyzas, G.Z. Insight into microplastics in the aquatic ecosystem: Properties, sources, threats and mitigation strategies. Sci. Total Environ. 2024, 913, 169489. [Google Scholar] [CrossRef]
- Martínez, A.; Perez-Sanchez, E.; Caballero, A.; Ramírez, R.; Quevedo, E.; Salvador-García, D. PBAT is biodegradable but what about the toxicity of its biodegradation products? J. Mol. Model. 2024, 30, 273. [Google Scholar] [CrossRef]
- Dissanayake, P.D.; Withana, P.A.; Sang, M.K.; Cho, Y.; Park, J.; Oh, D.X.; Chang, S.X.; Lin, C.S.K.; Bank, M.S.; Hwang, S.Y.; et al. Effects of biodegradable poly(butylene adipate-co-terephthalate) and poly(lactic acid) plastic degradation on soil ecosystems. Soil Use Manag. 2024, 40, e13055. [Google Scholar] [CrossRef]
- European Bioplastics. What Are Bioplastics. Available online: https://www.european-bioplastics.org/bioplastics (accessed on 25 November 2024).
- Adekiya, A.O.; Ejue, W.S.; Olayanju, A.; Dunsin, O.; Aboyeji, C.M.; Aremu, C.; Adegbite, K.; Akinpelu, O. Different organic manure sources and NPK fertilizer on soil chemical properties, growth, yield and quality of okra. Sci. Rep. 2020, 10, 16083. [Google Scholar] [CrossRef]
- Abraham, A.; Park, H.; Choi, O.; Sang, B. Anaerobic co-digestion of bioplastics as a sustainable mode of waste management with improved energy production—A review. Biores. Technol. 2021, 322, 124537. [Google Scholar] [CrossRef]
- Mendes, A.C.; Pedersen, G.A. Perspectives on sustainable food packaging—Is bio-based plastics a solution? Trends Food Sci. Technol. 2021, 112, 839–846. [Google Scholar] [CrossRef]
- Havstad, M.R. Biodegradable plastics. In Plastic Waste and Recycling; Letcher, T.M., Ed.; Elsevier: London, UK, 2020; pp. 97–129. [Google Scholar] [CrossRef]
- Emadian, S.M.; Onay, T.T.; Demirel, B. Biodegradation of bioplastics in natural environments. Waste Manag. 2017, 59, 526–536. [Google Scholar] [CrossRef] [PubMed]
- Nair, N.R.; Sekhar, V.C.; Nampoothiri, K.; Pandey, A. Biodegradation of biopolymers. In Current Developments in Biotechnology and Bioengineering. Production, Isolation and Purification of Industrial Products; Pandey, A., Negi, S., Soccol, C.R., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 739–755. [Google Scholar] [CrossRef]
- Polman, E.M.N.; Gruter, G.-J.M.; Parsons, J.R.; Tietema, A. Comparison of the aerobic biodegradation of biopolymers and the corresponding bioplastics: A review. Sci. Total Environ. 2017, 753, 141953. [Google Scholar] [CrossRef] [PubMed]
- Müller, R. Biodegradability of polymers: Regulations and methods for testing. In Biopolymers Online: Biology, Chemistry, Biotechnology, Applications; Wiley-VCH Verlag: Weinheim, Germany, 2005. [Google Scholar] [CrossRef]
- Ismail, M.; Abouhmad, A.; Warlin, N.; Pyo, S.-H.; Örn, O.E.; Al-Rudainy, B.; Tullberg, C.; Zhang, B.; Hatti-Kaul, R. Closing the loop for poly(butylene-adipate-co-terephthalate) recycling: Depolymerization, monomers separation, and upcycling. Green Chem. 2024, 26, 3863–3873. [Google Scholar] [CrossRef]
- Wang, L.; Chang, R.; Ren, Z.; Meng, X.; Li, Y.; Gao, M. Mature compost promotes biodegradable plastic degradation and reduces greenhouse gas emission during food waste composting. Sci. Total Environ. 2024, 926, 172081. [Google Scholar] [CrossRef]
- Azim, K.; Soudi, B.; Boukhari, S.; Perissol, C.; Roussos, S.; Alami, I.T. Composting parameters and compost quality: A literature review. Org. Agric. 2017, 8, 141–158. [Google Scholar] [CrossRef]
- Sánchez, Ó.J.; Ospina, D.A.; Montoya, S. Compost supplementation with nutrients and microorganisms in composting process. Waste Manag. 2017, 69, 136–153. [Google Scholar] [CrossRef]
- Mehta, C.; Palni, U.; Franke-Whittle, I.; Sharma, A. Compost: Its role, mechanism and impact on reducing soil-borne plant diseases. Waste Manag. 2014, 34, 607–622. [Google Scholar] [CrossRef]
- EN 13432:2001; Packaging—Requirements for Packaging Recoverable through Composting and Biodegradation—Test Scheme and Evaluation Criteria for the Final Acceptance of Packaging. European Committee for Standardization: Brussels, Belgium, 2001. Available online: https://docs.european-bioplastics.org/publications/bp/EUBP_BP_En_13432.pdf (accessed on 25 November 2024).
