Polymer Analysis and Characterization
Abstract
:Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Alsoud, A.; Daradkeh, S.I.; Al-Bashaish, S.R.; Shaheen, A.A.; Jaber, A.M.D.; Abuamr, A.M.; Mousa, M.S.; Holcman, V. Electrical Characterization of Epoxy Nanocomposite under High DC Voltage. Polymers 2024, 16, 963. [Google Scholar] [CrossRef] [PubMed]
- Alshammari, A.H. Structural, Optical, and Thermal Properties of PVA/SrTiO3/CNT Polymer Nanocomposites. Polymers 2024, 16, 1392. [Google Scholar] [CrossRef]
- Elhmali, H.T.; Stajcic, I.; Stajcic, A.; Pesic, I.; Jovanovic, M.; Petrovic, M.; Radojevic, V. Influence of Novel SrTiO3/MnO2 Hybrid Nanoparticles on Poly(methyl methacrylate) Thermal and Mechanical Behavior. Polymers 2024, 16, 278. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, Z.; Liu, Y.; Pei, P. Dynamic Thermo-Mechanical Properties of Carbon Nanotube Resin Composite Films. Polymers 2024, 16, 3307. [Google Scholar] [CrossRef]
- Wu, Y.; Chen, A.; Jiang, W.; Tan, Z.; Fu, T.; Xie, T.; Zhu, G.; Zhu, Y. Highly Thermally Conductive Triple-Level Ordered CNT/PVA Nanofibrous Films. Polymers 2024, 16, 734. [Google Scholar] [CrossRef]
- Shui, Y.-J.; Yao, W.-H.; Lin, J.-H.; Zhang, Y.; Yu, Y.; Wu, C.-S.; Zhang, X.; Tsou, C.-H. Enhancing Polyvinyl Alcohol Nanocomposites with Carboxy-Functionalized Graphene: An In-Depth Analysis of Mechanical, Barrier, Electrical, Antibacterial, and Chemical Properties. Polymers 2024, 16, 1070. [Google Scholar] [CrossRef]
- Uşurelu, C.D.; Panaitescu, D.M.; Oprică, G.M.; Nicolae, C.-A.; Gabor, A.R.; Damian, C.M.; Ianchiş, R.; Teodorescu, M.; Frone, A.N. Effect of Medium-Chain-Length Alkyl Silane Modified Nanocellulose in Poly(3-hydroxybutyrate) Nanocomposites. Polymers 2024, 16, 3069. [Google Scholar] [CrossRef]
- Cordoba, A.; Cauich-Rodríguez, J.V.; Vargas-Coronado, R.F.; Velázquez-Castillo, R.; Esquivel, K. A Novel In Situ Sol-Gel Synthesis Method for PDMS Composites Reinforced with Silica Nanoparticles. Polymers 2024, 16, 1125. [Google Scholar] [CrossRef]
- Liu, S.; Wang, H.; Yang, J. Influence of Preparation Methods and Nanomaterials on Hydrophobicity and Anti-Icing Performance of Nanoparticle/Epoxy Coatings. Polymers 2024, 16, 364. [Google Scholar] [CrossRef]
- Nugraha, A.D.; Kumar, V.V.; Gautama, J.P.; Wiranata, A.; Mangunkusumo, K.G.H.; Rasyid, M.I.; Dzanzani, R.; Muflikhun, M.A. Investigating the Characteristics of Nano-Graphite Composites Additively Manufactured Using Stereolithography. Polymers 2024, 16, 1021. [Google Scholar] [CrossRef]
- Wei, A.; Ou, M.; Wang, S.; Zou, Y.; Xiang, C.; Xu, F.; Sun, L. Preparation of a Highly Flame-Retardant Urea–Formaldehyde Resin and Flame Retardance Mechanism. Polymers 2024, 16, 1761. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wang, Z.; Ding, S.; Wang, Z.; Xie, H. Fabrication of Flame-Retardant Ammonium Polyphosphate Modified Phytic Acid-Based Rigid Polyurethane Foam with Enhanced Mechanical Properties. Polymers 2024, 16, 2229. [Google Scholar] [CrossRef] [PubMed]
- Alosime, E.M.; Basfar, A.A. A Systematic Investigation on the Effect of Carbon Nanotubes and Carbon Black on the Mechanical and Flame Retardancy Properties of Polyolefin Blends. Polymers 2024, 16, 417. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Wei, A.; Wang, S.; Zou, Y.; Lu, Y.; Sun, L.; Xiang, C. Preparation and Application of a Urea–Formaldehyde-Blended Guanidinium Azole–Phytic Acid–Copper Flame-Retardant Resin Coating. Polymers 2024, 16, 3366. [Google Scholar] [CrossRef]
- Boztoprak, Y. Physical, Mechanical, and Flammability Properties of Wood–Plastic Composites (WPC) Containing Beech-Wood Flour and Flame-Retardant Additives. Polymers 2024, 16, 2944. [Google Scholar] [CrossRef]
- Shivakumar, K.N.; Kenchappa, B.; Imran, K.A. Mechanical, Fire, and Electrical Insulation Properties of Polyurethane Fly Ash Composites. Polymers 2024, 16, 1507. [Google Scholar] [CrossRef]
- Thiem, Q.V.; Nguyen, V.-T.; Phan, D.T.T.; Minh, P.S. Injection Molding Condition Effects on the Mechanical Properties of Coconut-Wood-Powder-Based Polymer Composite. Polymers 2024, 16, 1225. [Google Scholar] [CrossRef]
