Advances in Monte Carlo Method for Simulating the Electrical Percolation Behavior of Conductive Polymer Composites with a Carbon-Based Filling
Abstract
:1. Introduction
2. Filled Polymers’ Conductive Percolation Phenomenon and the Theory of Conductive Percolation Model Construction
2.1. Filled Polymers’ Conductive Percolation Phenomenon
2.2. Theory on the Construction of a Conductive Percolation Model for Filled Polymers
3. Monte Carlo Models for the Electrical Percolation Behavior of Polymers with a Carbon-Based Filling
3.1. Monte Carlo Models of CNT-Filled Polymers
3.2. Monte Carlo Models of CB-Filled Polymers
3.3. Monte Carlo Models of Graphene-Filled Polymers
3.4. Monte Carlo Models of Hybrid-Material-Filled Polymers
4. Monte Carlo Models for Special Structured Polymers
4.1. Monte Carlo Models of Polymer Piezoresistive Properties
4.2. Monte Carlo Models of Foamed Structured Polymers
5. Summary and Perspectives
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations/Nomenclature
Electrical percolation behavior: | The behavior of a polymer that mutates from an insulating state to a conducting state with the addition of a conductive filler to the polymer. |
Percolation threshold: | The critical filling fraction of a polymer when it changes from an insulating to a conducting state. |
Monte Carlo method: | The use of random numbers (or more commonly pseudo-random numbers) to solve many computational problems. |
Tunneling theory: | Tunneling is a quantum effect determined by the fluctuations of microscopic particles. Also known as potential barrier penetration. |
Field emission theory: | The strong external environment enables the electrons inside the matrix to overcome the binding of the nucleus and move freely to form an electric current. |
Tunnelling distance: | The maximum distance between conducting materials in a polymer that generates tunnelling current. |
RVE: | Representative volume element refers to the range of averages selected for mathematical modeling of continuous media at the macroscopic level using the local volume averaging method. |
Polymer barriers: | Refers to energy barriers in polymers that prevent electron transfer between conducting materials. |
Polymer Poisson’s ratio: | The ratio of the absolute value of the positive transverse strain to the positive axial strain when the polymer is subjected to unidirectional tension or compression, also called the transverse deformation coefficient. |
Double percolation theory: | The theory of double percolation proposes that the distribution of conductive fillers in incompatible polymers at one-phase or two-phase interfaces can greatly reduce the percolation threshold of CPCs and improve the processing performance and mechanical properties of CPCs. |
Appendix A
Materials | Polymer | Materials Parameter | Percolation Thresholds | References | |
---|---|---|---|---|---|
Simulation | Experimental | ||||
CNTs | Thermoplastic | L/D = 140–240 | 1.75–3.25 vol. % | 1.47–2.94 vol. % | [60] |
Epoxy | L = 1.5 μm | 1–2 wt.% | 1–2 wt.% | [61] | |
L/D = 160 | |||||
L = 5 μm | 1.5–2 vol. % | 1–1.5 vol. % | [63] | ||
L/D = 100 | |||||
L = 430 nm | 2–3 vol. % | 1.8–2.5 vol. % | [64] | ||
L/D = 43 | |||||
L = 5 μm | 1.5–2 vol. % | 1–1.5 vol. % | [65] | ||
L/D = 100 | |||||
L = 5 μm | 1 vol. % | 1–1.5 vol. % | [77] | ||
L/D = 100 | [78] | ||||
L = 5 μm | 0.7 vol. % | 1–1.5 vol. % | [84] | ||
L/D = 100 | |||||
PMMA | L = 1.5 μm | 0.4–0.6 vol. % | 0.5–0.8 vol. % | [68] | |
L/D = 160 | |||||
Polyamide (PA-6) | L = 6 μm | 0.5–0.7 vol. % | 0.5–0.7 vol. % | [68] | |
L/D = 200 | |||||
Polyimide | D = 1.018 nm | 0.03–0.06 vol. % | 0.05 vol. % | [86] | |
L/D = 2000 | |||||
Polypropylene (PP) | D = 2.584 nm | 3–4 wt.% | 3.8 wt.% | [86] | |
L/D = 21 | |||||
CB | Polyurethane (PU) | D = 168 nm | 6.2 wt.% | 6 wt.% | [94] |
Polydimethylsiloxane (PDMS) | D = 324 nm | Consistent with experimental results | 4.52 vol. % | [95] | |
D = 288 nm | 6.96 vol. % | ||||
D = 236 nm | 7.76 vol. % | ||||
Thermoplastic Polyurethane (TPU) | D = 20 nm | 5.6 wt.% | 5.6 wt.% | [98] | |
Polypropylene (PP) | D = 68 nm | 13.5 vol. % | 7.48 vol. % | [99] | |
Polyethylene Terephthalate (PET) | D = 68 nm | 11.1 vol. % | 8.46 vol. % | ||
Nylon | D = 68 nm | 30.5 vol. % | 27.38 vol. % | ||
Castor-oil Polyurethane (PUR) | D = 35 nm | 5.2 vol. % | 5.7 vol. % | ||
Nature Rubber (NR) | D = 15 nm | 7.2 vol. % | 7.3 vol. % | ||
Graphene | Polymethyl Methacrylate (PMMA) | D = 3 nm,5 nm,7 nm | 2–3 vol. % | 0.25 vol. % | [109] |
D = 5 μm, L = 0.9 nm | 0.5 vol. % | 0.6–0.8 vol. % | [113] | ||
Polyethylene Terephthalate (PET) | D = 45 μm, L = 1.57 nm | 0.4–0.45 vol. % | 0.47 vol. % | ||
Polyurethane (PU) | L = 1 nm | 0.03–0.05 vol. % | 0.078 vol. % | ||
Polymerized Cyclic Butylate Terephthalate (PCBT) | D = 5 μm, L = 6 nm | 2–3 wt.% | 4 wt.% | ||
Polystyrene (PS) | L = 1 nm | 0.1–0.15 vol. % | 0.15–0.3 vol. % | ||
D = 50 μm, L = 2 nm | 1–1.5 vol. % | 2–3 vol. % | [114] |
References
- Idumah, C.I.; Ezeani, E.O.; Nwuzor, I.C. A review: Advancements in conductive polymers nanocomposites. Polym.-Plast. Technol. Mater. 2021, 60, 756–783. [Google Scholar] [CrossRef]
- Singh, N.; Riaz, U. Recent trends on synthetic approaches and application studies of conducting polymers and copolymers: A review. Polym. Bull. 2022, 79, 10377–10408. [Google Scholar] [CrossRef]
- Selvakumaran, L.; Lubineau, G. Electrical behavior of laminated composites with intralaminar degradation: A comprehensive micro-meso homogenization procedure. Compos. Struct. 2014, 109, 178–188. [Google Scholar] [CrossRef]
- de Souza Vieira, L.; Dos Anjos, E.G.R.; Verginio, G.E.A.; Oyama, I.C.; Braga, N.F.; Da Silva, T.F.; Montagna, L.S.; Rezende, M.C.; Passador, F.R. Carbon-based materials as antistatic agents for the production of antistatic packaging: A review. J. Mater. Sci. Mater. Electron. 2021, 32, 3929–3947. [Google Scholar] [CrossRef]
- Zhang, W.; Wei, L.; Ma, Z.; Fan, Q.; Ma, J. Advances in waterborne polymer/carbon material composites for electromagnetic interference shielding. Carbon 2021, 177, 412–426. [Google Scholar] [CrossRef]
