Tensile and Interfacial Mechanical Properties for Single Aramid III Fibers under Dynamic Loading
Abstract
:1. Introduction
2. Experiment
2.1. Materials and Polyamine Modification of Aramid III Fibers
2.2. Tensile Test of Single Aramid III Fibers
2.3. Shear Strength Test of Aramid III Fiber/Resin Interface
3. Results and Discussion
3.1. Tensile Strength of Single Aramid III @ Cat-TEPA Fibers
3.2. Interfacial Performance of Single Aramid III @ Cat-TEPA Fibers
4. Conclusions
- (1)
- By incorporating a fixed energy-absorbing bar and an incident bar with a cutter device, improvements have been made to the mini SHTB, enabling the precise characterization of the dynamic mechanical properties of fiber/resin interfaces.
- (2)
- The Cat-TEPA co-deposition method was utilized to prepare single Aramid III fibers, introducing amino functional groups on the fiber surface via the Cat-TEPA coating. This enhanced the properties of the fiber/resin interface.
- (3)
- Quasi-static and dynamic tensile test results indicate that the Cat-TEPA modification method does not significantly affect the tensile strength of a single Aramid III fiber itself.
- (4)
- A testing device based on the microdroplet technique for evaluating the dynamic mechanical properties of the fiber/resin interface was designed. The test results revealed that the dynamic shear strength of the fiber/resin interface of Aramid III @ Cat-TEPA was 41.51 MPa, representing a 14.8% increase compared to the strength before modification.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Singh, T.J.; Samanta, S. Characterization of Kevlar fiber and its composites: A review. Mater. Today Proc. 2015, 2, 1381–1387. [Google Scholar] [CrossRef]
- Rodríguez-Millán, M.; Ito, T.; Loya, J.; Olmedo, A.; Miguélez, M. Development of numerical model for ballistic resistance evaluation of combat helmet and experimental validation. Mater. Des. 2016, 110, 391–403. [Google Scholar] [CrossRef]
- Li, Z.; Xue, Y.; Sun, B.; Gu, B. Ballistic penetration damages of hybrid plain-woven laminates with carbon, Kevlar and UHMWPE fibers in different stacking sequences. Def. Technol. 2023, 26, 23–38. [Google Scholar] [CrossRef]
- Tham, C.; Tan, V.; Lee, H.-P. Ballistic impact of a KEVLAR® helmet: Experiment and simulations. Int. J. Impact Eng. 2008, 35, 304–318. [Google Scholar] [CrossRef]
- Cantwell, W.J.; Morton, J. The impact resistance of composite materials—A review. Composites 1991, 22, 347–362. [Google Scholar] [CrossRef]
- Gholizadeh, S. A review of impact behaviour in composite materials. Int. J. Mech. Prod. Eng. 2019, 7, 28–39. [Google Scholar]
- Yao, Y.; Zhu, D.; Zhang, H.; Li, G.; Mobasher, B. Tensile behaviors of basalt, carbon, glass, and aramid fabrics under various strain rates. J. Mater. Civ. Eng. 2016, 28, 04016081. [Google Scholar] [CrossRef]
- Tan, V.; Zeng, X.; Shim, V. Characterization and constitutive modeling of aramid fibers at high strain rates. Int. J. Impact Eng. 2008, 35, 1303–1313. [Google Scholar] [CrossRef]
- Lim, J.; Zheng, J.Q.; Masters, K.; Chen, W.W. Mechanical behavior of A265 single fibers. J. Mater. Sci. 2010, 45, 652–661. [Google Scholar] [CrossRef]
- Cheng, M.; Chen, W.; Weerasooriya, T. Mechanical properties of Kevlar® KM2 single fiber. J. Eng. Mater. Technol. 2005, 127, 197–203. [Google Scholar] [CrossRef]
- Lei, X.; Xiao, K.; Wu, X.; Huang, C. Dynamic mechanical properties of several high-performance single fibers. Materials 2021, 14, 3574. [Google Scholar] [CrossRef]
- Cruz, J.; Fangueiro, R. Surface modification of natural fibers: A review. Procedia Eng. 2016, 155, 285–288. [Google Scholar] [CrossRef]
- LaBarre, E.; Calderon-Colon, X.; Morris, M.; Tiffany, J.; Wetzel, E.; Merkle, A.; Trexler, M. Effect of a carbon nanotube coating on friction and impact performance of Kevlar. J. Mater. Sci. 2015, 50, 5431–5442. [Google Scholar] [CrossRef]
- Jin, X.; Wang, W.; Xiao, C.; Lin, T.; Bian, L.; Hauser, P. Improvement of coating durability, interfacial adhesion and compressive strength of UHMWPE fiber/epoxy composites through plasma pre-treatment and polypyrrole coating. Compos. Sci. Technol. 2016, 128, 169–175. [Google Scholar] [CrossRef]
- Lee, W.; Lee, J.U.; Byun, J.-H. Catecholamine polymers as surface modifiers for enhancing interfacial strength of fiber-reinforced composites. Compos. Sci. Technol. 2015, 110, 53–61. [Google Scholar] [CrossRef]
- Lee, H.; Dellatore, S.M.; Miller, W.M.; Messersmith, P.B. Mussel-inspired surface chemistry for multifunctional coatings. Science 2007, 318, 426–430. [Google Scholar] [CrossRef]
