Facile Prepared MOF-OH-PAN Nanofiber for Separation Co(II) from Waste Batteries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Instruments
2.2. Synthesis of MIIP
2.3. Adsorption Experiment
3. Results and Discussion
3.1. Characterization
3.2. Adsorption Performance
3.2.1. Influence of pH
3.2.2. Influence of Contact Time
3.2.3. Influence of Concentration
3.2.4. Influence of Temperature
3.2.5. Reusability and Stability
3.2.6. Adsorption Mechanism
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Peng, X.; Shi, L.; Qu, T.; Yang, Z.; Lin, L.; Xie, G.; Xu, B. Kinetics of Ni and Co Recovery via Oxygen-Enriched Pressure Leaching from Waste Lithium-Ion Batteries. Separations 2023, 10, 64. [Google Scholar] [CrossRef]
- Wang, C.; Ai, T.; Gao, X.; Lu, J.; Liu, J.; Zhu, W.; Luo, Y. Effective recycling of critical metals from LiCoO2 batteries by hydrated deep eutectic solvents: Performance, kinetic and mechanism. J. Water Process. Eng. 2024, 59, 105088. [Google Scholar] [CrossRef]
- Strauss, M.L.; Diaz, L.A.; McNally, J.; Klaehn, J.; Lister, T.E. Separation of cobalt, nickel, and manganese in leach solutions of waste lithium-ion batteries using Dowex M4195 ion exchange resin. Hydrometallurgy 2021, 206, 105757. [Google Scholar] [CrossRef]
- Alvial-Hein, G.; Mahandra, H.; Ghahreman, A. Separation and recovery of cobalt and nickel from end of life products via solvent extraction technique: A review. J. Clean. Prod. 2021, 297, 126592. [Google Scholar] [CrossRef]
- Gong, L.; Yao, Z.; Zhu, C.; Lian, X.; He, B.; Qu, L.; Xiong, W.; Yu, B. Synthesis of porous Mg(OH)2 nanowires for phosphate removal from water. Colloids Surf. A 2023, 676, 132137. [Google Scholar] [CrossRef]
- Zhang, X.; Lyu, Y.; Zhang, J.; He, B.; Xiong, W.; Jiang, S. Efficient degradation of metronidazole wastewater over MIL-101(Fe) Fenton catalysts. New J. Chem. 2023, 47, 4973–4983. [Google Scholar] [CrossRef]
- Jiang, S.; Lyu, Y.; Zhang, J.; Zhang, X.; Yuan, M.; Zhang, Z.; Jin, G.; He, B.; Xiong, W.; Yi, H. Continuous adsorption removal of organic pollutants from wastewater in a UiO-66 fixed bed column. J. Environ. Chem. Eng. 2024, 12, 111951. [Google Scholar] [CrossRef]
- Soliman, M.A.; Rashad, G.M.; Mahmoud, M.R. Organo-modification of montmorillonite for enhancing the adsorption efficiency of cobalt radionuclides from aqueous solutions. Environ. Sci. Pollut. Res. 2019, 26, 10398–10413. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Liu, Y.; Pang, H.; Yu, S.; Ai, Y.; Ma, X.; Song, G.; Hayat, T.; Alsaedi, A.; Wang, X. Effect of graphene oxide surface modification on the elimination of Co(II) from aqueous solutions. Chem. Eng. J. 2018, 344, 380–390. [Google Scholar] [CrossRef]
- Hu, Z.; Wang, S.; Yang, Y.; Zhou, F.; Liang, S.; Chen, L. Enhanced Separation Performance of Radioactive Cesium and Cobalt in Graphene Oxide Membrane via Cationic Control. Langmuir 2022, 38, 1995–2002. [Google Scholar] [CrossRef]
- Torkashvand, M.; Gholivand, M.B.; Azizi, R. Synthesis, characterization and application of a novel ion-imprinted polymer based voltammetric sensor for selective extraction and trace determination of cobalt (II) ions. Sens. Actuators B Chem. 2017, 243, 283–291. [Google Scholar] [CrossRef]