- EN 17033:2018; Plastics—Biodegradable Mulch Films for Use in Agriculture and Horticulture—Requirements and Test Methods. European Committee for Standardization: Brussels, Belgium, 2018. Available online: https://www.en-standard.eu/une-en-17033-2018-plastics-biodegradable-mulch-films-for-use-in-agriculture-and-horticulture-requirements-and-test-methods (accessed on 25 November 2024).
- EN 14995:2006; Plastics—Evaluation of Compostability—Test Scheme and Specifications. European Committee for Standardization: Brussels, Belgium, 2006. Available online: https://www.en-standard.eu/bs-en-14995-2006-plastics-evaluation-of-compostability-test-scheme-and-specifications (accessed on 25 November 2024).
- EN 14045:2003; Packaging—Evaluation of the Disintegration of Packaging Materials in Practical Use under Composting Conditions—Test Scheme and Requirements. European Committee for Standardization: Brussels, Belgium, 2003. Available online: https://cdn.standards.iteh.ai/samples/13123/7038bd7bdf7a4281a99eb8e9b2a31fce/SIST-EN-14045-2003.pdf (accessed on 25 November 2024).
- EN 14806:2005; Packaging—Preliminary Evaluation of the Disintegration of Packaging Materials under Simulated Composting Conditions in a Laboratory Scale Test. European Committee for Standardization: Brussels, Belgium, 2005. Available online: https://www.en-standard.eu/bs-en-14806-2005-packaging-preliminary-evaluation-of-the-disintegration-of-packaging-materials-under-simulated-composting-conditions-in-a-laboratory-scale-test (accessed on 25 November 2024).
- ISO 17088:2021; Specifications for Compostable Plastics. International Organization for Standardization: Geneva, Switzerland, 2021. Available online: https://www.iso.org/standard/74994.html (accessed on 25 November 2024).
- ISO 16929:2021; Plastics—Determination of the Degree of Disintegration of Plastic Materials Under Defined Composting Conditions in a Pilot-Scale Test. International Organization for Standardization: Geneva, Switzerland, 2021. Available online: https://www.iso.org/standard/80302.html (accessed on 25 November 2024).
- ISO 18606:2013; Packaging and the Environment—Organic Recycling. International Organization for Standardization: Geneva, Switzerland, 2013. Available online: https://www.iso.org/standard/55874.html (accessed on 25 November 2024).
- ISO 20200:2023; Plastics—Determination of the Degree of Disintegration of Plastic Materials under Simulated Composting Conditions in a Laboratory-Scale Test. International Organization for Standardization: Geneva, Switzerland, 2023. Available online: https://www.iso.org/standard/81932.html (accessed on 25 November 2024).
- ISO 17556:2019; Plastics—Determination of the Ultimate Aerobic Biodegradability in Soil by Measuring the Oxygen Demand in a Respirometer or the Amount of Carbon Dioxide Evolved. International Organization for Standardization: Geneva, Switzerland, 2019. Available online: https://www.iso.org/standard/74993.html (accessed on 25 November 2024).
- ASTM D6400:2023; Standard Specification for Labeling of Plastics Designed to be Aerobically Composted in Municipal or Industrial Facilities. ASTM International: West Conshohocken, PA, USA, 2023. Available online: https://www.astm.org/d6400-23.html (accessed on 25 November 2024).
- ASTM D6868:2021; Standard Specification for Labeling of End Items that Incorporate Plastics and Polymers as Coatings or Additives with Paper and Other Substrates Designed to be Aerobically Composted in Municipal or Industrial Facilities. ASTM International: West Conshohocken, PA, USA, 2021. Available online: https://www.astm.org/d6868-21.html (accessed on 25 November 2024).