- Mittal, G.; Dhand, V.; Rhee, K.Y.; Park, S.J.; Lee, W.R. A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites. J. Ind. Eng. Chem. 2015, 21, 11–25. [Google Scholar] [CrossRef]
- Dunlop, M.J.; Bissessur, R. Nanocomposites based on graphene analogous materials and conducting polymers: A review. J. Mater. Sci. 2020, 55, 6721–6753. [Google Scholar] [CrossRef]
- Tarhini, A.; Tehrani-Bagha, A.R. Advances in preparation methods and conductivity properties of graphene-based polymer composites. Appl. Compos. Mater. 2023, 30, 1737–1762. [Google Scholar] [CrossRef]
- Wang, C.; He, D.; Cui, Y. Research progress in electrically conductive structural composites. J. Mater. Eng. 2018, 46, 1–13. [Google Scholar]
- Shakir, M.F.; Rashid, I.A.; Tariq, A.; Nawab, Y.; Afzal, A.; Nabeel, M.; Naseem, A.; Hamid, U. Emi shielding characteristics of electrically conductive polymer blends of PS/PANI in microwave and IR region. J. Electron. Mater. 2020, 49, 1660–1665. [Google Scholar] [CrossRef]
- Lyu, L.Y.; Kirihara, K.; Okigawa, Y.; Hasegawa, M.; Ding, W.X.; Wang, Y.; Mukaida, M.; Zhou, Y.; Wei, Q. Extracting carrier mobility using a photoinduced charge transfer reaction: From conducting polymers to nanocarbon materials. Org. Electron. 2020, 78, 105615. [Google Scholar] [CrossRef]
- Gómez, I.J.; Vázquez Sulleiro, M.; Mantione, D.; Alegret, N. Carbon nanomaterials embedded in conductive polymers: A state of the art. Polymers 2021, 13, 745. [Google Scholar] [CrossRef] [PubMed]
- Bertolini, M.C.; Ramoa, S.; Merlini, C.; Barra, G.; Soares, B.G.; Pegoretti, A. Hybrid composites based on thermoplastic polyurethane with a mixture of carbon nanotubes and carbon black modified with polypyrrole for electromagnetic shielding. Front. Mater. 2020, 7, 174. [Google Scholar] [CrossRef]
- Zhao, L.; Xia, W.; Zhang, P. Economical conductive graphite-filled polymer composites via adjustable segregated structures: Construction, low percolation threshold, and positive temperature coefficient effect. J. Appl. Polym. Sci. 2021, 138. [Google Scholar] [CrossRef]
- Samarjeet, S.S.; Qibo, Z.; Nishu, D.; Vijay, K.T. Carbon-based polymer nanocomposite for high-performance energy storage applications. Polymers 2020, 12, 505. [Google Scholar] [CrossRef]
- Hong, G.; Choi, S.; Yoo, D.; Oh, T.; Song, Y.; Yeon, J.H. Moisture dependence of electrical resistivity in under-percolated cement-based composites with multi-walled carbon nanotubes. J. Mater. Res. Technol. 2022, 16, 47–58. [Google Scholar] [CrossRef]
- Al-Saleh, M.H.; Sundararaj, U. A review of vapor grown carbon nanofiber/polymer conductive composites. Carbon 2009, 47, 2–22. [Google Scholar] [CrossRef]
- Wu, J.S.; Pisula, W.; Mullen, K. Graphenes as potential material for electronics. Chem. Rev. 2007, 107, 718–747. [Google Scholar] [CrossRef]
- Huang, J.C. Carbon black filled conducting polymers and polymer blends. Adv. Polym. Technol. 2002, 21, 299–313. [Google Scholar] [CrossRef]
- Paw Owska, M.; Sikorski, A. Monte Carlo study of the percolation in two-dimensional polymer systems. J. Mol. Model. 2013, 19, 4251–4258. [Google Scholar] [CrossRef]
- Oh, J.Y.; Jun, G.H.; Jin, S.; Ryu, H.J.; Hong, S.H. Enhanced electrical networks of stretchable conductors with small fraction of carbon nanotube/graphene hybrid fillers. ACS Appl. Mater. Interfaces 2016, 8, 3319–3325. [Google Scholar] [CrossRef]
- Chanklin, W.; Laowongkotr, J.; Felipe Chibante, L.P. Electrical property validation of percolation modeling in different polymer structures of carbon-based nanocomposites. Mater. Today Commun. 2018, 17, 153–160. [Google Scholar] [CrossRef]
- Tang, Z.H.; Li, Y.Q.; Huang, P.; Fu, Y.Q.; Hu, N.; Fu, S.Y. A new analytical model for predicting the electrical conductivity of carbon nanotube nanocomposites. Compos. Commun. 2021, 23, 100577. [Google Scholar] [CrossRef]
- Zhao, X.; Nie, Y.; Li, H.; Wu, H.; Gao, Y.; Zhang, L. Percolated network of mixed nanoparticles with different sizes in polymer nanocomposites: A coarse-grained molecular dynamics simulation. Materials 2021, 14, 3301. [Google Scholar] [CrossRef]
- Rahaman, M.; Aldalbahi, A.; Govindasami, P.; Khanam, N.P.; Bhandari, S.; Feng, P.; Altalhi, T. A New Insight in Determining the Percolation Threshold of Electrical Conductivity for Extrinsically Conducting Polymer Composites through Different Sigmoidal Models. Polymers 2017, 9, 527. [Google Scholar] [CrossRef]
- Feng, C.; Jiang, L. Micromechanics modeling of the electrical conductivity of carbon nanotube (CNT)–polymer nanocomposites. Compos. Part A Appl. Sci. Manuf. 2013, 47, 143–149. [Google Scholar] [CrossRef]
- Qu, F.; Sun, W.; Li, B.; Li, F.; Gao, Y.; Zhao, X.; Zhang, L. Correction: Synergistic effect in improving the electrical conductivity in polymer nanocomposites by mixing spherical and rod-shaped fillers. Soft Matter 2021, 17, 10454–10462. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, C.; Jahnke, T.; Verestek, W.; Schmauder, S.; Spatz, J.P. Microstructural modeling and simulation of a carbon black-based conductive polymer—A template for the virtual design of a composite material. ACS Omega 2022, 7, 28820–28830. [Google Scholar] [CrossRef]
- Pike, G.E.; Seager, C.H. Percolation and conductivity: A computer study. I. Phys. Rev. B 1974, 10, 1435–1446. [Google Scholar] [CrossRef]
- Balberg, L.; Binenbaum, N. Computer study of the percolation threshold in a two-dimensional anisotropic system of conducting sticks. Phys. Rev. B 1983, 28, 3799–3812. [Google Scholar] [CrossRef]
- Balberg, L.; Binenbaum, N.; Wagner, N. Percolation thresholds in the three-dimensional sticks system. Phys. Rev. Lett. 1984, 52, 1465–1468. [Google Scholar] [CrossRef]
- Louis, P.; Gokhale, A.M. Computer simulation of spatial arrangement and connectivity of particles in three-dimensional microstructure: Application to model electrical conductivity of polymer matrix composite. Acta Mater. 1996, 44, 1519–1528. [Google Scholar] [CrossRef]
- Li, J.; Kim, J. Percolation threshold of conducting polymer composites containing 3D randomly distributed graphite nanoplatelets. Compos. Sci. Technol. 2007, 67, 2114–2120. [Google Scholar] [CrossRef]