- Awual, M.R.; Alharthi, N.H.; Hasan, M.M.; Karim, M.R.; Islam, A.; Znad, H.; Hossain, M.A.; Halim, M.E.; Rahman, M.M.; Khaleque, M.A. Inorganic-organic based novel nano-conjugate material for effective cobalt(II) ions capturing from wastewater. Chem. Eng. J. 2017, 324, 130–139. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, L.; Xu, T.; Zhang, X. Luminescent MOF-Based Nanofibers with Visual Monitoring and Antibacterial Properties for Diabetic Wound Healing. ACS Appl. Mater. Interfaces 2023, 15, 9110–9119. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Wang, J.; Teng, Y.; Jia, S.; Huang, H.; Li, Y.; Wang, C. Ce-MOF composite electrospinning as antibacterial adsorbent for the removal of 2,4-dichlorophenoxyacetic acid. Chem. Eng. J. 2023, 462, 142195. [Google Scholar] [CrossRef]
- Yang, Z.; Zhen, Y.; Feng, Y.; Jiang, X.; Qin, Z.; Yang, W.; Qie, Y. Polyacrylonitrile@TiO2 nanofibrous membrane decorated by MOF for efficient filtration and green degradation of PM2.5. J. Colloid Interf. Sci. 2023, 635, 598–610. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Kang, H.; Zheng, J.; Li, H.; Wang, R.; Zhang, L.; Ma, Q.; Xiong, X.; Zhou, T.; Zhang, C. Metal-Organic Framework derived Bi2S3 hybrid nanofibers for enhanced lithium-ion storage. J. Power Sources 2022, 520, 230895. [Google Scholar] [CrossRef]
- Feng, J.; Zhong, Y.; Xie, M.; Li, M.; Jiang, S. Using MOF-808 as a Promising Support to Immobilize Ru for Selective Hydrogenation of Levulinic Acid to γ-Valerolactone. Catal. Lett. 2020, 151, 86–94. [Google Scholar] [CrossRef]
- Feng, J.; Li, M.; Meng, X. Green Oxidation of Cyclohexanone to Adipic Acid over Phosphotungstic Acid Encapsulated in UiO-66. Catal. Lett. 2019, 149, 1504–1512. [Google Scholar] [CrossRef]
- Peng, Y.; Pan, T.; Chen, C.; Zhang, Y.; Yuan, G.; Liu, D.; Pu, X.; Xiong, W. In Situ Synthesis of NH2-MIL-53-Al/PAN Nanofibers for Removal Co(II) through an Electrospinning Process. Langmuir 2024, 40, 2567–2576. [Google Scholar] [CrossRef]
- Meng, J.F.; Song, B.Y.; Li, F.; Li, T.H. Ce-MOF-based superhydrophobic polyurethane sponge reinforced by cellulose for efficient oil-water separation. Mater. Today Chem. 2023, 28, 101371. [Google Scholar] [CrossRef]
- Wu, H.; Xu, L.; Jia, J.; Dong, F.; Jia, Y.; Liu, X. In Situ Electrospun Porous MIL-88A/PAN Nanofibrous Membranes for Efficient Removal of Organic Dyes. Molecules 2023, 28, 760. [Google Scholar] [CrossRef] [PubMed]
- Tian, S.; Bai, Y.; Li, S.; Chen, Z.; Zhang, L.; Li, H.; Zhou, P.; He, Y. Simple preparation of UiO-66-NH2-modified microsphere layer/nanofibrous membrane by coaxial spinning for purification of complex wastewater. J. Membr. Sci. 2023, 669, 121291. [Google Scholar] [CrossRef]
- Niu, B.; Zhai, Z.; Yu, S.; Li, T.; Wang, J.; Zhou, Y.; Li, C. Preparation of MOF-199/polyacrylonitrile nanofiber membrane and its application in the preparation of flexible VOC gas sensors. Microchem. J. 2023, 191, 108815. [Google Scholar] [CrossRef]
- Zhang, T.; Li, P.; Ding, S.; Wang, X. High-performance TFNC membrane with adsorption assisted for removal of Pb(II) and other contaminants. J. Hazard. Mater. 2022, 424, 127742. [Google Scholar] [CrossRef]