- Sa, R.; Wei, Z.; Yan, Y.; Wang, L.; Wang, W.; Zhang, L.; Ning, N.; Tian, M. Catechol and epoxy functionalized ultrahigh molecular weight polyethylene (UHMWPE) fibers with improved surface activity and interfacial adhesion. Compos. Sci. Technol. 2015, 113, 54–62. [Google Scholar] [CrossRef]
- Wang, H.; Wu, J.; Cai, C.; Guo, J.; Fan, H.; Zhu, C.; Dong, H.; Zhao, N.; Xu, J. Mussel inspired modification of polypropylene separators by catechol/polyamine for Li-ion batteries. ACS Appl. Mater. Interfaces 2014, 6, 5602–5608. [Google Scholar] [CrossRef]
- Zhao, H.; Shang, Q.; Yang, M.; Jin, S.; Wang, Y.; Zhao, N.; Yin, X.; Ding, C.; Xu, J. Surface modification of ultra-high molecular weight polyethylene fiber by catechol-tetraethylenepentamine. Acta Polym. Sin. 2020, 51, 287–294. [Google Scholar]
- Hutchinson, J.W.; Jensen, H.M. Models of fiber debonding and pullout in brittle composites with friction. Mech. Mater. 1990, 9, 139–163. [Google Scholar] [CrossRef]
- Piggott, M.R. The single-fibre pull-out method: Its advantages, interpretation and experimental realization. Compos. Interfaces 1993, 1, 211–223. [Google Scholar] [CrossRef]
- Awal, A.; Cescutti, G.; Ghosh, S.; Müssig, J. Interfacial studies of natural fibre/polypropylene composites using single fibre fragmentation test (SFFT). Compos. Part A Appl. Sci. Manuf. 2011, 42, 50–56. [Google Scholar] [CrossRef]
- Ramirez, F.; Carlsson, L.; Acha, B. A method to measure fracture toughness of the fiber/matrix interface using the single-fiber fragmentation test. Compos. Part A Appl. Sci. Manuf. 2009, 40, 679–686. [Google Scholar] [CrossRef]
- You, J.; Lutz, W.; Gerger, H.; Siddiq, A.; Brendel, A.; Höschen, C.; Schmauder, S. Fiber push-out study of a copper matrix composite with an engineered interface: Experiments and cohesive element simulation. Int. J. Solids Struct. 2009, 46, 4277–4286. [Google Scholar] [CrossRef]
- Zhang, L.; Ren, C.; Zhou, C.; Xu, H.; Jin, X. Single fiber push-out characterization of interfacial mechanical properties in unidirectional CVI-C/SiC composites by the nano-indentation technique. Appl. Surf. Sci. 2015, 357, 1427–1433. [Google Scholar] [CrossRef]
- Sharma, M.; Gao, S.; Mäder, E.; Sharma, H.; Wei, L.Y.; Bijwe, J. Carbon fiber surfaces and composite interphases. Compos. Sci. Technol. 2014, 102, 35–50. [Google Scholar] [CrossRef]
- Li, Z.; Bi, X.; Lambros, J.; Geubelle, P.H. Dynamic fiber debonding and frictional push-out in mode composite systems: Experimental observations. Exp. Mech. 2002, 42, 417–425. [Google Scholar] [CrossRef]
- Chu, J.; Claus, B.; Parab, N.; O’Brien, D.; Sun, T.; Fezzaa, K.; Chen, W. Visualization of dynamic fiber-matrix interfacial shear debonding. J. Mater. Sci. 2018, 53, 5845–5859. [Google Scholar] [CrossRef]
- Tamrakar, S.; Haque, B.Z.; Gillespie, J.W. High rate test method for fiber-matrix interface characterization. Polym. Test. 2016, 52, 174–183. [Google Scholar] [CrossRef]
- Zhang, X.; Fan, X.; Yan, C.; Li, H.; Zhu, Y.; Li, X.; Yu, L. Interfacial microstructure and properties of carbon fiber composites modified with graphene oxide. ACS Appl. Mater. Interfaces 2012, 4, 1543–1552. [Google Scholar] [CrossRef]
- Miller, B.; Muri, P.; Rebenfeld, L. A microbond method for determination of the shear strength of a fiber/resin interface. Compos. Sci. Technol. 1987, 28, 17–32. [Google Scholar] [CrossRef]
- Gaur, U.; Miller, B. Microbond method for determination of the shear strength of a fiber/resin interface: Evaluation of experimental parameters. Compos. Sci. Technol. 1989, 34, 35–51. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, F.; Li, F.; Li, X.; Tian, H.; Lei, X. Tensile and Interfacial Mechanical Properties for Single Aramid III Fibers under Dynamic Loading. Polymers 2024, 16, 804. https://doi.org/10.3390/polym16060804
Liu F, Li F, Li X, Tian H, Lei X. Tensile and Interfacial Mechanical Properties for Single Aramid III Fibers under Dynamic Loading. Polymers. 2024; 16(6):804. https://doi.org/10.3390/polym16060804
Chicago/Turabian StyleLiu, Fu, Fangfang Li, Xuelei Li, Haobin Tian, and Xudong Lei. 2024. "Tensile and Interfacial Mechanical Properties for Single Aramid III Fibers under Dynamic Loading" Polymers 16, no. 6: 804. https://doi.org/10.3390/polym16060804
APA StyleLiu, F., Li, F., Li, X., Tian, H., & Lei, X. (2024). Tensile and Interfacial Mechanical Properties for Single Aramid III Fibers under Dynamic Loading. Polymers, 16(6), 804. https://doi.org/10.3390/polym16060804