- Toshiaki, N.; Morinobu, E.; Tatsuhiro, T. Percolation study of orientated short-fiber composites by a continuum model. Phys. A Stat. Mech. Appl. 2005, 352, 498–508. [Google Scholar] [CrossRef]
- Faridirad, F.; Ahmadi, S.; Barmar, M. Polyamide/carbon nanoparticles nanocomposites: A review. Polym. Eng. Sci. 2017, 57, 475–494. [Google Scholar] [CrossRef]
- Goncalves, C.; Goncalves, I.C.; Magalhaes, F.D.; Pinto, A.M. Poly(lactic acid) composites containing carbon-based nanomaterials: A review. Polymers 2017, 9, 269. [Google Scholar] [CrossRef]
- Tripathi, S.N.; Rao, G.; Mathur, A.B.; Jasra, R. Polyolefin/graphene nanocomposites: A review. RSC Adv. 2017, 7, 23615–23632. [Google Scholar] [CrossRef]
- Mohan, V.B.; Lau, K.T.; Hui, D.; Bhattacharyya, D. Graphene-based materials and their composites: A review on production, applications and product limitations. Compos. B Eng. 2018, 142, 200–220. [Google Scholar] [CrossRef]
- Kausar, A. Trends in graphene reinforced polyamide nanocomposite for functional application: A review. Polym.-Plast. Technol. Mater. 2019, 58, 917–933. [Google Scholar] [CrossRef]
- Lv, Z.; Huang, X.; Fan, D.; Zhou, P.; Luo, Y.; Zhang, X. Scalable manufacturing of conductive rubber nanocomposites with ultralow percolation threshold for strain sensing applications. Compos. Commun. 2021, 25, 100685. [Google Scholar] [CrossRef]
- Sengun, P.; Kesim, M.T.; Caglar, M.; Savaci, U.; Turan, S.; Sahin, I.; Suvaci, E. Characterization of designed, transparent and conductive al doped ZNO particles and their utilization in conductive polymer composites. Powder Technol. 2020, 374, 214–222. [Google Scholar] [CrossRef]
- Munson-Mcgee, S.H. Estimation of the critical concentration in an anisotropic percolation network. Phys. Rev. B 1991, 43, 3331–3336. [Google Scholar] [CrossRef]
- Bauhofer, W.; Kovacs, J.Z. A review and analysis of electrical percolation in carbon nanotube polymer composites. Compos. Sci. Technol. 2009, 69, 1486–1498. [Google Scholar] [CrossRef]
- Kakati, B.K.; Sathiyamoorthy, D.; Verma, A. Semi-empirical modeling of electrical conductivity for composite bipolar plate with multiple reinforcements. Int. J. Hydrogen Energy 2011, 36, 14851–14857. [Google Scholar] [CrossRef]
- Kane, S.; Warnat, S.; Ryan, C. Improvements in methods for measuring the volume conductivity of electrically conductive carbon powders. Adv. Powder Technol. 2021, 32, 702–709. [Google Scholar] [CrossRef]
- Iervolino, F.; Bonessa, A.; Foti, G.; Levi, M.; Suriano, R. Additive manufacturing of electrically conductive nanocomposites filled with carbon nanotubes. Adv. Eng. Mater. 2022, 24, 2200947. [Google Scholar] [CrossRef]
- Meng, F.; Zheng, J.; Meng, Z.; Sun, Z.; Qian, J.; Su, Y.; Shu, B.; An, J. Research progress in design and preparation of polymer conductive composites. Eng. Plast. Appl. 2021, 49, 157–163. [Google Scholar] [CrossRef]
- Sumita, M.; Takenaka, K.; Asai, S. Characterization of dispersion and percolation of filled polymers: Molding time and temperature dependence of percolation time in carbon black filled low density polyethylene. Compos. Interfaces 1995, 3, 253–262. [Google Scholar] [CrossRef]
- Clingerman, M.L.; King, J.A.; Schulz, K.H.; Meyers, J.D. Evaluation of electrical conductivity models for conductive polymer composites. J. Appl. Polym. Sci. 2002, 83, 1341–1356. [Google Scholar] [CrossRef]
- Min, C.Y.; Shen, X.Q.; Shi, Z.; Chen, L.; Xu, Z.W. The electrical properties and conducting mechanisms of carbon nanotube/polymer nanocomposites: A review. Polym. Plast. Technol. Eng. 2010, 49, 1172–1181. [Google Scholar] [CrossRef]
- Wang, W. Study on Percolation Threshold of Carbon-Based Conductive Polymer Based on Monte Carlo Simulation; Hefei University of Technology: Hefei, China, 2019. [Google Scholar]
- Simmons, J.G. Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film. J. Appl. Phys. 2004, 34, 1793–1803. [Google Scholar] [CrossRef]
- Cornean, H.D.; Jensen, A.; Moldoveanu, V. A rigorous proof of the Landauer–Büttiker formula. J. Math. Phys. 2005, 46, 42106. [Google Scholar] [CrossRef]
- Zhang, Y.; Heo, Y.J.; Son, Y.R.; In, I.; An, K.H.; Kim, B.J.; Park, S.J. Recent advanced thermal interfacial materials: A review of conducting mechanisms and parameters of carbon materials. Carbon 2019, 142, 445–460. [Google Scholar] [CrossRef]
- Zhang, Q.Q.; Xu, Y.; Yang, Y.; Li, L.S.; Song, C.R.; Su, X. Conductive mechanism of carbon black/polyimide composite films. J. Polym. Eng. 2018, 38, 147–156. [Google Scholar] [CrossRef]
- Tang, Z.; Jia, S.; Shi, S.; Wang, F.; Li, B. Coaxial carbon nanotube/polymer fibers as wearable piezoresistive sensors. Sens. Actuators A Phys. 2018, 284, 85–95. [Google Scholar] [CrossRef]
- Mondal, S.; Das, P.; Ganguly, S.; Ravindren, R.; Remanan, S.; Bhawal, P.; Das, T.K.; Das, N.C. Thermal-air ageing treatment on mechanical, electrical, and electromagnetic interference shielding properties of lightweight carbon nanotube based polymer nanocomposites. Compos. Part A Appl. Sci. Manuf. 2018, 107, 447–460. [Google Scholar] [CrossRef]
- Khan, T.; Irfan, M.S.; Ali, M.; Dong, Y.; Ramakrishna, S.; Umer, R. Insights to low electrical percolation thresholds of carbon-based polypropylene nanocomposites. Carbon 2021, 176, 602–631. [Google Scholar] [CrossRef]
- Zeng, X.; Xu, X.; Shenai, P.M.; Kovalev, E.; Baudot, C.; Mathews, N.; Zhao, Y. Characteristics of the electrical percolation in carbon nanotubes/polymer nanocomposites. J. Phys. Chem. C 2011, 115, 21685–21690. [Google Scholar] [CrossRef]
- Soto, M.; Esteva, M.; Martínez-Romero, O.; Baez, J.; Elías-Zúñiga, A. Modeling percolation in polymer nanocomposites by stochastic microstructuring. Materials 2015, 8, 6697–6718. [Google Scholar] [CrossRef]
- Castellino, M.; Rovere, M.; Shahzad, M.I.; Tagliaferro, A. Conductivity in carbon nanotube polymer composites: A comparison between model and experiment. Compos. Part A Appl. Sci. Manuf. 2016, 87, 237–242. [Google Scholar] [CrossRef]
- Stelmashchuk, A.; Karbovnyk, I.; Klym, H.; Lukashevych, D.; Chalyy, D. Simulation of the tunelling conductivity in nanotube/dielectric composite. In Proceedings of the 2017 IEEE 37th International Conference on Electronics and Nanotechnology (ELNANO), Kyiv, Ukraine, 18–20 April 2017; pp. 209–212. [Google Scholar] [CrossRef]