- Yuan, G.; Tian, Y.; Liu, J.; Tu, H.; Liao, J.; Yang, J.; Yang, Y.; Wang, D.; Liu, N. Schiff base anchored on metal-organic framework for Co (II) removal from aqueous solution. Chem. Eng. J. 2017, 326, 691–699. [Google Scholar] [CrossRef]
- Yuan, G.; Yu, Y.; Li, J.; Jiang, D.; Gu, J.; Tang, Y.; Qiu, H.; Xiong, W.; Liu, N. Facile fabrication of a noval melamine derivative-doped UiO-66 composite for enhanced Co(II) removal from aqueous solution. J. Mol. Liq. 2021, 328, 115484. [Google Scholar] [CrossRef]
- Yu, L.; Lan, T.; Yuan, G.; Duan, C.; Pu, X.; Liu, N. Synthesis and Application of a Novel Metal-Organic Frameworks-Based Ion-Imprinted Polymer for Effective Removal of Co(II) from Simulated Radioactive Wastewater. Polymers 2023, 15, 2150. [Google Scholar] [CrossRef]
- Niu, Z.; Xiao, C.; Mo, J.; Zhang, L.; Chen, C. Investigating the Influence of Metal-Organic Framework Loading on the Filtration Performance of Electrospun Nanofiber Air Filters. ACS Appl. Mater. Interfaces 2022, 14, 27096–27106. [Google Scholar] [CrossRef] [PubMed]
- Zhai, Z.; Wang, J.; Sun, Y.; Hao, X.; Niu, B.; Xie, H.; Li, C. MOFs/nanofiber-based capacitive gas sensors for the highly selective and sensitive sensing of trace SO2. Appl. Surf. Sci. 2023, 613, 155772. [Google Scholar] [CrossRef]
- Acharya, D.; Pathak, I.; Dahal, B.; Lohani, P.C.; Bhattarai, R.M.; Muthurasu, A.; Kim, T.; Ko, T.H.; Chhetri, K.; Kim, H.Y. Immoderate nanoarchitectures of bimetallic MOF derived Ni–Fe–O/NPC on porous carbon nanofibers as freestanding electrode for asymmetric supercapacitors. Carbon 2023, 201, 12–23. [Google Scholar] [CrossRef]
- Zhu, Y.; Wang, K.; Lu, J.; Pan, Z.; Rong, J.; Zhang, T.; Yang, D.; Pan, J.; Qiu, F. Teamed Boronate Affinity-Functionalized Zn-MOF/PAN-Derived Molecularly Imprinted Hollow Carbon Electrospinning Nanofibers for Selective Adsorption of Shikimic Acid. ACS Appl. Mater. Interfaces 2022, 14, 27294–27308. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Li, Y.; Wei, X.; Zheng, L.; Li, Z.; Zhang, K.; Yuan, C. Electrospun metal-organic frameworks hybrid nanofiber membrane for efficient removal of As(III) and As(V) from water. Ecotoxicol. Environ. Saf. 2021, 228, 112990. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Dong, Q.; Wang, Y.; Zhu, Z.; Guo, Z.; Li, J.; Lv, Y.; Chow, Y.T.; Wang, X.; Zhu, L.; et al. Water-stable metal–organic framework (UiO-66) supported on zirconia nanofibers membrane for the dynamic removal of tetracycline and arsenic from water. Appl. Surf. Sci. 2022, 596, 153559. [Google Scholar] [CrossRef]
- Liu, J.; Li, H.; Yan, B.; Zhong, C.; Zhao, Y.; Guo, X.; Zhong, J. Rational Design of a Zr-MOF@Curli-Polyelectrolyte Hybrid Membrane toward Efficient Chemical Protection, Moisture Permeation, and Catalytic Detoxification. ACS Appl. Mater. Interfaces 2022, 14, 53421–53432. [Google Scholar] [CrossRef] [PubMed]
- Ahmadijokani, F.; Molavi, H.; Bahi, A.; Wuttke, S.; Kamkar, M.; Rojas, O.J.; Ko, F.; Arjmand, M. Electrospun nanofibers of chitosan/polyvinyl alcohol/UiO-66/nanodiamond: Versatile adsorbents for wastewater remediation and organic dye removal. Chem. Eng. J. 2023, 457, 141176. [Google Scholar] [CrossRef]
- Metwally, S.S.; Ghaly, M.; El-Sherief, E.A. Physicochemical properties of synthetic nano-birnessite and its enhanced scavenging of Co2+ and Sr2+ ions from aqueous solutions. Mater. Chem. Phys. 2017, 193, 63–72. [Google Scholar] [CrossRef]