- AS 43736:2006; Plastics—Biodegradable Plastics Suitable for Composting and Other Microbial Treatment. Standards Australia: Sydney, Australia, 2006. Available online: https://www.saiglobal.com/pdftemp/previews/osh/as/as4000/4700/4736-2006.pdf (accessed on 25 November 2024).
- EN 14046:2003; Evaluation of the Ultimate Aerobic Biodegradability and Disintegration of Packaging Materials under Controlled Composting Conditions—Method by Analysis of Released Carbon Dioxide. European Committee for Standardization: Brussels, Belgium, 2003. Available online: https://i2.saiglobal.com/mpc2v/preview/98691170373.pdf?sku=860959_SAIG_NSAI_NSAI_2048280&nsai_sku=i-s-en-14046-2003-860959_saig_nsai_nsai_2048280 (accessed on 25 November 2024).
- Borchani, K.E.; Carrot, C.; Jaziri, M. Biocomposites of Alfa fibers dispersed in the Mater-Bi® type bio-plastic: Morphology, mechanical and thermal properties. Compos. Part A Appl. Sci. Manuf. 2015, 78, 371–379. [Google Scholar] [CrossRef]
- ASTM D1003:2021; Standard Test Method for Haze and Luminous Transmittance of Transparent Plastics. ASTM International: West Conshohocken, PA, USA, 2021. Available online: https://www.astm.org/d1003-21.html (accessed on 25 November 2024).
- Material Data Center. Material Data Center Datasheet of Mater-Bi NF803—PSAC—Novamont S.p.A [Online]. MDC. 2023. Available online: https://www.materialdatacenter.com/ms/en/Mater-Bi/Novamont+SpA/1784 (accessed on 25 November 2024).
- ASTM D3418:2021; Standard Test Method for Transition Temperatures of Polymers by Differential Scanning Calorimetry. ASTM International: West Conshohocken, PA, USA, 2021. Available online: https://www.astm.org/d3418-21.html (accessed on 25 November 2024).
- ASTM D792:2020; Standard Test Methods for Density and Specific Gravity (Relative Density) of Plastics by Displacement. ASTM International: West Conshohocken, PA, USA, 2020. Available online: https://www.astm.org/standards/d792 (accessed on 25 November 2024).
- ASTM D882; Standard Test Method for Tensile Properties of Thin Plastic Sheeting. ASTM International: West Conshohocken, PA, USA, 2020. Available online: https://www.astm.org/d0882-18.html (accessed on 25 November 2024).
- Choi, K. Optimal operating parameters in the composting of swine manure with wastepaper. J. Environ. Sci. Health B 1999, 34, 975–987. [Google Scholar] [CrossRef]
- Bueno, P.; Tapias, R.; López, L.; Díaz, M.J. Optimizing composting parameters for nitrogen conservation in composting. Bioresour. Technol. 2008, 99, 5069–5077. [Google Scholar] [CrossRef] [PubMed]
- Haug, R.T. The Practical Handbook of Compost Engineering; Lewis Publishers: Boca Raton, FL, USA, 2018. [Google Scholar] [CrossRef]
- MSZ EN ISO 16948:2015; Solid Biofuels—Determination of Total Content of Carbon, Hydrogen, and Nitrogen—Instrumental Methods. International Organization for Standardization: Geneva, Switzerland, 2015. Available online: https://www.iso.org/standard/58004.html (accessed on 25 November 2024).
- MSZ EN ISO 16994:2017; Solid Biofuels—Determination of Total Content of Sulfur and Chlorine. International Organization for Standardization: Geneva, Switzerland, 2016. Available online: https://www.iso.org/standard/70097.html (accessed on 25 November 2024).
- MSZ EN 15935:2012; Sludge, Treated Biowaste, and Soil—Determination of Loss on Ignition. International Organization for Standardization: Geneva, Switzerland, 2013. Available online: https://standards.iteh.ai/catalog/standards/sist/e2923374-f17f-4e46-8fe5-f0f318857d87/sist-en-15935-2012 (accessed on 25 November 2024).