- Tang, L. A Conductive Performance Simulation of Microscopic Network in the Polymer Composites; Huazhong University of Science & Technology: Wuhan, China, 2016. [Google Scholar]
- Matos, M.A.S.; Tagarielli, V.L.; Pinho, S.T. On the electrical conductivity of composites with a polymeric matrix and a non-uniform concentration of carbon nanotubes. Compos. Sci. Technol. 2020, 188, 108003. [Google Scholar] [CrossRef]
- Sun, X.; Pan, T.; Lu, B.; Liu, C.; Lu, Y. Simulation research on the conductivity of polymercomposites filled with carbon nanotubes. J. Hefei Univ. Technol. (Nat. Sci.) 2023, 46, 604–608. [Google Scholar] [CrossRef]
- Fang, C.; Chen, X.; Zhang, J.; Xia, X.; Weng, G.J. Monte Carlo method with Bézier curves for the complex conductivity of curved cnt-polymer nanocomposites. Int. J. Eng. Sci. 2021, 168, 103543. [Google Scholar] [CrossRef]
- Doh, J.; Park, S.; Yang, Q.; Raghavan, N. Uncertainty quantification of percolating electrical conductance for wavy carbon nanotube-filled polymer nanocomposites using Bayesian inference. Carbon 2021, 172, 308–323. [Google Scholar] [CrossRef]
- Wang, D.; Tang, Z.; Huang, P.; Li, Y.; Fu, S. Modelling the effects of carbon nanotube length non-uniformity and waviness on the electrical behavior of polymer composites. Carbon 2023, 201, 910–919. [Google Scholar] [CrossRef]
- Arenhart, R.G.; Barra, G.M.O.; Fernandes, C.P. Simulation of percolation threshold and electrical conductivity in composites filled with conductive particles: Effect of polydisperse particle size distribution. Polym. Compos. 2016, 37, 61–69. [Google Scholar] [CrossRef]
- Prabhu, S.S.; Bhavani, R.; Thonnuthodi, G.K.; Thiruvengadathan, R. A computational approach to determine shielding effectiveness of carbon nanotube-based nanocomposites for EMC application. Comput. Mater. Sci. 2017, 126, 400–406. [Google Scholar] [CrossRef]
- Tarasevich, Y.Y.; Lebovka, N.I.; Vodolazskaya, I.V.; Eserkepov, A.V.; Goltseva, V.A.; Chirkova, V.V. Anisotropy in electrical conductivity of two-dimensional films containing aligned nonintersecting rodlike particles: Continuous and lattice models. Phys. Rev. E 2018, 98, 12105. [Google Scholar] [CrossRef]
- Doh, J.; Park, S.I.; Yang, Q.; Raghavan, N. The effect of carbon nanotube chirality on the electrical conductivity of polymer nanocomposites considering tunneling resistance. Nanotechnology 2019, 30, 465701. [Google Scholar] [CrossRef]
- Li, C.; Thostenson, E.T.; Chou, T. Dominant role of tunneling resistance in the electrical conductivity of carbon nanotube–based composites. Appl. Phys. Lett. 2007, 91, 223114. [Google Scholar] [CrossRef]
- Hu, N.; Masuda, Z.; Yan, C.; Yamamoto, G.; Fukunaga, H.; Hashida, T. The electrical properties of polymer nanocomposites with carbon nanotube fillers. Nanotechnology 2008, 19, 215701. [Google Scholar] [CrossRef]
- Ma, H.M.; Gao, X.L. A three-dimensional Monte Carlo model for electrically conductive polymer matrix composites filled with curved fibers. Polymer 2008, 49, 4230–4238. [Google Scholar] [CrossRef]
- Lu, W.; Chou, T.; Thostenson, E.T. A three-dimensional model of electrical percolation thresholds in carbon nanotube-based composites. Appl. Phys. Lett. 2010, 96, 223106. [Google Scholar] [CrossRef]
- Bao, W.S.; Meguid, S.A.; Zhu, Z.H.; Meguid, M.J. Modeling electrical conductivities of nanocomposites with aligned carbon nanotubes. Nanotechnology 2011, 22, 485701–485704. [Google Scholar] [CrossRef]
- Bao, W.S.; Meguid, S.A.; Zhu, Z.H.; Pan, Y.; Weng, G.J. A novel approach to predict the electrical conductivity of multifunctional nanocomposites. Mech. Mater. 2012, 46, 129–138. [Google Scholar] [CrossRef]
- Lee, D.C.; Kwon, G.; Kim, H.; Lee, H.; Sung, B.J. Three-dimensional Monte Carlo simulation of the electrical conductivity of carbon nanotube/polymer composites. Appl. Phys. Express 2012, 5, 45101. [Google Scholar] [CrossRef]
- Bao, W.S.; Meguid, S.A.; Zhu, Z.H.; Pan, Y.; Weng, G.J. Effect of carbon nanotube geometry upon tunneling assisted electrical network in nanocomposites. J. Appl. Phys. 2013, 113, 234313. [Google Scholar] [CrossRef]
- Kulakov, V.; Aniskevich, A.; Ivanov, S.; Poltimae, T.; Starkova, O. Effective electrical conductivity of carbon nanotube–epoxy nanocomposites. J. Compos. Mater. 2017, 51, 2979–2988. [Google Scholar] [CrossRef]
- Khromov, K.Y.; Knizhnik, A.A.; Potapkin, B.V.; Kenny, J.M. Multiscale modeling of electrical conductivity of carbon nanotubes based polymer nanocomposites. J. Appl. Phys. 2017, 121, 225102. [Google Scholar] [CrossRef]
- Gennadiy, B.; Gustavo, M. The optimization at studying of electrical conductivity in the dielectric nanocomposites with disordered nanotubes. Prog. Electromagn. Res. Lett. 2018, 74, 77–82. [Google Scholar] [CrossRef]
- Matos, M.; Tagarielli, V.L.; Baiz-Villafranca, P.M.; Pinho, S.T. Predictions of the electro-mechanical response of conductive cnt-polymer composites. J. Mech. Phys. Solids 2018, 114, 84–96. [Google Scholar] [CrossRef]
- Zare, Y.; Yop Rhee, K.; Park, S. Modeling the roles of carbon nanotubes and interphase dimensions in the conductivity of nanocomposites. Results Phys. 2019, 15, 102562. [Google Scholar] [CrossRef]
- Fang, C.; Zhang, J.J.; Chen, X.Q.; Weng, G.J. A Monte Carlo model with equipotential approximation and tunneling resistance for the electrical conductivity of carbon nanotube polymer composites. Carbon 2019, 146, 125–138. [Google Scholar] [CrossRef]
- Dong, S.; Wu, X.; Wang, E.; Wang, X. Reduced percolation threshold of multi-walled carbon nanotubes/polymer composites by filling aligned ferromagnetic particles. J. Intell. Mater. Syst. Struct. 2020, 31, 187–197. [Google Scholar] [CrossRef]
- Chanda, A.; Sinha, S.K.; Datla, N.V. Electrical conductivity of random and aligned nanocomposites: Theoretical models and experimental validation. Compos. Part A Appl. Sci. Manuf. 2021, 149, 106543. [Google Scholar] [CrossRef]
- Larin, S.V.; Lyulin, S.V.; Likhomanova, P.A.; Khromov, K.Y.; Knizhnik, A.A.; Potapkin, B.V. Multiscale modeling of electrical conductivity of R-BAPB polyimide plus carbon nanotubes nanocomposites. Phys. Rev. Mater. 2021, 5, 66002. [Google Scholar] [CrossRef]