- Foroughi, M.; Peighambardoust, S.J.; Ramavandi, B.; Foroutan, R.; Peighambardoust, N.S. Simultaneous degradation of methyl orange and indigo carmine dyes from an aqueous solution using nanostructured WO3 and CuO supported on Zeolite 4A. Sep. Purif. Technol. 2024, 344, 127265. [Google Scholar] [CrossRef]
- Liu, T.; Zhang, X.; Gu, A.; Liu, Y.; Chen, M.; Wang, H.; Zhang, R.; Tang, S.; Xie, Z.; Wang, N. In-situ grown bilayer MOF from robust wood aerogel with aligned microchannel arrays toward selective extraction of uranium from seawater. Chem. Eng. J. 2022, 433, 134346. [Google Scholar] [CrossRef]
- Kong, L.; Wang, Y.; Andrews, C.B.; Zheng, C. One-step construction of hierarchical porous channels on electrospun MOF/polymer/graphene oxide composite nanofibers for effective arsenate removal from water. Chem. Eng. J. 2022, 435, 134830. [Google Scholar] [CrossRef]
- Chandra, L.; Vinothkumar, K.; Balakrishna, R.G. MIL-100 (Fe) integrated fibrous polyvinyl alcohol graft on cellulose acetate towards the development of green membranes; Application in multi solute rejection. J. Environ. Chem. Eng. 2023, 11, 109851. [Google Scholar] [CrossRef]
- Fan, S.; Wang, J.; Liao, L.; Feng, J.; Li, B.; Zhang, S. Enhanced selectivity in thin film composite membrane for CO2 capture through improvement to support layer. Chem. Eng. J. 2023, 468, 143645. [Google Scholar] [CrossRef]
- Dey, B.; Ahmad, M.W.; Sarkhel, G.; Ho Lee, G.; Choudhury, A. Fabrication of niobium metal organic frameworks anchored carbon nanofiber hybrid film for simultaneous detection of xanthine, hypoxanthine and uric acid. Microchem. J. 2023, 186, 108295. [Google Scholar] [CrossRef]
Sample | Specific Surface Area (m2/g) | Pore Volume (cc/g) | Pore Size (nm) |
---|---|---|---|
PAN | 9.89 | 0.026 | 10.41 |
MOF-OH | 800.0 | 0.295 | 1.31 |
MOF-OH-PAN | 22.39 | 0.083 | 17.64 |
PFO | PSO | ||||
---|---|---|---|---|---|
qe | k1 | R2 | qe | k2 | R2 |
20.6 | 0.681 | 0.976 | 23.8 | 0.031 | 0.975 |
Langmuir | Freundlich | ||||
---|---|---|---|---|---|
qm | KL | R2 | lnKF | n | R2 |
33.1 | 0.246 | 0.998 | 2.63 | 3.69 | 0.958 |
ΔG0 (kJ/mol) | ΔH0 (kJ/mol) | ΔS0 (J∙mol−1∙K−1) | ||
---|---|---|---|---|
288 K | 298 K | 308 K | ||
−1.39 | −2.65 | −3.90 | 34.8 | 125.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, C.; Luo, Y.; Pan, T.; Ding, L.; Wang, C.; Yuan, G.; Duan, C. Facile Prepared MOF-OH-PAN Nanofiber for Separation Co(II) from Waste Batteries. Polymers 2024, 16, 1239. https://doi.org/10.3390/polym16091239
Yin C, Luo Y, Pan T, Ding L, Wang C, Yuan G, Duan C. Facile Prepared MOF-OH-PAN Nanofiber for Separation Co(II) from Waste Batteries. Polymers. 2024; 16(9):1239. https://doi.org/10.3390/polym16091239
Chicago/Turabian StyleYin, Cong, Yang Luo, Ting Pan, Liting Ding, Chenghuang Wang, Guoyuan Yuan, and Chongxiong Duan. 2024. "Facile Prepared MOF-OH-PAN Nanofiber for Separation Co(II) from Waste Batteries" Polymers 16, no. 9: 1239. https://doi.org/10.3390/polym16091239
APA StyleYin, C., Luo, Y., Pan, T., Ding, L., Wang, C., Yuan, G., & Duan, C. (2024). Facile Prepared MOF-OH-PAN Nanofiber for Separation Co(II) from Waste Batteries. Polymers, 16(9), 1239. https://doi.org/10.3390/polym16091239