- EN 16086-1:2012; Soil Improvers and Growing Media—Determination of Plant Response—Part 1: Petri Dish Test Using Cress. European Committee for Standardization: Brussels, Belgium, 2003. Available online: https://www.ivami.com/en/ecotoxicology-algae-i-daphnia-magna-i-and-fish/7253-response-of-plants-in-soil-improvers-and-culture-substrates-part-1-chinese-cabbage-pot-growth-test-en-16086-1-2011-standard (accessed on 25 November 2024).
- MSZ EN 13037:2012; Soil Improvers and Growing Media—Determination of pH. European Committee for Standardization: Brussels, Belgium, 2012. Available online: https://www.en-standard.eu/din-en-13037-soil-improvers-and-growing-media-determination-of-ph/?srsltid=AfmBOop2ZLJ61Fcq0Avqa18OOBm13CLLkvqv34yklOOioPB64c103kbX (accessed on 25 November 2024).
- ISO 7888:1985; Water Quality—Determination of Electrical Conductivity. International Organization for Standardization: Geneva, Switzerland, 1985. Available online: https://www.iso.org/standard/14838.html (accessed on 25 November 2024).
- ISO 8502-6:2020; Preparation of Steel Substrates Before Application of Paints and Related Products—Tests for the Assessment of Surface Cleanliness—Part 6: Extraction of Soluble Contaminants for Analysis—The Bresle Method. International Organization for Standardization: Geneva, Switzerland, 2020. Available online: https://www.iso.org/standard/73862.html (accessed on 25 November 2024).
- ISO 8502-9:2020; Preparation of Steel Substrates Before Application of Paints and Related Products—Tests for the Assessment of Surface Cleanliness—Part 9: Field Method for the Conductometric Determination of Water-Soluble Salts. International Organization for Standardization: Geneva, Switzerland, 2020. Available online: https://www.iso.org/standard/73863.html (accessed on 25 November 2024).
- Malinska, K. Application of a modified OxiTop respirometer for laboratory composting studies. Arch. Environ. Prot. 2016, 42, 56–62. [Google Scholar] [CrossRef]
- MSZ 08-0012-4:1979; Standard for the Determination of Moisture Content. National Accreditation Body: Budapest, Hungary, 1979.
- Flavel, T.C.; Murphy, D.V. Carbon and nitrogen mineralization rates after application of organic amendments to soil. J. Environ. Qual. 2006, 35, 183–193. [Google Scholar] [CrossRef] [PubMed]
- Itävaara, M.; Vikman, M.; Venelampi, O. Windrow Composting of biodegradable packaging materials. Compos. Sci. Util. 1997, 5, 84–92. [Google Scholar] [CrossRef]
- Kianirad, M.; Muazardalan, M.; Savaghebi, G.; Farahbakhsh, M.; Mirdamadi, S. Effects of temperature treatment on corn cob composting and reducing of composting time: A comparative study. Waste Manag. Res. 2009, 28, 882–887. [Google Scholar] [CrossRef]
- Jian, J.; Xiangbin, Z.; Xianbo, H. An overview on synthesis, properties and applications of poly(butylene-adipate-co-terephthalate)—PBAT. Adv. Ind. Eng. Poly. Res. 2020, 3, 19–26. [Google Scholar] [CrossRef]
- Tester, C.F. Organic amendment effects on physical and chemical properties of a sandy soil. Soil Sci. Soc. Am. J. 1990, 54, 827–831. [Google Scholar] [CrossRef]
- Cronjé, A.L.; Turner, C.; Williams, A.G.; Barker, A.J.; Guy, S. The respiration rate of composting pig manure. Compos. Sci. Util. 2004, 12, 119–129. [Google Scholar] [CrossRef]
- Steiner, C.; Das, K.C.; Melear, N.D.; Lakly, D. Reducing nitrogen loss during poultry litter composting using biochar. J. Environ. Qual. 2010, 39, 1236–1242. [Google Scholar] [CrossRef]
- Kale, G.; Kijchavengkul, T.; Auras, R.; Rubino, M.; Selke, S.; Singh, S.P. Compostability of bioplastic packaging materials: An overview. Macromol. Biosci. 2007, 7, 255–277. [Google Scholar] [CrossRef]