- Azizi, S.; David, E.; Frechette, M.F.; Phuong, N.T.; Ouellet-Plamondon, C.M. Electrical and thermal phenomena in low-density polyethylene/carbon black composites near the percolation threshold. J. Appl. Polym. Sci. 2019, 136, 47043. [Google Scholar] [CrossRef]
- Li, F.; Qi, L.; Yang, J.; Xu, M.; Luo, X.; Ma, D. Polyurethane/conducting carbon black composites: Structure, electric conductivity, strain recovery behavior, and their relationships. J. Appl. Polym. Sci. 2000, 75, 68–77. [Google Scholar] [CrossRef]
- Cruz, S.M.; Viana, J.C. Melt blending and characterization of carbon nanoparticles-filled thermoplastic polyurethane elastomers. J. Elastomers Plast. 2015, 47, 647–665. [Google Scholar] [CrossRef]
- Vas, J.V.; Joy Thomas, M. Monte Carlo modelling of percolation and conductivity in carbon filled polymer nanocomposites. IET Sci. Meas. Technol. 2018, 12, 98–105. [Google Scholar] [CrossRef]
- Arun, D.I.; Chakravarthy, P.; Girish, B.S.; Santhosh Kumar, K.S.; Santhosh, B. Experimental and Monte Carlo simulation studies on percolation behaviour of a shape memory polyurethane carbon black nanocomposite. Smart Mater. Struct. 2019, 28, 55010. [Google Scholar] [CrossRef]
- Ji, J.; Xia, P.; Zhu, X.; Liu, P.; Wu, C.; Tao, J.; Yan, J.; Liu, X. A simulation for the electrical conductivity of nanocomposites filled with carbon black based on the three-dimensional Monte Carlo method. Polym. Sci. Ser. A Chem. Phys. 2021, 63, 196–207. [Google Scholar] [CrossRef]
- Coupette, F.; Zhang, L.; Kuttich, B.; Chumakov, A.; Roth, S.V.; González-García, L.; Kraus, T.; Schilling, T. Percolation of rigid fractal carbon black aggregates. J. Chem. Phys. 2021, 155, 124902. [Google Scholar] [CrossRef]
- Zhu, X.; Wang, P.; Wang, X.; Liu, P.; Wu, C.; Yan, J.; Liu, X.; Liu, C.; Huang, Y.; Song, A.; et al. A study of the appropriateness, geometry, size, and fillers boundary restraint on representative volume element in electrical simulation for carbon-based nanocomposites. Mater. Today Commun. 2020, 25, 101639. [Google Scholar] [CrossRef]
- Bozyel, I.; Gokcen, D. Determining electrical percolation threshold of randomly distributed conductor materials in polymer composites via pathfinding algorithms. Compos. Sci. Technol. 2022, 224, 109404. [Google Scholar] [CrossRef]
- Mazaheri, M.; Payandehpeyman, J.; Jamasb, S. Modeling of effective electrical conductivity and percolation behavior in conductive-polymer nanocomposites reinforced with spherical carbon black. Appl. Compos. Mater. 2022, 29, 695–710. [Google Scholar] [CrossRef]
- Gao, A.L.; Zhao, F.W.; Wang, F.; Zhang, G.F.; Zhao, S.; Cui, J.; Yan, Y. Highly conductive and light-weight acrylonitrile-butadiene-styrene copolymer/reduced graphene nanocomposites with segregated conductive structure. Compos. Part A Appl. Sci. Manuf. 2019, 122, 1–7. [Google Scholar] [CrossRef]
- Oh, H.; Kim, K.; Ryu, S.; Kim, J. Enhancement of thermal conductivity of polymethyl methacrylate-coated graphene/epoxy composites using admicellar polymerization with different ionic surfactants. Compos. Part A Appl. Sci. Manuf. 2019, 116, 206–215. [Google Scholar] [CrossRef]
- Mogera, U.; Kulkarni, G.U. A new twist in graphene research: Twisted graphene. Carbon 2020, 156, 470–487. [Google Scholar] [CrossRef]
- Hong, X.S.; Zheng, Y.Y.; Zhang, X.; Wu, X.Q. Preparation of graphene intercalated magnesium silicate for enhancing the thermal stability and thermal conductivity of ethylene-vinyl acetate copolymer. Polymer 2020, 193, 122332. [Google Scholar] [CrossRef]
- Van der Schueren, B.; El Marouazi, H.; Mohanty, A.; Leveque, P.; Sutter, C.; Romero, T.; Janowska, I. Polyvinyl alcohol-few layer graphene composite films prepared from aqueous colloids. Investigations of mechanical, conductive and gas barrier properties. Nanomaterials 2020, 10, 858. [Google Scholar] [CrossRef]
- Lou, Z.; Chen, S.; Wang, L.L.; Jiang, K.; Shen, G.Z. An ultra-sensitive and rapid response speed graphene pressure sensors for electronic skin and health monitoring. Nano Energy 2016, 23, 7–14. [Google Scholar] [CrossRef]
- Peplowski, A.; Walter, P.A.; Janczak, D.; Gorecka, Z.; Swieszkowski, W.; Jakubowska, M. Solventless conducting paste based on graphene nanoplatelets for printing of flexible, standalone routes in room temperature. Nanomaterials 2018, 8, 829. [Google Scholar] [CrossRef]
- Mathioudakis, C.; Kelires, P.C. Modelling of three-dimensional nanographene. Nanoscale Res. Lett. 2016, 11, 151. [Google Scholar] [CrossRef]
- Oskouyi, A.B.; Sundararaj, U.; Mertiny, P. Current-voltage characteristics of nanoplatelet-based conductive nanocomposites. Nanoscale Res. Lett. 2014, 9, 369. [Google Scholar] [CrossRef]
- Zabihi, Z.; Araghi, H. Monte Carlo simulations of effective electrical conductivity of graphene/poly(methyl methacrylate) nanocomposite: Landauer-buttiker approach. Synth. Met. 2016, 217, 87–93. [Google Scholar] [CrossRef]
- Fang, C.; Zhang, J.; Chen, X.; Weng, G.J. Calculating the electrical conductivity of graphene nanoplatelet polymer composites by a Monte Carlo method. Nanomaterials 2020, 10, 1129. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, C.; Zhou, H.; Liu, P.; Liu, C.; Wu, H.; Zhao, J.; Zhang, Y.; Ma, Y.; Huang, Y.; et al. Predictions of electrical percolation of graphene-based nanocomposites by the three-dimensional Monte Carlo simulation. J. Appl. Polym. Sci. 2020, 137, 48999. [Google Scholar] [CrossRef]
- Wang, W.; Jayatissa, A.H. Computational and experimental study of electrical conductivity of graphene/poly(methyl methacrylate) nanocomposite using Monte Carlo method and percolation theory. Synth. Met. 2015, 204, 141–147. [Google Scholar] [CrossRef]
- Payandehpeyman, J.; Mazaheri, M.; Khamehchi, M. Prediction of electrical conductivity of polymer-graphene nanocomposites by developing an analytical model considering interphase, tunneling and geometry effects. Compos. Commun. 2020, 21, 100364. [Google Scholar] [CrossRef]
- Folorunso, O.; Hamam, Y.; Sadiku, R.; Ray, S.S. Computational study of graphene–polypyrrole composite electrical conductivity. Nanomaterials 2021, 11, 827. [Google Scholar] [CrossRef]