- Messmer, L.L.; Kandemir, A.; Yavuz, B.O.; Longana, M.L.; Hamerton, I. Mechanical Behaviour of As-Manufactured and Repaired Aligned Discontinuous Basalt Fibre-Reinforced Vitrimer Composites. Polymers 2024, 16, 1089. [Google Scholar] [CrossRef]
- Song, P.; Fang, Q.; Liu, W.; Ma, X.; Li, Q.; Naik, M.-u.-d.; Ahmad, M.; Huang, G.; Yang, C. Effects of Sizing Agents and Resin-Formulated Matrices with Varying Stiffness–Toughness Ratios on the Properties of Carbon Fiber Epoxy Resin Composites. Polymers 2024, 16, 3447. [Google Scholar] [CrossRef]
- Ashebir, D.A.; Hendlmeier, A.; Dunn, M.; Arablouei, R.; Lomov, S.V.; Di Pietro, A.; Nikzad, M. Detecting Multi-Scale Defects in Material Extrusion Additive Manufacturing of Fiber-Reinforced Thermoplastic Composites: A Review of Challenges and Advanced Non-Destructive Testing Techniques. Polymers 2024, 16, 2986. [Google Scholar] [CrossRef]
- Cheng, M.; Ding, D.; Ma, Y.; Zhu, S. Damage Characterization of GFRP Hollow Ribbed Emergency Pipes Subjected to Low-Velocity Impact by Experimental and Numerical Analysis. Polymers 2024, 16, 3116. [Google Scholar] [CrossRef] [PubMed]
- Iquilio, R.; Valín, J.L.; Villalobos, K.; Núñez, S.; González, Á.; Valin, M. Influence of Fiber Orientation on Mechanical Response of Jute Fiber-Reinforced Polymer Composites. Polymers 2024, 16, 2573. [Google Scholar] [CrossRef]
- Shams, A.T.; Papon, E.A.; Shinde, P.S.; Bara, J.; Haque, A. Degree of Cure, Microstructures, and Properties of Carbon/Epoxy Composites Processed via Frontal Polymerization. Polymers 2024, 16, 1493. [Google Scholar] [CrossRef]
- Wang, D.; Sun, Y.; Duan, J.; Xie, K.; Li, J.; An, Q.; Wang, X. Hygrothermal Effect on GF/VE and GF/UP Composites: Durability Performance and Laboratory Assessment. Polymers 2024, 16, 632. [Google Scholar] [CrossRef]
- Jiang, L.-L.; Li, Z.-G.; Wang, D.-Y.; Zhai, J.-J.; Kong, X.-X. Theoretical Analysis of Thermophysical Properties of 3D Carbon/Epoxy Braided Composites with Varying Temperature. Polymers 2024, 16, 1166. [Google Scholar] [CrossRef]
- Verde, R.; D’Amore, A.; Grassia, L. A Numerical Model to Predict the Relaxation Phenomena in Thermoset Polymers and Their Effects on Residual Stress during Curing—Part I: A Theoretical Formulation and Numerical Evaluation of Relaxation Phenomena. Polymers 2024, 16, 1433. [Google Scholar] [CrossRef]
- Verde, R.; D’Amore, A.; Grassia, L. A Numerical Model to Predict the Relaxation Phenomena in Thermoset Polymers and Their Effects on Residual Stress during Curing, Part II: Numerical Evaluation of Residual Stress. Polymers 2024, 16, 1541. [Google Scholar] [CrossRef]
- Tang, Q.; Jiang, J.; Li, J.; Zhao, L.; Xi, Z. Effects of Chemical Composition and Cross-Linking Degree on the Thermo-Mechanical Properties of Bio-Based Thermosetting Resins: A Molecular Dynamics Simulation Study. Polymers 2024, 16, 1229. [Google Scholar] [CrossRef]
- Liu, H.; Xiao, Y.; Zou, Y.; Han, Y.; Fan, C.; Sun, Y. Dynamic Mechanical Properties and Constitutive Modeling of Polyurethane Microporous Elastomers. Polymers 2024, 16, 3056. [Google Scholar] [CrossRef]
- Li, Y.; Fikry, M.J.M.; Koyanagi, J. Numerical Simulation for Durability of a Viscoelastic Polymer Material Subjected to Variable Loadings Fatigue Based on Entropy Damage Criterion. Polymers 2024, 16, 2857. [Google Scholar] [CrossRef]
- Sabol, D.; Murčinková, Z. Stress Wave Propagation and Decay Based on Micro-Scale Modelling in the Topology of Polymer Composite with Circular Particles. Polymers 2024, 16, 2189. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malucelli, G. Polymer Analysis and Characterization. Polymers 2024, 16, 3509. https://doi.org/10.3390/polym16243509
Malucelli G. Polymer Analysis and Characterization. Polymers. 2024; 16(24):3509. https://doi.org/10.3390/polym16243509
Chicago/Turabian StyleMalucelli, Giulio. 2024. "Polymer Analysis and Characterization" Polymers 16, no. 24: 3509. https://doi.org/10.3390/polym16243509
APA StyleMalucelli, G. (2024). Polymer Analysis and Characterization. Polymers, 16(24), 3509. https://doi.org/10.3390/polym16243509