- Tabasi, R.Y.; Ajji, A. Selective degradation of biodegradable blends in simulated laboratory composting. Polym. Degrad. Stab. 2015, 120, 435–442. [Google Scholar] [CrossRef]
- Ruggero, F.; Belardi, S.; Caretti, E.; Lotti, T.; Lubello, C.; Gori, R. Rigid and film bioplastics degradation under suboptimal composting conditions: A kinetic study. Waste Manag. Res. 2021, 40, 1311–1321. [Google Scholar] [CrossRef] [PubMed]
- Ruggero, F.; Carretti, E.; Gori, R.; Lotti, T.; Lubello, C. Monitoring of degradation of starch-based biopolymer film under different composting conditions, using TGA, FTIR and SEM analysis. Chemosphere 2020, 246, 125770. [Google Scholar] [CrossRef] [PubMed]
- Jung, S.; Cho, S.-H.; Kim, K.-H.; Kwon, E.E. Progress in quantitative analysis of microplastics in the environment: A review. Chem. Eng. J. 2021, 422, 130154. [Google Scholar] [CrossRef]
- Fojt, J.; David, J.; Přikryl, R.; Řezáčová, V.; Kučerík, J. A critical review of the overlooked challenge of determining micro-bioplastics in soil. Sci. Total Environ. 2020, 745, 140975. [Google Scholar] [CrossRef]
- Fojt, J.; Románeková, I.; Procházková, P.; David, J.; Brtnický, M.; Kučerík, J. A simple method for quantification of polyhydroxybutyrate and polylactic acid micro-bioplastics in soils by evolved gas analysis. Molecules 2022, 27, 1898. [Google Scholar] [CrossRef]
- Ruggero, F.; Gori, R.; Lubello, C. Methodologies to assess biodegradation of bioplastics during aerobic composting and anaerobic digestion: A review. Waste Manag. Res. 2019, 37, 959–975. [Google Scholar] [CrossRef]
- Dammak, M.; Fourati, Y.; Tarrés, Q.; Delgado-Aguilar, M.; Mutjé, P.; Boufi, S. Blends of PBAT with plasticized starch for packaging applications: Mechanical properties, rheological behaviour and biodegradability. Ind. Crops Prod. 2020, 144, 112061. [Google Scholar] [CrossRef]
- Weng, Y.-X.; Jin, Y.-J.; Meng, Q.-Y.; Wang, L.; Zhang, M.; Wang, Y.-Z. Biodegradation behavior of poly(butylene adipate-co-terephthalate) (PBAT), poly(lactic acid) (PLA), and their blend under soil conditions. Polym. Test. 2013, 32, 918–926. [Google Scholar] [CrossRef]
- Ruggero, F.; Onderwater, R.; Carretti, E.; Roosa, S.; Benali, S.; Raquez, J.M.; Gori, R.; Lubello, C.; Wattiez, R. Degradation of film and rigid bioplastics during the thermophilic phase and the maturation phase of simulated composting. J. Polym. Environ. 2021, 29, 3015–3028. [Google Scholar] [CrossRef]
- Myalenko, D.; Fedotova, O. Physical, mechanical, and structural properties of the polylactide and polybutylene adipate terephthalate (PBAT)-based biodegradable polymer during compost storage. Polymers 2023, 15, 1619. [Google Scholar] [CrossRef] [PubMed]
- Mano, J.F.; Koniarova, D.; Reis, R.L. Thermal properties of thermoplastic starch/synthetic polymer blends with potential biomedical applicability. J. Mater. Sci. Mater. Med. 2003, 14, 127–135. [Google Scholar] [CrossRef] [PubMed]
- Al-Itry, R.; Lamnawar, K.; Maazouz, A. Improvement of thermal stability, rheological and mechanical properties of PLA, PBAT and their blends by reactive extrusion with functionalized epoxy. Polym. Degrad. Stab. 2012, 97, 1898–1914. [Google Scholar] [CrossRef]
- Park, J.W.; Im, S.S.; Kim, S.H.; Kim, Y.H. Biodegradable polymer blends of poly(L-lactic acid) and gelatinized starch. Polym. Eng. Sci. 2000, 40, 2539–2550. [Google Scholar] [CrossRef]