- Jia, W.; Tchoudakov, R.; Joseph, R.; Narkis, M.; Siegmann, A. The role of a third component on the conductivity behavior of ternary epoxy/ag conductive composites. Polym. Compos. 2002, 23, 510–519. [Google Scholar] [CrossRef]
- Li, W.; Dichiara, A.; Bai, J. Carbon nanotube–graphene nanoplatelet hybrids as high-performance multifunctional reinforcements in epoxy composites. Compos. Sci. Technol. 2013, 74, 221–227. [Google Scholar] [CrossRef]
- Qu, M.; Nilsson, F.; Schubert, D.W. Novel definition of the synergistic effect between carbon nanotubes and carbon black for electrical conductivity. Nanotechnology 2019, 30, 245703. [Google Scholar] [CrossRef]
- Safdari, M.; Al-Haik, M.S. Synergistic electrical and thermal transport properties of hybrid polymeric nanocomposites based on carbon nanotubes and graphite nanoplatelets. Carbon 2013, 64, 111–121. [Google Scholar] [CrossRef]
- Maiti, S.; Khatua, B.B. Graphene nanoplate and multiwall carbon nanotube–embedded polycarbonate hybrid composites: High electromagnetic interference shielding with low percolation threshold. Polym. Compos. 2016, 37, 2058–2069. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, S.; Pan, F.; Zhang, J. A numerical study on electrical percolation of polymer-matrix composites with hybrid fillers of carbon nanotubes and carbon black. J. Nanomater. 2014, 2014, 614797. [Google Scholar] [CrossRef]
- Yang, G.; Schubert, D.W.; Nilsson, F.; Qu, M.; Redel, M. A study of a novel synergy definition for ternary CB/CNT composites suggesting a representative model for CB and CNT. Macromol. Theory Simul. 2020, 29, 2000035. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, W.; Zeng, X.; Guo, X.; Zhang, Y.; Liu, P.; Ma, Y.; Zhang, Y. Effects of the filler size on the electrical percolation threshold of carbon black-carbon nanotube-polymer composites. J. Appl. Polym. Sci. 2018, 135, 46517. [Google Scholar] [CrossRef]
- Ren, X. Monte Carlo Simulation of Filled Conductive Composites; Beijing University of Chemical Technology: Beijing, China, 2012. [Google Scholar]
- Lu, Y.; Wu, H.; Liu, J.; Liu, Y.; Zhao, J.; Liu, P.; Wang, J.; Liang, H.; Huang, Y.; Song, A. Electrical percolation of silicone rubber filled by carbon black and carbon nanotubes researched by the Monte Carlo simulation. J. Appl. Polym. Sci. 2019, 136, 48222. [Google Scholar] [CrossRef]
- Haghgoo, M.; Ansari, R.; Hassanzadeh-Aghdam, M.K. Analytical-geometrical percolation network model for piezoresistivity of hybrid CNT–CB polymer nanocomposites using Monte Carlo simulations. Int. J. Mech. Mater. Des. 2022, 18, 39–61. [Google Scholar] [CrossRef]
- Safdari, M.; Al-Haik, M. Electrical conductivity of synergistically hybridized nanocomposites based on graphite nanoplatelets and carbon nanotubes. Nanotechnology 2012, 23, 405202. [Google Scholar] [CrossRef]
- Gbaguidi, A.; Namilae, S.; Kim, D. Stochastic percolation model for the effect of nanotube agglomeration on the conductivity and piezoresistivity of hybrid nanocomposites. Comput. Mater. Sci. 2019, 166, 9–19. [Google Scholar] [CrossRef]
- Gbaguidi, A.; Namilae, S.; Kim, D. Synergy effect in hybrid nanocomposites based on carbon nanotubes and graphene nanoplatelets. Nanotechnology 2020, 31, 255704. [Google Scholar] [CrossRef]
- Wu, C.; Tao, J.; Li, J.; Liu, P.; Hu, R.; Wang, J.; Liu, C.; Gao, Y.; Huang, Y.; Song, A. The nonlinear synergistic enhancement electric conductive effect in polymer-matrix composites containing hybrid fillers of carbon nanotubes and graphene nanoplatelets. Comput. Mater. Sci. 2021, 194, 110458. [Google Scholar] [CrossRef]
- Kale, S.; Karimi, P.; Sabet, F.A.; Jasiuk, I.; Ostoja-Starzewski, M. Tunneling-percolation model of multicomponent nanocomposites. J. Appl. Phys. 2018, 123, 85104. [Google Scholar] [CrossRef]
- Chen, W.; Yan, X. Progress in achieving high-performance piezoresistive and capacitive flexible pressure sensors: A review. J. Mater. Sci. Technol. 2020, 43, 175–188. [Google Scholar] [CrossRef]
- He, J.; Zhang, Y.; Zhou, R.; Meng, L.; Chen, T.; Mai, W.; Pan, C. Recent advances of wearable and flexible piezoresistivity pressure sensor devices and its future prospects. J. Mater. 2020, 6, 86–101. [Google Scholar] [CrossRef]
- Wang, X.; Yu, J.; Cui, Y.; Li, W. Research progress of flexible wearable pressure sensors. Sens. Actuators A Phys. 2021, 330, 112838. [Google Scholar] [CrossRef]
- Jeon, J.G.; Hong, G.; Park, H.; Lee, S.K.; Kim, J.; Kang, T.J. Resistance temperature detectors fabricated via dual fused deposition modeling of polylactic acid and polylactic acid/carbon black composites. Sensors 2021, 21, 1560. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Ye, X. A numerical investigation on piezoresistive behaviour of carbon nanotube/polymer composites: Mechanism and optimizing principle. Nanotechnology 2013, 24, 265704. [Google Scholar] [CrossRef]
- Chang, E.; Ameli, A.; Alian, A.R.; Mark, L.H.; Yu, K.; Wang, S.; Park, C.B. Percolation mechanism and effective conductivity of mechanically deformed 3-dimensional composite networks: Computational modeling and experimental verification. Compos. Part. B Eng. 2021, 207, 108552. [Google Scholar] [CrossRef]
- Haghgoo, M.; Ansari, R.; Hassanzadeh-Aghdam, M.K.; Nankali, M. A novel temperature-dependent percolation model for the electrical conductivity and piezoresistive sensitivity of carbon nanotube-filled nanocomposites. Acta Mater. 2022, 230, 117870. [Google Scholar] [CrossRef]
- Oskouyi, A.; Sundararaj, U.; Mertiny, P. Tunneling conductivity and piezoresistivity of composites containing randomly dispersed conductive nano-platelets. Materials 2014, 7, 2501–2521. [Google Scholar] [CrossRef]
- Yang, H.; Yuan, L.; Yao, X.; Fang, D. Piezoresistive response of graphene rubber composites considering the tunneling effect. J. Mech. Phys. Solids 2020, 139, 103943. [Google Scholar] [CrossRef]
- Haghgoo, M.; Ansari, R.; Hassanzadeh-Aghdam, M.K. Monte Carlo analytical-geometrical simulation of piezoresistivity and electrical conductivity of polymeric nanocomposites filled with hybrid carbon nanotubes/graphene nanoplatelets. Compos. Part A Appl. Sci. Manuf. 2022, 152, 106716. [Google Scholar] [CrossRef]
- Haghgoo, M.; Ansari, R.; Hassanzadeh-Aghdam, M.K. Predicting effective electrical resistivity and conductivity of carbon nanotube/carbon black-filled polymer matrix hybrid nanocomposites. J. Phys. Chem. Solids 2022, 161, 110444. [Google Scholar] [CrossRef]
- Hu, B.; Hu, N.; Li, Y.; Akagi, K.; Yuan, W.; Watanabe, T.; Cai, Y. Multi-scale numerical simulations on piezoresistivity of CNT/polymer nanocomposites. Nanoscale Res. Lett. 2012, 7, 402. [Google Scholar] [CrossRef] [PubMed]
- Gong, S.; Zhu, Z.H. On the mechanism of piezoresistivity of carbon nanotube polymer composites. Polymer 2014, 55, 4136–4149. [Google Scholar] [CrossRef]
- Souri, H.; Yu, J.; Jeon, H.; Kim, J.W.; Yang, C.; You, N.; Yang, B. A theoretical study on the piezoresistive response of carbon nanotubes embedded in polymer nanocomposites in an elastic region. Carbon 2017, 120, 427–437. [Google Scholar] [CrossRef]
- Alian, A.R.; Meguid, S.A. Multiscale modeling of the coupled electromechanical behavior of multifunctional nanocomposites. Compos. Struct. 2019, 208, 826–835. [Google Scholar] [CrossRef]
- Avilés, F.; May-Pat, A.; López-Manchado, M.A.; Verdejo, R.; Bachmatiuk, A.; Rümmeli, M.H. A comparative study on the mechanical, electrical and piezoresistive properties of polymer composites using carbon nanostructures of different topology. Eur. Polym. J. 2018, 99, 394–402. [Google Scholar] [CrossRef]
- Liu, P.; Li, Y.; Wu, C.; Liu, C.; Ma, Y.; Zhang, Y.; Xing, K.; Liu, G.; Wang, J.; Huang, Y.; et al. Theoretical estimation on electrical conductivity, synergy effect and piezoresistive behavior for nanocomposites with hybrid carbon nanotube/graphene based on modified Bethe lattice method. Comput. Mater. Sci. 2022, 202, 110986. [Google Scholar] [CrossRef]
- Shaayegan, V.; Ameli, A.; Wang, S.; Park, C.B. Experimental observation and modeling of fiber rotation and translation during foam injection molding of polymer composites. Compos. Part A Appl. Sci. Manuf. 2016, 88, 67–74. [Google Scholar] [CrossRef]
- Wang, S.; Huang, Y.; Zhao, C.; Chang, E.; Ameli, A.; Naguib, H.E.; Park, C.B. Theoretical modeling and experimental verification of percolation threshold with mwcnts’ rotation and translation around a growing bubble in conductive polymer composite foams. Compos. Sci. Technol. 2020, 199, 108345. [Google Scholar] [CrossRef]
- Wang, S.; Huang, Y.; Chang, E.; Zhao, C.; Ameli, A.; Naguib, H.E.; Park, C.B. Evaluation and modeling of electrical conductivity in conductive polymer nanocomposite foams with multiwalled carbon nanotube networks. Chem. Eng. J. 2021, 411, 128382. [Google Scholar] [CrossRef]
- Peng, X. Theoretical Modeling and Numerical Simulation of Electrical Conductivity of Porous Composites; Zhengzhou University: Zhengzhou, China, 2020. [Google Scholar]
Materials | Physical Structure | Density (g/cm−3) | Conductivity (s/cm) |
---|---|---|---|
Carbon nanotubes (CNTs) [17] | Rod | 1.3–1.75 | 103–104 |
Carbon fiber (CNF) [17] | Rod | 2 | 104 |
Graphene [18] | Plate or disk | 1.06 | 104 |
Carbon black (CB) [19] | Sphere | 1.8–2.1 | 0.1–10 |
RVE | CNTs’ Structure Parameters | Influencing Factors or Research Content | Important Results | Ref. and Years |
---|---|---|---|---|
2D | Rod, soft-core model. | CNTs’ polydispersity L/D ratio. | Prediction by the polydispersity aspect ratio models closer to experimental results. | Arenhart [69] 2016 |
Fold model. | Electromagnetic shielding effectiveness (SE) of polymers. | Use of the simulated conductivity data to calculate the SE, with the results agreeing with both the experimental and theoretical values. | Prabhu [70] 2017 | |
Rod model. | Electrical conductivity of CNT-filled films studied with continuum and lattice models. | Both models exhibited similar behavior, leading to a dependence of the conductivity on the rod concentration in low concentrations of rods. | Tarasevich [71] 2018 | |
Rod model, length followed Weibull distribution. | Tunneling resistance. CNTs’ length distribution. | The effect of tunneling is significant in CNTs with small aspect ratios. The length distribution of CNTs yields a smaller percolation threshold. | Doh [72] 2019 | |
3D | Rod model. | Tunneling resistance. | Tunneling resistance dominates the conductivity of polymers. | Li [73] 2007 |
Rod model and curved model, length followed normal distribution. | CNT shape model. CNTs’ aggregation. | The curved CNT model has a high percolation threshold and low electrical conductivity. The aggregation of the CNTs raises the percolation threshold. | Hu [74] 2008 | |
Two-segment fold model. | CNTs’ folding angle. CNTs’ L/D ratio. | The percolation threshold decreased with the increase in the L/D ratio of the CNTs. The CNTs’ L/D ratio was small, and the folding angle had a large effect on the percolation behavior. The percolation threshold decreased with a decrease in the folding angle. | Ma [75] 2008 | |
Ten-segment fold model. | Van der Waals interactions between CNTs. Tunneling effects. CNTs’ L/D ratio. CNTs’ folding angle. | The influence of van der Waals and tunneling effects on the percolation behavior of overdrafts diminishes with an increase in the L/D ratio. The percolation threshold becomes larger with the increase in the maximum folding angle of CNTs. | Lu [76] 2010 | |
Rod model, length followed Weibull distribution. | CNTs’ orientation. | The conductivity was highest when CNTs are partially aligned rather than isotropic. As the concentration of the CNTs decreased, the optimal orientation tended to be isotropic. | Bao [77] 2011 | |
Rod model, length followed Weibull distribution. | CNTs’ agglomeration. | Agglomeration enhanced the electrical conductivity of the polymers with a lower CNT content, while the effect with a higher content was insignificant. | Bao [78] 2012 | |
Ball chain structure, ball size (1–100 nm), ball chain number (16–64). | CNTs’ flexibility. CNTs size dispersion. Molecular attraction. | The percolation threshold increased significantly with an increase in the size dispersion or flexibility. Rigid CNTs have strong mutual attraction and easily agglomerate. | Lee [79] 2012 | |