- Kittner, M.; Eisentraut, P.; Dittmann, D.; Braun, U. Decomposability versus detectability: First validation of TED-GC/MS for microplastic detection in different environmental matrices. Appl. Res. 2024, 3, e202200089. [Google Scholar] [CrossRef]
- De Falco, F.; Nacci, T.; Durndell, L.; Thompson, R.C.; Degano, I.; Modugno, F. A thermoanalytical insight into the composition of biodegradable polymers and commercial products by EGA-MS and Py-GC-MS. J. Anal. Appl. Pyrolysis 2023, 171, 105937. [Google Scholar] [CrossRef]
- Coralli, I.; Rombolà, A.G.; Fabbri, D. Analytical pyrolysis of the bioplastic PBAT poly(butylene adipate-co-terephthalate). J. Anal. Appl. Pyrolysis 2024, 181, 106577. [Google Scholar] [CrossRef]
- Campanale, C.; Dierkes, G.; Massarelli, C.; Bagnuolo, G.; Uricchio, V.F. A relevant screening of organic contaminants present on freshwater and pre-production microplastics. Toxics 2020, 8, 100. [Google Scholar] [CrossRef]
- Vaverková, M.D.; Adamcová, D. Biodegrability of bioplastic materials in a controlled composting environment. J. Ecol. Eng. 2015, 16, 155–160. [Google Scholar] [CrossRef]
Standard | Name | Geographical Validity |
---|---|---|
EN 13432:2001 [26] | Packaging. Requirements for packaging recoverable through composting and biodegradation. Test scheme and evaluation criteria for the final acceptance of packaging | European Union |
EN 17033:2018 [27] | Plastics—Biodegradable mulch films for use in agriculture and horticulture—Requirements and test methods | |
EN 14995:2006 [28] | Plastics—Evaluation of compostability—Test scheme and specifications | |
EN 14045:2003 [29] | Packaging—Evaluation of the disintegration of packaging materials in practical oriented tests under defined composting conditions | |
EN 14806:2005 [30] | Packaging—Preliminary evaluation of the disintegration of packaging materials under simulated composting conditions in a laboratory-scale test | |
ISO 17088:2021 [31] | Plastics—Organic recycling—Specifications for compostable plastics | Worldwide |
ISO 16929:2021 [32] | Plastics—Determination of the degree of disintegration of plastic materials under defined composting conditions in a pilot-scale test | |
ISO 18606:2013 [33] | Packaging and the environment—Organic recycling | |
ISO 20200:2023 [34] | Plastics—Determination of the degree of disintegration of plastic materials under simulated composting conditions in a laboratory-scale test | |
ISO 17556:2019 [35] | Plastics—Determination of the ultimate aerobic biodegradability in soil by measuring the oxygen demand in a respirometer or the amount of carbon dioxide evolved | |
ASTM D6400:2022 [36] | Standard Specification for Labeling of Plastics Designed to be Aerobically Composted in Municipal or Industrial Facilities | USA |
ASTM D6868:2021 [37] | Standard Specification for Labeling of End Items that Incorporate Plastics and Polymers as Coatings or Additives with Paper and Other Substrates Designed to be Aerobically Composted in Municipal or Industrial Facilities | |
AS 43736:2006 [38] | Biodegradable Plastic—Biodegradable Plastics Suitable for Composting and other Microbial Treatment | Australia |
Characteristic | Value | Test Standard |
---|---|---|
Melting Temperature | 110 °C | ASTM D3418 [43] |
Density | 1270 kg m−3 | ASTM D792 [44] |
Tensile Modulus | 350 MPa | ASTM D882 [45] |
Elongation at Break | 230% | ASTM D882 [45] |
Measured Parameter | Test Method |
---|---|
Carbon-to-nitrogen ratio of the input material (C/N) | Elemental analysis to measure the carbon and nitrogen contents of the initial mixture MSZ EN ISO 16948:2015 [49], MSZ EN ISO 16994:2017 [50] |
Organic matter (OM) | Loss on ignition (MSZ EN 15935:2012) [51] |
Moisture content (MC) | EN 16086-1:2012 [52] |
pH | Potentiometric determination of H+ ion concentration, MSZ EN 13037:2012 [53] |
Electrical conductivity | ISO 7888:1985 [54] |
Salt content | ISO 8502-6:2020 [55] |
Bulk density | ISO 8502-9:2020 [56] |
Respiration intensity | Malinska, K. (2016) [57] |
Composting Week | OM (%) | MC (%) |
---|---|---|
0 | 77.43 ± 9.47 | 46.08 ± 1.29 |
2 | 74.09 ± 6.77 | 41.46 ± 0.17 |
4 | 75.60 ± 1.46 | 41.15 ± 1.20 |
6 | 73.74 ± 8.18 | 46.42 ± 1.25 |
8 | 69.79 ± 1.32 | 40.81 ± 0.02 |
10 | 65.07 ± 3.81 | 36.97 ± 0.77 |
12 | 62.43 ± 1.25 | 35.90 ± 1.36 |
M1 a | 60.04 ± 1.12 | 5.46 ± 1.21 |
Peak Wavenumbers in Current Study (cm−1) | Vibration | Peak Wavenumbers from Scientific Literature (cm−1) | Functional Group Assigned | Material | Reference |
---|---|---|---|---|---|
725 | Asym. deformation | 726 | –CH2– | PBAT | [40] |
1025 | Deformation | 1016 | Phenyl ring | PBAT | [75] |
1110 | Stretching (alcohols) | 1104 | C–O | PBAT | [75] |
1274 | Stretching (ester) | 1268 | C-O in the ester | PBAT | [40,79] |
1410 | CH2CO sym. deform. | 1409 | C(–H)2 | PBAT | [73] |
1450 | Stretching | 1456 | Phenylene group | PBAT | [73] |
- | - | 1505 | Benzene ring | PBAT | [75] |
1720 | Stretching | 1710 | C=O | PBAT | [40,75] |
1270 (shoulder) | Stretching | 1270 | C–O | Starch | [73] |
- | - | 1445–1225 | C–H | Starch | [80] |
3300 | Stretching | 3900–3300 | O–H | Starch | [78] |
2874, 2957 | Sym./asym. stretching | 2920 | C–H | Starch | [78] |
- | - | 1250–900 | C–O | Starch | [78] |
1150 | Shoulder | 1164 | CH2OH | Starch | [73] |
1085 | Shoulder | 1081 | C–O | Starch | [73] |
Test Species | Treatment a | Duration | No. of Seeds | Seeds Germinated | Biomass | Germination Rate | Test Standard | |
---|---|---|---|---|---|---|---|---|
by Seed Number | by Biomass | |||||||
(Day) | (pc) | (g) | (%) | |||||
Chinese cabbage (Brassica rapa ssp. pekinensis) | C | 5 and 37 | 20 | 18.25 ± 2.36 | 65.37 ± 6.47 | EN 16086-1 [52] | ||
T | 16.50 ± 1.29 | 60.94 ± 17.78 | 90.4 | 93.4 | ||||
Spring barley (Hordeum vulgare) | C | 5 and 16 | 20 | 18.75 ± 0.96 | 12.48 ± 0.48 | EN 16086-1 [52] | ||
T | 18.50 ± 1.91 | 8.38 ± 0.59 | 98.7 | 67.2 | ||||
White mustard (Sinapis alba) | C | 16 | 25 | 25 | 10.91 ± 0.87 | MSZ 08-0012-4:1979 [58] b | ||
T | 25 | 5.44 ± 0.37 | 100 | 49.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mörtl, M.; Damak, M.; Gulyás, M.; Varga, Z.I.; Fekete, G.; Kurusta, T.; Rácz, Á.; Székács, A.; Aleksza, L. Biodegradation Assessment of Bioplastic Carrier Bags Under Industrial-Scale Composting Conditions. Polymers 2024, 16, 3450. https://doi.org/10.3390/polym16243450
Mörtl M, Damak M, Gulyás M, Varga ZI, Fekete G, Kurusta T, Rácz Á, Székács A, Aleksza L. Biodegradation Assessment of Bioplastic Carrier Bags Under Industrial-Scale Composting Conditions. Polymers. 2024; 16(24):3450. https://doi.org/10.3390/polym16243450
Chicago/Turabian StyleMörtl, Mária, Mariem Damak, Miklós Gulyás, Zsolt István Varga, György Fekete, Tamás Kurusta, Ádám Rácz, András Székács, and László Aleksza. 2024. "Biodegradation Assessment of Bioplastic Carrier Bags Under Industrial-Scale Composting Conditions" Polymers 16, no. 24: 3450. https://doi.org/10.3390/polym16243450
APA StyleMörtl, M., Damak, M., Gulyás, M., Varga, Z. I., Fekete, G., Kurusta, T., Rácz, Á., Székács, A., & Aleksza, L. (2024). Biodegradation Assessment of Bioplastic Carrier Bags Under Industrial-Scale Composting Conditions. Polymers, 16(24), 3450. https://doi.org/10.3390/polym16243450