Fold model, length followed Weibull distribution. | Polymer potential barrier. CNTs’ shape. CNTs’ length. CNTs’ folding angle. | At the percolation threshold, the length distribution and folding angle have a greater influence on the percolation behavior. Past the threshold, barrier height has a greater influence on the percolation behavior. | Bao [80] 2013 | |
Rod model. | Use of Monte Carlo method to design a micromechanical model. | Calculated effective conductivities of uniformly distributed, randomly oriented CNTs filled with epoxy resin. | Kulakov [81] 2017 | |
Several carbon atoms used build a rod model. | Effect of CNTs’ cross angle on the contact resistance of CNTs. | The CNTs’ contact resistance is more dependent on the cross angle when the cross angle spans from 0 to π/2. | Khromov [82] 2017 | |
Rod model, length followed normal distribution. | Infinite cluster structure in the region of percolation transition. | The study determined the order of the parameters and the functional form of the conductivity close to the percolation transition. | Gennadiy [83] 2018 | |
Hollow curved structural model. | Combined FEM calculations to predict electrical properties of CNT-filled polymers. | The model can be implemented in Abaqus, is able to capture tunneling conductivity effects at the junction of adjacent CNTs, and does not use fitted parameters to calibrate against experimental results. | Matos [84] 2018 | |
Curved model. | CNTs’ length and diameter and polymer interface thickness on the effective volume fraction of CNTs. | CNTs’ effective volume fraction increased with a decreasing CNT radius and increasing filler concentration and interfacial thickness. CNTs’ length had little effect on the effective volume fraction. | Zare [85] 2019 | |
Rod model. | CNTs’ L/D ratio. CNTs’ diameter and chirality. Polymer potential barrier. | The percolation threshold decreased with a decrease in the potential barrier. Higher aspect ratios of the CNTs led to lower thresholds. Below the threshold, polymer conductivity was not affected by the diameter and chirality. | Fang [86] 2019 | |
Rod model. | CNTs’ orientation. | CNTs’ orientation changed from isotropic to anisotropic, and both the percolation threshold and resistivity decreased. | Dong [87] 2020 | |
Curved model. | CNTs’ L/D ratio. CNTs’ waviness. CNTs’ volume fraction. CNTs’ orientation. | CNTs’ L/D ratio and waviness degree increased the conductivity, and this effect was more prominent in an isotropic orientation. CNTs’ volume fraction increased, and the difference between the isotropic and anisotropic conductivities of the CNTs gradually decreased. | Chanda [88] 2021 | |
Several carbon atoms used to build a rod model. | CNTs’ cross angle. | On the basis of the molecular dynamics and Monte Carlo method, a multiscale model of CNTs populated with R-BAPB was constructed. It was found that the contact resistance of the CNTs was dependent on the cross angle. | Larin [89] 2021 |
Algorithm | Composite Type | Filler Diameter (nm) | Visited Node Count | Average Time to Find Path |
---|---|---|---|---|
A* Algorithm | TPU/CB | 10 | 32 | 2.444 |
A* Depth Algorithm | TPU/CB | 10 | 35 | 2.869 |
Best-First Search | TPU/CB | 10 | 25 | 2.288 |
Breadth-First Search | TPU/CB | 10 | 2090 | 185.507 |
Dijkstra’s Algorithm | TPU/CB | 10 | 577 | 44.363 |
Fastest Path Search | TPU/CB | 10 | 44 | 4.218 |
Materials | Research Content | Important Results | References | Years |
---|---|---|---|---|
CNTs | Tunneling effects and internal conductive network contributions to piezoresistive performance. | These two parameters play an important role in piezoresistivity. | Hu [142] | 2012 |
Morphology and intrinsic resistance of CNTs on piezoresistive properties. | The lower aspect ratio and intrinsic resistance of CNTs lead to higher piezoresistivity. | Gong [143] | 2014 | |
Influence of interfacial and tunneling effects on piezoresistive properties. | Lower interfacial resistivity of the CNTs and higher effective stiffness of the polymers reduced the piezoresistive sensitivity. | Souri [144] | 2017 | |
A combined FEM and Monte Carlo method to establish a coupled electromechanical multiscale model. | Predicted piezoresistive behavior of CNT-epoxy under tensile, compression, and shear loading is in good agreement with the experimental results of earlier studies. | Alian [145] | 2019 | |
CNTs, Graphene | Effect of the size of CNTs and graphene hybrid fillers on piezoresistive sensitivity. | The high aspect ratio/transverse size and filler specific surface area of the CNTs and graphene improved the piezoresistive sensitivity. | Avilés [146] | 2018 |
Effect of the degree of agglomeration of CNTs on piezoresistive properties. | Lower agglomeration of the CNTs enhances the piezoresistive performance. Doped graphene favors piezoresistive properties. | Gbaguidi [127] | 2019 | |
Effect of filler size and polymer potential barrier on piezoresistive properties. | CNTs and graphene have a large and similar size and polymers have a high potential barrier, which favor piezoresistive properties. | Liu [147] | 2022 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Hu, L.; Wang, R.; Zhang, S.; Fu, L.; Li, M.; Xiao, Q. Advances in Monte Carlo Method for Simulating the Electrical Percolation Behavior of Conductive Polymer Composites with a Carbon-Based Filling. Polymers 2024, 16, 545. https://doi.org/10.3390/polym16040545
Zhang Z, Hu L, Wang R, Zhang S, Fu L, Li M, Xiao Q. Advances in Monte Carlo Method for Simulating the Electrical Percolation Behavior of Conductive Polymer Composites with a Carbon-Based Filling. Polymers. 2024; 16(4):545. https://doi.org/10.3390/polym16040545
Chicago/Turabian StyleZhang, Zhe, Liang Hu, Rui Wang, Shujie Zhang, Lisong Fu, Mengxuan Li, and Qi Xiao. 2024. "Advances in Monte Carlo Method for Simulating the Electrical Percolation Behavior of Conductive Polymer Composites with a Carbon-Based Filling" Polymers 16, no. 4: 545. https://doi.org/10.3390/polym16040545
APA StyleZhang, Z., Hu, L., Wang, R., Zhang, S., Fu, L., Li, M., & Xiao, Q. (2024). Advances in Monte Carlo Method for Simulating the Electrical Percolation Behavior of Conductive Polymer Composites with a Carbon-Based Filling. Polymers, 16(4), 545. https://doi.org/10.3390/polym16040545